

Inductive Link Prediction Banking Fraud Detection
System Using Homogeneous Graph-Based Machine

Learning Model

1st Hilmi Aziz Bukhori
School of Electrical Engineering and

Informatics
Institut Teknologi Bandung

Bandung, Indonesia
23521017@std.stei.ac.id

2st Rinaldi Munir
School of Electrical Engineering and

Informatics
Institut Teknologi Bandung

Bandung, Indonesia
rinaldi@informatika.org

Abstract—Graph machine learning and fraud detection
systems are growing and popular today. Fraud detection
systems have been widely used as a tool to detect potentially
fraudulent transactions. Fraud detection systems can be used to
determine patterns of transactions that are suspected of being
criminal transactions. Graph machine learning development
can be implemented in anything that can be represented in
graph form. The banking fraud detection system can be
implemented in graph form by connecting customers who have
made transactions with other customers or customer
transactional activities. From the graph that has been formed,
predictions will be made so that new transactions can be
classified as fraudulent transactions or not by connecting these
transactions with the graphs that have been made. The
experimental results show that the graph-based fraud detection
model produces better performance than the tree-based fraud
detection model, but with a longer inference time.

Keywords— banking fraud detection, graph-based fraud
detection, classification, tree-based fraud detection , inference
time

I. INTRODUCTION
Fraud is an activity carried out to gain financial gain that

is carried out fraudulently[1]. Fraud against an organization is
a threat to the status of the organization and its interactions
with stakeholders outside the organization, such as customers,
suppliers, investors and business partners. Fraud can result in
enormous financial damage [2] . Fraud in the banking industry
is a growing problem with enormous consequences for banks
and customers, both in terms of financial loss, trust and
credibility [3]. There are many types of bank fraud including
check fraud, debit and credit card fraud. inflated contracts,
financial statement fraud, health insurance fraud, auto
insurance fraud, and mortgage insurance fraud [4].

Fraudulent behavior in transactions can be detected as
suspicious transactions [5]. Suspicious transaction detection is
an effective anomaly detection as a learning process that can
be integrated into a solution for finding fraud [6].

The combination of this transaction data with the latest
machine learning (ML) techniques has made it possible to
automatically identify fraudulent transactions. While many
researchers have developed and implemented machine
learning algorithms for fraud detection [7], some of them
specifically use random forests, decision trees, and Support
Vector Machines. some of them specifically use random
forests [8][9][10], decision trees [11][12][13], and Support
Vector Machines [14][15]. They often rely on artificial feature
engineering, are case dependent, and difficult to optimize. In

addition, although recent research has shown that fraudulent
behavior has important social effects, both the social and
temporal aspects of behavior, the aspect of network
correlation between existing data related to behavior that is
considered fraudulent is often ignored [16].

The graph-based anomaly detection approach is one of the
most popular techniques used to analyze communication
network patterns and can be used to identify suspicious
behavior [17]. Identification of fraud is a procedure for
determining data points that have different behavior from
normal behavior.

Fraud on a graph can be defined as a single data point that
has deviant behavior from other networks [18]. Fraud
detection links various correlated data to group nodes based
on previously identified data. The use of graphs can
accommodate data structures that vary and have complex
dimensions [19]. Previous anomaly detection methods have
utilized user attributes and historical behavior to detect fraud
in banking by utilizing traditional machine learning where its
use is only limited to features in user data [20]. Graph Neural
Network (GNN) is one of the benefits of using a neural
network that utilizes a data structure in the form of a graph
[21]. The use of this method can be implemented in fraud
detection cases where the implementation will consider the
correlation or linkages between nodes or data.

This research will focus on the implementation of the
Graph-Based Machine Learning Model which will be
compared to the traditional tree-based machine learning
model to determine accuracy and inference time in banking
fraud detection case studies. The rest of this paper is organized
as follows: The related works are discussed in section 2.
Section 3 provides the proposed model of banking fraud
detection. Section 4 discusses the results and analysis of tree
based model and graph-based model. Finally, discussion and
conclusion are given in section 5 and section 6.

