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Abstract—Graph machine learning and fraud detection 
systems are growing and popular today. Fraud detection 
systems have been widely used as a tool to detect potentially 
fraudulent transactions. Fraud detection systems can be used to 
determine patterns of transactions that are suspected of being 
criminal transactions. Graph machine learning development 
can be implemented in anything that can be represented in 
graph form. The banking fraud detection system can be 
implemented in graph form by connecting customers who have 
made transactions with other customers or customer 
transactional activities. From the graph that has been formed, 
predictions will be made so that new transactions can be 
classified as fraudulent transactions or not by connecting these 
transactions with the graphs that have been made. The 
experimental results show that the graph-based fraud detection 
model produces better performance than the tree-based fraud 
detection model, but with a longer inference time. 

Keywords— banking fraud detection, graph-based fraud 
detection, classification, tree-based fraud detection , inference 
time 

I. INTRODUCTION 
Fraud is an activity carried out to gain financial gain that 

is carried out fraudulently[1]. Fraud against an organization is 
a threat to the status of the organization and its interactions 
with stakeholders outside the organization, such as customers, 
suppliers, investors and business partners. Fraud can result in 
enormous financial damage [2] . Fraud in the banking industry 
is a growing problem with enormous consequences for banks 
and customers, both in terms of financial loss, trust and 
credibility [3]. There are many types of bank fraud including 
check fraud, debit and credit card fraud. inflated contracts, 
financial statement fraud, health insurance fraud, auto 
insurance fraud, and mortgage insurance fraud [4]. 

Fraudulent behavior in transactions can be detected as 
suspicious transactions [5]. Suspicious transaction detection is 
an effective anomaly detection as a learning process that can 
be integrated into a solution for finding fraud [6].  

The combination of this transaction data with the latest 
machine learning (ML) techniques has made it possible to 
automatically identify fraudulent transactions. While many 
researchers have developed and implemented machine 
learning algorithms for fraud detection [7], some of them 
specifically use random forests, decision trees, and Support 
Vector Machines. some of them specifically use random 
forests [8][9][10], decision trees [11][12][13], and Support 
Vector Machines [14][15]. They often rely on artificial feature 
engineering, are case dependent, and difficult to optimize. In 

addition, although recent research has shown that fraudulent 
behavior has important social effects, both the social and 
temporal aspects of behavior, the aspect of network 
correlation between existing data related to behavior that is 
considered fraudulent is often ignored [16]. 

The graph-based anomaly detection approach is one of the 
most popular techniques used to analyze communication 
network patterns and can be used to identify suspicious 
behavior [17].  Identification of fraud is a procedure for 
determining data points that have different behavior from 
normal behavior.  

Fraud on a graph can be defined as a single data point that 
has deviant behavior from other networks [18]. Fraud 
detection links various correlated data to group nodes based 
on previously identified data. The use of graphs can 
accommodate data structures that vary and have complex 
dimensions [19]. Previous anomaly detection methods have 
utilized user attributes and historical behavior to detect fraud 
in banking by utilizing traditional machine learning where its 
use is only limited to features in user data [20]. Graph Neural 
Network (GNN) is one of the benefits of using a neural 
network that utilizes a data structure in the form of a graph 
[21]. The use of this method can be implemented in fraud 
detection cases where the implementation will consider the 
correlation or linkages between nodes or data.  

This research will focus on the implementation of the 
Graph-Based Machine Learning Model which will be 
compared to the traditional tree-based machine learning 
model to determine accuracy and inference time in banking 
fraud detection case studies. The rest of this paper is organized 
as follows: The related works are discussed in section 2. 
Section 3 provides the proposed model of banking fraud 
detection. Section 4 discusses the results and analysis of tree 
based model and graph-based model. Finally, discussion and 
conclusion are given in section 5 and section 6. 

II. RELATED WORKS 
Since the success of deep learning, many studies have 

studied how the structure of graphs can be implemented into 
artificial neural networks. The GNN-based system (Graph 
Neural Network) has shown many uses because it can be used 
in graph data structures such as protein structures and 
knowledge graph [21]. Our contribution mainly focuses on 
creating graph-based fraud detection system model and 
treebased fraud detection system model to detect potentially 
fraudulent transactions. Graph-based machine learning 
models that will be used are GraphSAGE [22], GAT [23] and 



GCN [24]. Tree-based machine learning models that will be 
used are Random Forest [25], LightGBM [26] and XGBoost 
[27]. 

