Makalah Mahasiswa Tahun 2023

  1. Verification of ID Card using Optical Character Recognition (OCR), Case Study on Eligibility of Subsidy Recipients at PT PLN (Persero)
    Oleh: Rahmat Kurniawan - 235322303

  2. Forecasting Electricity Consumption of Advanced Meter Infrastructure (AMI) PT PLN (Persero) Customers using LSTM and ARIMA
    Oleh: Muhammad Zulfi Ashari - NIM. 23522304

  3. Electricity Load on substations using ARIMA and LSTM models - A comparison, Case study : Trisakti substation in South Kalimantan
    Oleh: Satria Dina Astari - 23522309

  4. Application of Clustering Methods for Anomaly Identification in Efforts to Improve P2TL Quality
    Oleh: Ardik Crisdianto - 23522312

  5. PREDICTION OF POSTPAID CUSTOMERS ELECTRICITY SALES USING LSTM AND SARIMA
    Oleh: Paulus Saritosa - 23522315 (

  6. Short-Term Electricity Demand Forecasting Using LSTM and GRU, Case Study: High Voltage Consumers PT PLN (Persero) West Java
    Oleh: Almareta Harasti Nuraini - 23522313

  7. Comparative Analysis of Dynamic Programming, Genetic Algorithms, and Google OR-Tools for Optimizing kWh Meter Replacement Routes
    Oleh: Ike Ayu Idiara - 23522306

  8. Multi-Label Text Classification For Automation Soft Competency Assessment Scoring
    Oleh: Alfan Aris Setiawan - 23522311

  9. Classification of Animal Species Using Video Dataset with Deep Learning
    Oleh: Edy Sucipto - 23225307

  10. FRAUD DETECTION ON BPJS INSURANCE CLAIMS USING THE ELLIPTIC ENVELOPE ALGORITHM
    Oleh: Neo Alit Cahya - 23522314

  11. CLASSIFICATION OF CUSTOMER COMPLAINTS WITH CASE STUDY CONTACT CENTER PLN 123
    Oleh: Adi Firmansyah - 23522310

  12. Forecasting Customer Electricity Meter Installation Demand Using Autoregressive Integrated Moving Average (ARIMA), Case Study : PT PLN (Persero) UP3 Kediri
    Oleh: Risky Dinal Ardianto - 23522305

  13. MODELING ASSOCIATION PATTERNS OF IT NETWORK DISRUPTIONS IN PT PLN (PERSERO) CORPORATE USING ASSOCIATION RULE MINING
    Oleh: Fadly Muhammad - 23522302

  14. Prediction of Electricity Production from PLTMH Using Linear Regression and LSTM, Case Study on at PLTMH Sangir Hulu
    Oleh: Sandhi Ading Wasana - 23522308

  15. PREDICTING ELECTRICITY DEMAND USING MACHINE LEARNING AND DEEP LEARNING APPROACHES: A CASE STUDY OF PLN PALANGKARAYA
    Oleh: Rifki Zamzammi - 23522301