II. RELATED WORKS
Since the success of deep learning, many studies have

studied how the structure of graphs can be implemented into
artificial neural networks. The GNN-based system (Graph
Neural Network) has shown many uses because it can be used
in graph data structures such as protein structures and
knowledge graph [21]. Our contribution mainly focuses on
creating graph-based fraud detection system model and
treebased fraud detection system model to detect potentially
fraudulent transactions. Graph-based machine learning
models that will be used are GraphSAGE [22], GAT [23] and

GCN [24]. Tree-based machine learning models that will be
used are Random Forest [25], LightGBM [26] and XGBoost
[27].

The graph-based fraud detection system will use existing
methods in graph-based machine learning. Methods in
graphic-based machine learning include edge prediction, node
classification and graph classification[28]. In the case of edge
prediction with one type of transaction, we can do it
inductively or transductively. In this paper, a graph-based
model will be made to predict edges inductively. Inductive
inference is done in batches, i.e. the input is n transactions.
After the graph learns how to predict the edges of the train
dataset, then inference will be made on the test dataset of n
transactions. Inferences from fraud or not fraudulent
transactions will be seen from features on the data
transactions. The graph used in this study is defined as (1)
where G is an directed graph, V is defined as (2), and E is
defined as (3) where ux and wq are transactions and will be
included in the set E if both vertices connected.

 𝐺 = (𝑉, 𝐸) (1)

𝑉 = {𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛1, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛2,… , 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑁} (2)

 𝐸 = {(𝑡!, 𝑤!), (𝑡", 𝑤"), … , (𝑡#, 𝑤$)} (3)

A. Directed Homogeneous Graph
The use of types in graphs based on data scalability greatly

influences the modeling that will be carried out. The graph
type is an input data structure which becomes input for GNN
processing later [29]. In this study, directed graphs are used
where the edges in a directed graph are all directed from one
node to another, which provides more information than an
undirected graph. Each edge in an undirected graph can also
be considered as two directed edges. In addition, the node
scheme used is Homogeneous Graphs, where the nodes and
edges in a homogeneous graph have the same type in features
and behavior treatment at these nodes and edges. The selection
of graph, node, and edge schemes is based on the shape of the
dataset owned so that system detection can be maximized
because it has a graph scheme that matches the dataset used.

B. Link Prediction
Graph Neural Network (GNN) has been implemented for

various needs and tasks. GNN functionality can be classified
according to the scope of work on graph systems, namely node
level, edge level, or graph level [30]. In this research, we will
implement link prediction at the edge level which will label
existing links with a class of binary classification categories
indicating whether the transaction is categorized as fraud or
not.

C. Tree Based Algorithm
The tree-based machine learning method is a branch of

supervised learning that offers a variety of flexible methods
built on a common framework [31]. The tree-based method is
capable of handling diverse data without the need for in-depth
pre-processing. The tree-based method also has fast and
accurate computations. In this study, three tree-based machine
learning methods will be used, including Random Forest,
LightGBM, and XGBoost.

III. THE PROPOSED MODEL OF BANKING FRAUD DETECTION
This section details the building blocks for applying

representational learning in fraud detection settings. Tabular
data structures are explicitly encoded into a graph format.
Then, each graph node is converted into a vector through a
representational learning algorithm which will be represented
as nodes and edges. The generalization of embedding this
algorithm to invisible nodes is achieved with the help of
inductive extensions

A. Graph Structure
The graph structure representation that will be used in this

study will consist of transactional data that will be connected
by two customers with detailed transaction data that will be
used as a feature on the edge graph.

This idea is also relevant for fraud detection, as it seems
attractive to explicitly add historical fraud information to
transaction data. With the use of linkages between transaction
data that occur between customers, patterns of fraud detected
will be known.