The graph-based fraud detection system will use existing 
methods in graph-based machine learning. Methods in 
graphic-based machine learning include edge prediction, node 
classification and graph classification[28]. In the case of edge 
prediction with one type of transaction, we can do it 
inductively or transductively. In this paper, a graph-based 
model will be made to predict edges inductively. Inductive 
inference is done in batches, i.e. the input is n transactions. 
After the graph learns how to predict the edges of the train 
dataset, then inference will be made on the test dataset of n 
transactions. Inferences from fraud or not fraudulent 
transactions will be seen from features on the data 
transactions. The graph used in this study is defined as (1) 
where G is an directed graph, V is defined as (2), and E is 
defined as (3) where ux and wq are transactions and will be 
included in the set E if both vertices connected. 

 𝐺 = (𝑉, 𝐸) (1) 

𝑉 = {𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛1, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛2,… , 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑁} (2) 

 𝐸 = {(𝑡!, 𝑤!), (𝑡", 𝑤"), … , (𝑡#, 𝑤$)} (3) 

A. Directed Homogeneous Graph 
The use of types in graphs based on data scalability greatly 

influences the modeling that will be carried out. The graph 
type is an input data structure which becomes input for GNN 
processing later [29]. In this study, directed graphs are used 
where the edges in a directed graph are all directed from one 
node to another, which provides more information than an 
undirected graph. Each edge in an undirected graph can also 
be considered as two directed edges. In addition, the node 
scheme used is Homogeneous Graphs, where the nodes and 
edges in a homogeneous graph have the same type in features 
and behavior treatment at these nodes and edges. The selection 
of graph, node, and edge schemes is based on the shape of the 
dataset owned so that system detection can be maximized 
because it has a graph scheme that matches the dataset used. 

B. Link Prediction 
Graph Neural Network (GNN) has been implemented for 

various needs and tasks. GNN functionality can be classified 
according to the scope of work on graph systems, namely node 
level, edge level, or graph level [30]. In this research, we will 
implement link prediction at the edge level which will label 
existing links with a class of binary classification categories 
indicating whether the transaction is categorized as fraud or 
not. 

C. Tree Based Algorithm 
The tree-based machine learning method is a branch of 

supervised learning that offers a variety of flexible methods 
built on a common framework [31]. The tree-based method is 
capable of handling diverse data without the need for in-depth 
pre-processing. The tree-based method also has fast and 
accurate computations. In this study, three tree-based machine 
learning methods will be used, including Random Forest, 
LightGBM, and XGBoost. 

III. THE PROPOSED MODEL OF BANKING FRAUD DETECTION 
This section details the building blocks for applying 

representational learning in fraud detection settings. Tabular 
data structures are explicitly encoded into a graph format. 
Then, each graph node is converted into a vector through a 
representational learning algorithm which will be represented 
as nodes and edges. The generalization of embedding this 
algorithm to invisible nodes is achieved with the help of 
inductive extensions 

A. Graph Structure 
The graph structure representation that will be used in this 

study will consist of transactional data that will be connected 
by two customers with detailed transaction data that will be 
used as a feature on the edge graph. 

This idea is also relevant for fraud detection, as it seems 
attractive to explicitly add historical fraud information to 
transaction data. With the use of linkages between transaction 
data that occur between customers, patterns of fraud detected 
will be known. 

Figure 1 shows the graph scheme that will be used for 
fraud detection where customers are nodes and transactions 
are edges 

 
Fig. 1. Graph Based Model Inference Time 

B. Inductive Representative Learning.  
The need for inductive representation learning can be 

attributed to timeliness constraints in many application 
domains. Fraud detection is no exception. When transactions 
are processed, authorization is required in seconds. As 
discussed earlier, existing representational learning 
techniques are only transductive, in that the entire graph is 
only fed once to the representational learner, which results in 
only one set of embeddings. Adding or removing nodes or 
edges to the network, requires repeating the entire process. 
The associated computational complexity hinders the timely 
completion of the predictions. 

Graphsage, GCN, and GAT [7] are node insertion 
algorithms capable of generating embeds for invisible nodes. 
Therefore, this technique is an obvious choice to overcome the 
deception induction problem. The graph method avoids 
iteration by learning a function that takes the environment 
node attribute as input and produces embedding as output. The 
graph method offers a variety of feature aggregation 
possibilities to be applied to node attributes. 

We describe in Figure 2 about simple procedure for 
creating embeddings for invisible edge/node. Node/edge, i.e. 



a new credit card transaction. The basic idea is to run the 
embedding algorithm on a sufficient amount of training data. 
For each new graphic element added to the original graphic, a 
new embedding is created by reusing the already derived 
embedding for the existing graphic element. 