Figure 1 shows the graph scheme that will be used for
fraud detection where customers are nodes and transactions
are edges

Fig. 1. Graph Based Model Inference Time

B. Inductive Representative Learning.
The need for inductive representation learning can be

attributed to timeliness constraints in many application
domains. Fraud detection is no exception. When transactions
are processed, authorization is required in seconds. As
discussed earlier, existing representational learning
techniques are only transductive, in that the entire graph is
only fed once to the representational learner, which results in
only one set of embeddings. Adding or removing nodes or
edges to the network, requires repeating the entire process.
The associated computational complexity hinders the timely
completion of the predictions.

Graphsage, GCN, and GAT [7] are node insertion
algorithms capable of generating embeds for invisible nodes.
Therefore, this technique is an obvious choice to overcome the
deception induction problem. The graph method avoids
iteration by learning a function that takes the environment
node attribute as input and produces embedding as output. The
graph method offers a variety of feature aggregation
possibilities to be applied to node attributes.

We describe in Figure 2 about simple procedure for
creating embeddings for invisible edge/node. Node/edge, i.e.

a new credit card transaction. The basic idea is to run the
embedding algorithm on a sufficient amount of training data.
For each new graphic element added to the original graphic, a
new embedding is created by reusing the already derived
embedding for the existing graphic element.

Fig. 2. Inductive Embedding

C. Evaluation of Machine Learning Models.
The evaluation metric used in this study is the Area Under

the Curve (AUC) value of the Receiver Operating
Characteristics (ROC) curve as in (4). ROC is a probability
curve, while AUC is the degree of separation between the
prediction results. The value of AUC will describe how
precisely the model separates between classes. A high AUC
value means that the model can predict well class 0 data with
class 0 predictions as well as class 1 data with class 1
predictions. The curve of the ROC is depicted by the false
positive rate (FPR) as the X axis and the true positive rate
(TPR) as the Y.

𝑅𝑂𝐶 − 𝐴𝑈𝐶 =	?𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅
!

%

=	∫ 𝑇𝑃𝑅(𝐹𝑃𝑅&!(𝑥))𝑑𝑥!
% (4)

IV. RESULT AND ANALYSIS

A. Experiment Setup
The dataset used is a dataset regarding credit-card user

which is customer transaction data that has fraud and non-
fraud labels. The preprocessing is carried out in two steps, the
first is to combine the columns of sending and receiving
customers to serve as table nodes, the second is to remove
outliers where there is data that has a transaction amount of 0.
Some samples related to the dataset that will be used for fraud
detection are shown in Table I

TABLE I. DATASET TRANSACTIONS OF CREDIT CARD

Step Type Amount nameOrig nameDest isFraud
1 Payment 1300000 CDU1837 CYS8364 1
2 Transfer 100000 CYR1534 CTR1837 0
3 Payment 120000 CSY2847 CUY1837 1

The specifications provided about the machine that will be
used for the experiments are 4vCPUs with 32 gigabytes (GB)
memory. We will determine the parameters for tree-based
model with the best performance or hyperparameter tuning by

using GridSearchCV. There will be no hyperparameter tuning
using GridSearchCV for a graph-based model because it
cannot accept a graph-based model. In order for the
experiment to be carried out the same for all models, it is
necessary to determine a parameter that has a fixed value for
the entire model. In the tree-based model, we can use min data
in leaf and learning rate to be fixed-valued parameters for the
three tree-based models. The dataset will be divided into two
parts, test dataset and train dataset. The comparison of the
dataset used in this experiment is 70% train data and 30% test
data [32]. Details about the experimental setup on the tree
based model and graph based model are shown in Table II,
Table III, Table IV, Table V, Table VI, Table VII

TABLE II. EXPERIMENT SETUP TREE BASED MODEL

No Model Used Parameter Dataset
Learning

Rate
Min data in

leaf
Train Test

1 Random Forest - 20 70% 30%
2 LightGBM 0.2 20 70% 30%
3 XGBoost 0.2 - 70% 30%

TABLE III. EXPERIMENT SETUP GRAPH BASED MODEL

No Model Used Parameter Dataset
Optimizer Learning

Rate
Dropout Train Test

1 GraphSage Adam 0.001 0.3 70% 30%
2 GAT Adam 0.001 0.3 70% 30%
3 GCN Adam 0.001 0.3 70% 30%

TABLE IV. MAX DEPTH & N ESTIMATOR VARIATION ON TREE BASED
MODEL

Model Max Depth
Variation

N Estimators
Variation

Random Forest 10, 20, 40, 80 25, 50, 100, 200

LightGBM 10, 20, 40, 80 25, 50, 100, 200

XGBoost 10, 20, 40, 80 25, 50, 100, 200

TABLE V. INFERENCE TIME EXPERIMENT ON TREE BASED MODEL

Model Max Depth
Variation

N Estimators
Variation

Random Forest 10 25, 50, 100, 200

LightGBM 10 25, 50, 100, 200

XGBoost 10 25, 50, 100, 200

TABLE VI. EPOCH LAYER VARIATION ON GRAPH BASED MODEL

Model Epoch Variation Layer Variation
GraphSage 20, 40, 60, 80 2, 3, 4, 5

GAT 20, 40, 60, 80 2, 3, 4, 5

GCN 20, 40, 60, 80 2, 3, 4, 5

TABLE VII. INFERENCE TIME EXPERIMENT ON GRAPH BASED MODEL

Model Layer Epoch Variation
GraphSage 2 20, 40, 60, 80

GAT 2 20, 40, 60, 80

GCN 2 20, 40, 60, 80

B. Experiment Scenario
In this experiment, three graph-based models and three

treebased models will be created and implemented. There are

several parameters that are varied to see the best performance
of the model. The variation of the selected is the value taken
because the resources of the machine are limited. The max
depth, n estimators, epoch and layer experiments will be
performed 10 times.

There are three experiments to be carried out in a tree-
based model. This experiment will vary a parameter. The
parameters variation used in the tree-based experiment are
max depth and n estimators (see Table IV). For the max depth
experiment, the value of n estimators used is 100. For the n
estimators experiment, the value of max depth used is 10. The
last experiment is inference time of tree-based model (see
Table IV).

There are three experiments to be carried out in a
graphbased model. The parameters used in graph-based
experiments are epoch and layer (see Table VI). Epoch and
layer were selected as parameters to be varied to see whether
the addition of these two parameters will affect the
performance of the model or not. For the epoch variation
experiment, the value of layer used is 2. For the layer variation
experiment, the epoch value used is 40. The last experiment is
the inference time of model (see Table VII).

C. Experiment Result
In this section, the results of the experiments that have

been carried out will be explained. There are six experiments
that have been done. Evaluation of the performance of each
experiment will used the AUC value. The evaluation of the
inference time will use the units of milliseconds. Evaluation
will be carried out on the testing data.

1) Max Depth Experiment on Tree Based Model
In this experiment, it was found that LightGBM has the

highest performance with an AUC value of 0.866 when max
depth is 40. It can be seen in Table VIII that increasing max
depth in the Random Forest and XGBoost model will not
affect the model’s performance. LightGBM is model that have
lower performance variance than Random Forest and
XGBoost. This shows that LightGBM is more stable than
Random Forest and XGBoost in the max depth experiment.
From this experiment, it was found that increasing max depth
in LightGBM will improve the performance of the model.