 
Fig. 2. Inductive Embedding 

C. Evaluation of Machine Learning Models.  
The evaluation metric used in this study is the Area Under 

the Curve (AUC) value of the Receiver Operating 
Characteristics (ROC) curve as in (4). ROC is a probability 
curve, while AUC is the degree of separation between the 
prediction results. The value of AUC will describe how 
precisely the model separates between classes. A high AUC 
value means that the model can predict well class 0 data with 
class 0 predictions as well as class 1 data with class 1 
predictions. The curve of the ROC is depicted by the false 
positive rate (FPR) as the X axis and the true positive rate 
(TPR) as the Y. 

𝑅𝑂𝐶 − 𝐴𝑈𝐶 =	?𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅
!

%

 

=	∫ 𝑇𝑃𝑅(𝐹𝑃𝑅&!(𝑥))𝑑𝑥!
%  (4) 

IV. RESULT AND ANALYSIS 

A. Experiment Setup 
The dataset used is a dataset regarding credit-card user 

which is customer transaction data that has fraud and non-
fraud labels. The preprocessing is carried out in two steps, the 
first is to combine the columns of sending and receiving 
customers to serve as table nodes, the second is to remove 
outliers where there is data that has a transaction amount of 0. 
Some samples related to the dataset that will be used for fraud 
detection are shown in Table I 

TABLE I.  DATASET TRANSACTIONS OF CREDIT CARD 

Step Type Amount nameOrig nameDest isFraud 
1 Payment 1300000 CDU1837 CYS8364 1 
2 Transfer 100000 CYR1534 CTR1837 0 
3 Payment 120000 CSY2847 CUY1837 1 
 

The specifications provided about the machine that will be 
used for the experiments are 4vCPUs with 32 gigabytes (GB) 
memory. We will determine the parameters for tree-based 
model with the best performance or hyperparameter tuning by 

using GridSearchCV. There will be no hyperparameter tuning 
using GridSearchCV for a graph-based model because it 
cannot accept a graph-based model. In order for the 
experiment to be carried out the same for all models, it is 
necessary to determine a parameter that has a fixed value for 
the entire model. In the tree-based model, we can use min data 
in leaf and learning rate to be fixed-valued parameters for the 
three tree-based models. The dataset will be divided into two 
parts, test dataset and train dataset. The comparison of the 
dataset used in this experiment is 70% train data and 30% test 
data [32]. Details about the experimental setup on the tree 
based model and graph based model are shown in Table II, 
Table III, Table IV, Table V, Table VI, Table VII 

TABLE II.  EXPERIMENT SETUP TREE BASED MODEL 

No Model Used Parameter Dataset 
Learning 

Rate 
Min data in 

leaf 
Train Test 

1 Random Forest - 20 70% 30% 
2 LightGBM 0.2 20 70% 30% 
3 XGBoost 0.2 - 70% 30% 

TABLE III.  EXPERIMENT SETUP GRAPH BASED MODEL 

No Model Used Parameter  Dataset 
Optimizer Learning 

Rate 
Dropout Train Test 

1 GraphSage Adam 0.001 0.3 70% 30% 
2 GAT Adam 0.001 0.3 70% 30% 
3 GCN Adam 0.001 0.3 70% 30% 

TABLE IV.  MAX DEPTH & N ESTIMATOR VARIATION ON TREE BASED 
MODEL 

Model Max Depth 
Variation 

N Estimators 
Variation 

Random Forest 10, 20, 40, 80 25, 50, 100, 200 

LightGBM 10, 20, 40, 80 25, 50, 100, 200 

XGBoost 10, 20, 40, 80 25, 50, 100, 200 

TABLE V.  INFERENCE TIME EXPERIMENT ON TREE BASED MODEL 

Model Max Depth 
Variation 

N Estimators 
Variation 

Random Forest 10 25, 50, 100, 200 

LightGBM 10 25, 50, 100, 200 

XGBoost 10 25, 50, 100, 200 

TABLE VI.  EPOCH LAYER VARIATION ON GRAPH BASED MODEL 

Model Epoch Variation Layer Variation 
GraphSage 20, 40, 60, 80 2, 3, 4, 5 

GAT 20, 40, 60, 80 2, 3, 4, 5 

GCN 20, 40, 60, 80 2, 3, 4, 5 

TABLE VII.  INFERENCE TIME EXPERIMENT ON GRAPH BASED MODEL 

Model Layer Epoch Variation 
GraphSage 2 20, 40, 60, 80 

GAT 2 20, 40, 60, 80 

GCN 2 20, 40, 60, 80 

B. Experiment Scenario 
In this experiment, three graph-based models and three 

treebased models will be created and implemented. There are 



several parameters that are varied to see the best performance 
of the model. The variation of the selected is the value taken 
because the resources of the machine are limited. The max 
depth, n estimators, epoch and layer experiments will be 
performed 10 times. 