TABLE VIII. AUC SCORE MAX DEPTH EXPERIMENT

Max Depth Random
Forest

LightGBM XGBoost

10 0.828 0.817 0.847

20 0.827 0.854 0.855

40 0.829 0.866 0.848

80 0.828 0.856 0.851

2) N Estimator Experiment on Tree Based Model

Overall it was found that LightGBM got the highest
performance with an AUC value of 0.876 when n
estimators is 100. Table IX shows that LightGBM gets
the best performance compared to XGBoost and
Random Forest in almost all variations of n estimators,
namely 25, 50, 100 and 200. From the experiment we
got that Random Forest gets the worst performance,
which is the maximum AUC value obtained is 0.830.
This experiment shows that LightGBM and XGBoost

are more stable than Random Forest. From this
experiment, it was found that increasing the value of n
estimators in LightGBM and XGboost will increase
the performance of the model in most of n estimator.

TABLE IX. AUC SCORE N ESTIMATOR EXPERIMENT

N
Estimator

Random
Forest

LightGBM XGBoost

25 0.828 0.837 0.838

50 0.827 0.854 0.845

100 0.827 0.876 0.857

200 0.830 0.873 0.859

3) Epoch Experiment on Graph Based Model

The AUC values from the classification of graph-
based models can be seen in Table X shows the result
for GraphSAGE, GAT and GCN. From the
classification results, it was found that the highest
value obtained in the epoch experiment was
GraphSAGE with an AUC value of 0.989. In this
experiment, it was found that the more epoch used, the
better the performance for classifying customers for
the GCN model. Meanwhile, it can be seen that for the
GraphSAGE and GAT models there is an increase or
decrease in the average value but not significant. In
this experiment, it was also found that GraphSAGE
obtained more stable results than GAT and GCN.

TABLE X. AUC SCORE EPOCH EXPERIMENT

Epoch GraphSage GAT GCN
20 0.985 0.842 0.676

40 0.987 0.858 0.895

60 0.985 0.851 0.926

80 0.989 0.859 0.936

4) Layer Experiment on Graph Based Model

The AUC values from the classification of graph-
based models can be seen in the Table XI for
GraphSAGE, GAT and GCN. The classification
results show that the best value is obtained by
GraphSAGE when there are 2 layers with an AUC
value of 0.985. Therefore, GraphSAGE is the most
efficient graph method compared to the other two
methods. Sequentially, it was found that the best
performance on the graph-based model in the layer
experiment are GraphSAGE, GCN and GAT. From
this experiment, it was found that increasing the layer
on the graph-based model will decrease the
classification performance for customers.

TABLE XI. AUC SCORE LAYER EXPERIMENT

Layer GraphSage GAT GCN
2 0.985 0.903 0.888

3 0.902 0.805 0.725

4 0.859 0.794 0.747

5 0.764 0.694 0.542

5) Inference Time Experiment
There are 2 experiment results in this experiment. The
first experiment is time inference graph-based model.
The second experiment is time inference tree-based
model. In this experiment, it was found that GCN has
the fastest inference time at Table XII. GraphSAGE
takes longer time because it uses the LSTM function
so that it processes input sequentially. It can also be
seen in the table that GAT gets an inference time that
is between GCN and GraphSAGE. From this
experiment, it was found that increasing epoch on all
graph-based models did not significantly affect the
inference time. In the tree-based model experiment, it
was found that the inference time was faster than the
graph-based model at Table XIII. LightGBM has the
lowest inference times for almost all n estimators then
followed by XGBoost and Random Forest. From this
experiment, it was found that increasing n estimators
in a treebased model can make the inference time
longer.

TABLE XII. GRAPH BASED MODEL INFERENCE TIME

Epoch GraphSage GAT GCN
20 6,183 ms 4,847 ms 3,385 ms

40 7,183 ms 3,837 ms 3,353 ms

60 6,384 ms 3,756 ms 3,534 ms

80 6,284 ms 3,645 ms 3,423 ms

TABLE XIII. TREE BASED MODEL INFERENCE TIME

N
Estimator

Random
Forest

LightGBM XGBoost

25 9.6 ms 3.98 ms 7.39 ms

50 11.8 ms 4.85 ms 8.38 ms

100 24.8 ms 8.58 ms 11.45 ms

200 34.8 ms 11.2 ms 8.69 ms

V. DISCUSSION
A comparison analysis of the AUC value will be carried

out to see a better model performance. The AUC value used is
the highest average of the entire model. Inference time
comparison will also be seen to see which model is faster. The
comparison of the graph-based model and the tree-based
model can be seen in Table XIII. In the case with data in the
form of fraud detection for banking transactions, it was found
that the graph-based model had better performance than the
tree-based model. The inference time of the graph-based
model is the inference time of the edge predictions added to
the inference time for classification. From this comparison, it
is found that the tree-based model has a faster inference time
than the graph-based model. Graph-based models have a
longer inference time because the model requires more
processes so it takes longer to classify.

In this experiment it was found that GraphSAGE has better
performance than GAT and GCN on graph-based machine
learning. This performance difference is due to the
computations performed on GraphSAGE that do not give
weight to the features of its neighbors, so the results obtained
are better than GCN. In addition, GraphSAGE will work
directly by concatenating the aggregated results of

neighboring features to its own features so that the resulting
model will be based on non-normalized features such as GAT.
The learning process in the GAT model is also carried out by
selecting heads randomly where in GraphSAGE the selection
of layers depends on the selected destination node, namely the
layer will contain neighbors of the selected nodes so that it
will greatly affect the performance of the model as a whole.

TABLE XIV. COMPARISON OF GRAPH BASED MODEL AND TREE BASED
MODEL

Params Random
Forest

Light
GBM

XG
Boost

Graph
Sage

GAT GCN

AUC
Score 0.831 0.863 0.862 0.974 0.901 0.969

Inference
Time

8.7
ms

3.96
ms

6.97
ms

5,630
ms

2,770
ms

2,296
ms

VI. CONCLUSSION
In general, it can be concluded that in case of fraud

detection with dataset credit card customers, graph-based
model has better performance than the tree-based model, but
the graph-based model has a longer inference time than the
tree-based model. From the results of the variation
experiment, it is found that there are parameters that can
significantly affect the performance of a model and
parameters that do not significantly affect the performance of
the model. It was found that layer will affect the performance
of the overall graph-based model and epoch will affect GCN
significantly but not with GraphSAGE and GAT. It was also
found that the max depth variation will only significantly
affect the LightGBM model and the number of tree variation
will significantly affect the performance of the LightGBM and
XGBoost models.

The weakness of the graph structure algorithm is the high
complexity of the graph which results in longer inference time
compared to tree-based algorithms. In the future, a graph-
based algorithm can be developed that can speed up inference
time so that it can be optimized in machine learning tasks

ACKNOWLEDGMENT
This research was financed by "Lembaga Pengelola Dana

Pendidikan. LPDP, Kementerian Keuangan, Indonesia".

REFERENCES
[1] K. Worobec, “Fraud - The Facts 2021,” UK Financ., 2021, [Online].

Available: https://www.ukfinance.org.uk/policy-and-
guidance/reports-publications/fraud-facts-2021.

[2] L. Schaedler, L. Graf-Vlachy, and A. König, “Strategic leadership in
organizational crises: A review and research agenda,” Long Range
Plann., vol. 55, no. 2, 2022, doi: 10.1016/j.lrp.2021.102156.

[3] H. van Driel, “Financial fraud, scandals, and regulation: A conceptual
framework and literature review,” Bus. Hist., vol. 61, no. 8, pp. 1259–
1299, 2019, doi: 10.1080/00076791.2018.1519026.

[4] I. Eweoya, A. A. Ayodele, A. Azeta, and O. Olatunji, “Fraud prediction
in bank credit administration: A systematic literature review,” J. Theor.
Appl. Inf. Technol., vol. 97, no. 11, pp. 3135–3157, 2019.