There are three experiments to be carried out in a tree-
based model. This experiment will vary a parameter. The 
parameters variation used in the tree-based experiment are 
max depth and n estimators (see Table IV). For the max depth 
experiment, the value of n estimators used is 100. For the n 
estimators experiment, the value of max depth used is 10. The 
last experiment is inference time of tree-based model (see 
Table IV). 

There are three experiments to be carried out in a 
graphbased model. The parameters used in graph-based 
experiments are epoch and layer (see Table VI). Epoch and 
layer were selected as parameters to be varied to see whether 
the addition of these two parameters will affect the 
performance of the model or not. For the epoch variation 
experiment, the value of layer used is 2. For the layer variation 
experiment, the epoch value used is 40. The last experiment is 
the inference time of model (see Table VII). 

C. Experiment Result 
In this section, the results of the experiments that have 

been carried out will be explained. There are six experiments 
that have been done. Evaluation of the performance of each 
experiment will used the AUC value. The evaluation of the 
inference time will use the units of milliseconds. Evaluation 
will be carried out on the testing data.  

1) Max Depth Experiment on Tree Based Model 
In this experiment, it was found that LightGBM has the 

highest performance with an AUC value of 0.866 when max 
depth is 40. It can be seen in Table VIII that increasing max 
depth in the Random Forest and XGBoost model will not 
affect the model’s performance. LightGBM is model that have 
lower performance variance than Random Forest and 
XGBoost. This shows that LightGBM is more stable than 
Random Forest and XGBoost in the max depth experiment. 
From this experiment, it was found that increasing max depth 
in LightGBM will improve the performance of the model. 

TABLE VIII.  AUC SCORE MAX DEPTH EXPERIMENT 

Max Depth Random 
Forest 

LightGBM XGBoost 

10 0.828 0.817 0.847 

20 0.827 0.854 0.855 

40 0.829 0.866 0.848 

80 0.828 0.856 0.851 

 
2) N Estimator Experiment on Tree Based Model 

Overall it was found that LightGBM got the highest 
performance with an AUC value of 0.876 when n 
estimators is 100. Table IX shows that LightGBM gets 
the best performance compared to XGBoost and 
Random Forest in almost all variations of n estimators, 
namely 25, 50, 100 and 200. From the experiment we 
got that Random Forest gets the worst performance, 
which is the maximum AUC value obtained is 0.830. 
This experiment shows that LightGBM and XGBoost 

are more stable than Random Forest. From this 
experiment, it was found that increasing the value of n 
estimators in LightGBM and XGboost will increase 
the performance of the model in most of n estimator. 

TABLE IX.  AUC SCORE N ESTIMATOR EXPERIMENT 

N 
Estimator 

Random 
Forest 

LightGBM XGBoost 

25 0.828 0.837 0.838 

50 0.827 0.854 0.845 

100 0.827 0.876 0.857 

200 0.830 0.873 0.859 

 
3) Epoch Experiment on Graph Based Model 

The AUC values from the classification of graph-
based models can be seen in Table X shows the result 
for GraphSAGE, GAT and GCN. From the 
classification results, it was found that the highest 
value obtained in the epoch experiment was 
GraphSAGE with an AUC value of 0.989. In this 
experiment, it was found that the more epoch used, the 
better the performance for classifying customers for 
the GCN model. Meanwhile, it can be seen that for the 
GraphSAGE and GAT models there is an increase or 
decrease in the average value but not significant. In 
this experiment, it was also found that GraphSAGE 
obtained more stable results than GAT and GCN. 

TABLE X.  AUC SCORE EPOCH EXPERIMENT 

Epoch GraphSage GAT GCN 
20 0.985 0.842 0.676 

40 0.987 0.858 0.895 

60 0.985 0.851 0.926 

80 0.989 0.859 0.936 

 
4) Layer Experiment on Graph Based Model 

The AUC values from the classification of graph-
based models can be seen in the Table XI for 
GraphSAGE, GAT and GCN. The classification 
results show that the best value is obtained by 
GraphSAGE when there are 2 layers with an AUC 
value of 0.985. Therefore, GraphSAGE is the most 
efficient graph method compared to the other two 
methods. Sequentially, it was found that the best 
performance on the graph-based model in the layer 
experiment are GraphSAGE, GCN and GAT. From 
this experiment, it was found that increasing the layer 
on the graph-based model will decrease the 
classification performance for customers. 