[5] R. Kian, “Detection of Fraud in Banking Transactions Using Big Data
Clustering Technique Customer Behavior Indicators,” J. Appl. Res.
Ind. Eng., vol. 9, no. 3, pp. 264–273, 2022.

[6] M. Srokosz, A. Bobyk, B. Ksiezopolski, and M. Wydra, “Machine-
Learning-Based Scoring System for Antifraud CISIRTs in Banking
Environment,” Electron., vol. 12, no. 1, pp. 1–17, 2023, doi:
10.3390/electronics12010251.

[7] R. Van Belle, V. Belle, and S. Mitrovi, “Representation Learning in
Graphs for Credit Card Fraud Detection Representation Learning in

Graphs for Credit Card Fraud Detection,” no. March, 2020, doi:
10.1007/978-3-030-37720-5.

[8] M. S. Kumar, V. Soundarya, S. Kavitha, E. S. Keerthika, and E.
Aswini, “Credit Card Fraud Detection Using Random Forest
Algorithm,” 2019 Proc. 3rd Int. Conf. Comput. Commun. Technol.
ICCCT 2019, no. 3, pp. 149–153, 2019, doi:
10.1109/ICCCT2.2019.8824930.

[9] P. T. Varma, M. Poojari, J. Joseph, and A. Cardozo, “Credit Card Fraud
Detection Using Random Forest Algorithm,” Int. J. Trendy Res. Eng.
Technol., vol. 05, no. 03, pp. 24–27, 2021, doi:
10.54473/ijtret.2021.5305.

[10] M. S. Kumar, V. Soundarya, S. Kavitha, E. S. Keerthika, and E.
Aswini, “Credit Card Fraud Detection Using Random Forest
Algorithm,” 2019 Proc. 3rd Int. Conf. Comput. Commun. Technol.
ICCCT 2019, pp. 149–153, 2019, doi:
10.1109/ICCCT2.2019.8824930.

[11] P. T. Varma, M. Poojari, J. Joseph, and A. Cardozo, “Credit Card Fraud
Detection Algorithm using Decision Treesbased Random Forest
Classifier,” Int. J. Trendy Res. Eng. Technol., vol. 05, no. 03, pp. 24–
27, 2021, doi: 10.54473/ijtret.2021.5305.

[12] J. A. Hudali, K. P. Mahalaxmi, N. S. Magadum, and S. Belagali,
“Credit Card Fraud Detection by using ANN and Decision Tree,”
Hbrppublication.Com, vol. 2, no. 3, pp. 1–4, 2019, [Online]. Available:
https://ieeexplore.ieee.org/xpl/conhome.

[13] M. R. Dileep, A. V. Navaneeth, and M. Abhishek, “A novel approach
for credit card fraud detection using decision tree and random forest
algorithms,” Proc. 3rd Int. Conf. Intell. Commun. Technol. Virtual
Mob. Networks, ICICV 2021, no. Icicv, pp. 1025–1028, 2021, doi:
10.1109/ICICV50876.2021.9388431.

[14] . A., “Credit Card Fraud Detection using Machine Learning and Data
Science,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. VII, pp.
3788–3792, 2021, doi: 10.22214/ijraset.2021.37200.

[15] S. R. Prusty, B. Sainath, S. K. Jayasingh, and J. K. Mantri, “SMS Fraud
Detection Using Machine Learning,” Lect. Notes Networks Syst., vol.
431, pp. 595–606, 2022, doi: 10.1007/978-981-19-0901-6_52.

[16] Y. Lucas et al., “Towards automated feature engineering for credit card
fraud detection using multi-perspective HMMs,” Futur. Gener.
Comput. Syst., vol. 102, pp. 393–402, 2020, doi:
10.1016/j.future.2019.08.029.