TABLE XI.  AUC SCORE LAYER EXPERIMENT 

Layer GraphSage GAT GCN 
2 0.985 0.903 0.888 

3 0.902 0.805 0.725 

4 0.859 0.794 0.747 

5 0.764 0.694 0.542 



5) Inference Time Experiment 
There are 2 experiment results in this experiment. The 
first experiment is time inference graph-based model. 
The second experiment is time inference tree-based 
model. In this experiment, it was found that GCN has 
the fastest inference time at Table XII. GraphSAGE 
takes longer time because it uses the LSTM function 
so that it processes input sequentially. It can also be 
seen in the table that GAT gets an inference time that 
is between GCN and GraphSAGE. From this 
experiment, it was found that increasing epoch on all 
graph-based models did not significantly affect the 
inference time. In the tree-based model experiment, it 
was found that the inference time was faster than the 
graph-based model at Table XIII. LightGBM has the 
lowest inference times for almost all n estimators then 
followed by XGBoost and Random Forest. From this 
experiment, it was found that increasing n estimators 
in a treebased model can make the inference time 
longer. 

TABLE XII.  GRAPH BASED MODEL INFERENCE TIME 

Epoch GraphSage GAT GCN 
20 6,183 ms 4,847 ms 3,385 ms 

40 7,183 ms 3,837 ms 3,353 ms 

60 6,384 ms 3,756 ms 3,534 ms 

80 6,284 ms 3,645 ms 3,423 ms 

TABLE XIII.  TREE BASED MODEL INFERENCE TIME 

N 
Estimator 

Random 
Forest 

LightGBM XGBoost 

25 9.6 ms 3.98 ms 7.39 ms 

50 11.8 ms 4.85 ms 8.38 ms 

100 24.8 ms 8.58 ms 11.45 ms 

200 34.8 ms 11.2 ms 8.69 ms 

V. DISCUSSION 
A comparison analysis of the AUC value will be carried 

out to see a better model performance. The AUC value used is 
the highest average of the entire model. Inference time 
comparison will also be seen to see which model is faster. The 
comparison of the graph-based model and the tree-based 
model can be seen in Table XIII. In the case with data in the 
form of fraud detection for banking transactions, it was found 
that the graph-based model had better performance than the 
tree-based model. The inference time of the graph-based 
model is the inference time of the edge predictions added to 
the inference time for classification. From this comparison, it 
is found that the tree-based model has a faster inference time 
than the graph-based model. Graph-based models have a 
longer inference time because the model requires more 
processes so it takes longer to classify. 

In this experiment it was found that GraphSAGE has better 
performance than GAT and GCN on graph-based machine 
learning. This performance difference is due to the 
computations performed on GraphSAGE that do not give 
weight to the features of its neighbors, so the results obtained 
are better than GCN. In addition, GraphSAGE will work 
directly by concatenating the aggregated results of 

neighboring features to its own features so that the resulting 
model will be based on non-normalized features such as GAT. 
The learning process in the GAT model is also carried out by 
selecting heads randomly where in GraphSAGE the selection 
of layers depends on the selected destination node, namely the 
layer will contain neighbors of the selected nodes so that it 
will greatly affect the performance of the model as a whole. 

TABLE XIV.  COMPARISON OF GRAPH BASED MODEL AND TREE BASED 
MODEL 

Params Random 
Forest 

Light 
GBM 

XG 
Boost 

Graph 
Sage 

GAT GCN 

AUC 
Score 0.831 0.863 0.862 0.974 0.901 0.969 

Inference 
Time 

8.7  
ms 

3.96 
ms 

6.97 
ms 

5,630 
ms 

2,770 
ms 

2,296 
ms 

VI. CONCLUSSION 
In general, it can be concluded that in case of fraud 

detection with dataset credit card customers, graph-based 
model has better performance than the tree-based model, but 
the graph-based model has a longer inference time than the 
tree-based model. From the results of the variation 
experiment, it is found that there are parameters that can 
significantly affect the performance of a model and 
parameters that do not significantly affect the performance of 
the model. It was found that layer will affect the performance 
of the overall graph-based model and epoch will affect GCN 
significantly but not with GraphSAGE and GAT. It was also 
found that the max depth variation will only significantly 
affect the LightGBM model and the number of tree variation 
will significantly affect the performance of the LightGBM and 
XGBoost models. 

The weakness of the graph structure algorithm is the high 
complexity of the graph which results in longer inference time 
compared to tree-based algorithms. In the future, a graph-
based algorithm can be developed that can speed up inference 
time so that it can be optimized in machine learning tasks 
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