[17] T. Pourhabibi, K. L. Ong, B. H. Kam, and Y. L. Boo, “Fraud detection:
A systematic literature review of graph-based anomaly detection
approaches,” Decis. Support Syst., vol. 133, no. April, 2020, doi:
10.1016/j.dss.2020.113303.

[18] Tahereh Pourhabibi, “Fraud Detection: A Graph Based Anomaly
Detection Approach,” RMIT University, 2021.

[19] X. Ma et al., “A Comprehensive Survey on Graph Anomaly Detection
with Deep Learning,” IEEE Trans. Knowl. Data Eng., no. August,
2021, doi: 10.1109/TKDE.2021.3118815.

[20] M. Lokanan, V. Tran, and N. H. Vuong, “Detecting anomalies in
financial statements using machine learning algorithm: The case of
Vietnamese listed firms,” Asian J. Account. Res., vol. 4, no. 2, pp. 181–
201, 2019, doi: 10.1108/AJAR-09-2018-0032.

[21] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” AI Open, vol. 1, no. January, pp. 57–81, 2020, doi:
10.1016/j.aiopen.2021.01.001.

[22] W. L. Hamilton, “Inductive Representation Learning on Large
Graphs,” in 31st Conference on Neural Information Processing
Systems (NIPS 2017), 2017, no. 920, p. 59.

[23] P. Veličković, A. Casanova, P. Liò, G. Cucurull, A. Romero, and Y.
Bengio, “Graph attention networks,” 6th Int. Conf. Learn. Represent.
ICLR 2018 - Conf. Track Proc., pp. 1–12, 2018, doi: 10.1007/978-3-
031-01587-8_7.

[24] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional
networks: a comprehensive review,” Comput. Soc. Networks, vol. 6,
no. 1, 2019, doi: 10.1186/s40649-019-0069-y.

[25] F. T. Kurdi, “Random Forest Machine Learning Technique for
Automatic Vegetation Detection and Modelling in LiDAR Data,” Int.
J. Environ. Sci. Nat. Resour., vol. 28, no. 2, pp. 10–12, 2021, doi:
10.19080/ijesnr.2021.28.556234.

[26] X. Zhang, “A Model Combining LightGBM and Neural Network for
High-frequency Realized Volatility Forecasting,” Proc. 2022 7th Int.
Conf. Financ. Innov. Econ. Dev. (ICFIED 2022), vol. 648, no. Icfied,
pp. 2906–2912, 2022, doi: 10.2991/aebmr.k.220307.473.

[27] M. Vaudevan, R. S. Narayanan, S. F. Nakeeb, and Abhishek,
“Customer churn analysis using XGBoosted decision trees,” Indones.
J. Electr. Eng. Comput. Sci., vol. 25, no. 1, pp. 488–495, 2022, doi:
10.11591/ijeecs.v25.i1.pp488-495.

[28] Z. Qin, Y. Liu, Q. He, and X. Ao, Explainable Graph-based Fraud
Detection via Neural Meta-graph Search, vol. 1, no. 1. Association for
Computing Machinery, 2022.

[29] T. D. Nguyen, T. Le-Cong, T. V. H. Nguyen, X. B. D. Le, and Q. T.
Huynh, Toward the Analysis of Graph Neural Networks, vol. 1, no. 1.
Association for Computing Machinery, 2022.

[30] Y. Yang, Y. Liang, and M. Zhang, “PA-GNN : Parameter-Adaptive
Graph Neural Networks,” 2022.

[31] Y. Shen and W. Cheng, “A Tree-Based Machine Learning Method for
Pipeline Leakage Detection,” Water (Switzerland), vol. 14, no. 18,
2022, doi: 10.3390/w14182833.

[32] B. Genç and H. Tunç, “Optimal training and test sets design for
machine learning,” Turkish J. Electr. Eng. Comput. Sci., vol. 27, no. 2,
pp. 1534–1545, 2019, doi: 10.3906/elk-1807-212.

