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Abstract— The increasing number of image collections makes 

image search engines increasingly needed to efficiently search for 

images in large image collections. Image collections that have 

descriptive text can utilize the descriptive text to be used in text-

based search engines, but for text-free image collections it is 

necessary to use a content-based image search engine (CBIR) 

that is only based on visual information on the image. In CBIR, 

image similarity is based on features that can be extracted from 

images such as color, texture and shape. One of the main 

problems in CBIR is the semantic gap, the gap that occurs 

because of the limitations of extraction features in describing the 

expected semantics. Semantics that are used to compare the 

similarities of two images are very dependent on user’s 

perspective that tend to be subjective. Therefore, the similarity 

semantic of the image can vary greatly depending on the 

judgment and intent of the user. One approach in overcoming 

semantic gap is by weighting the image extraction feature. The 

weighting of these features determines the features that are 

considered more dominant in comparing image based on the 

intended image similarity semantic. Relevance feedback can be 

used to calculate the weighting of features based on feedback 

from users in order to get closer to the intended image similarity 

semantic. The relevance feedback method used in weighting 

calculations is Self Order Feature Reweighting. The Inverted 

Multi-Index is also used as an index data structure so that the 

image search process becomes more efficient. The test results 

show that the application of relevance feedback can provide 

increased accuracy but not too significant. The Inverted Multi-

Index data structure is able to increase the search speed for a 

small number of images taken. The weakness of the Inverted 

Multi-Index has the effect of decreasing accuracy and does not 

work well if the number of images taken is too much.  
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I.  INTRODUCTION 

The ease in making, storing and disseminating digital 
images makes the number of images increase over time. The 
amount of digital image that is too much can make it difficult 
for people to find the desired image. One solution to solve 
these problems is with the image search engine. With a digital 
image search engine, users only need to enter several queries 
stating the criteria of the desired image. Then the query will be 
processed by a digital image search engine and will output the 
results of several images that correspond to the query entered 
by the user. 

Query used in digital image search can be text or image. 
The advantage of digital images rather than text is that images 
sometimes have more information that cannot be expressed in a 
text so that queries in the form of digital images can provide 
more information than text. In addition, the shortcomings of 
queries in text form are that not all image collections have 
descriptive text that can be used as a comparison with the query 
text. Descriptive text is generally obtained when the image 
retrieval process from an article or web page. So that image 
collections that do not have descriptive text are only able to use 
a Content Based Image Retrieval (CBIR). 

Digital images can store a variety of visual information that 
is quite complex such as the composition of colors, object 
shapes, textures and so on. To process queries in the form of 
digital images, low-level feature information is extracted from 
these images which will then be used as information to 
describe query criteria. But such low-level information is 
sometimes too limited or difficult to describe semantics at the 
conceptual level. [1] refer to these problems as "semantic gap" 
and are the most challenging problem in CBIR. 

When someone uses digital image as a query, semantic gap 
problems also arise in interpreting the image criteria that they 
want to search based on the given query image. In general, the 
criteria of the image you want to look for when using an image 
as a query is how similar the image is to the query image. 
According to the user's point of view, the assessment of 
similarity between images is subjective and depends on the 
semantic similarity used. Similarity semantic is semantics or 
the meaning of the user's assessment of how similar the images 
are compared. For example for a collection of images with a 
mixture of various landscape images, building images, batik 
pattern images, etc.,, when someone uses a landscape image as 
a query the similarity semantics that tend to be used are based 
on the scene's atmosphere where the color composition feature 
in the image is more important than other visual features. 
Whereas when someone uses the image of batik as a query, the 
similarity semantic that tends to be used is based on the 
characteristic of the batik pattern of the image where the 
texture feature becomes the most dominant. For the same query 
image sometimes several different semantics are needed, for 
example when someone uses an image of batik-patterned 
clothing there is a possibility that the person wants to look for 
an image with the same pattern or maybe based on the shape 



model. So that the definition of image similarity can vary 
greatly depending on the purpose of the user. 

II. RELATED WORKS 

A. Relevance Feedback 

Relevance feedback is a method used to improve the 

results of an information retrieval based on user feedback on 

the results provided. Users will provide feedback whether 

every information displayed is relevant or not. Relevance 

feedback will change a parameter in information retrieval 

based on the feedback provided. 

[2] is one example of relevance feedback that is used to 

change the weighting of features in image retrieval. They 

named this method Self Order Feature Reweighting 

(SOFRW). Feedback provided is whether each image 

displayed is relevant to the query or not. Then the weighting 

feature will be recalculated every time the feedback is given. 

Feature weighting is calculated based on formula (1). 

 

 
 

In formula (1), weighting is calculated based on the 

standard deviation of each feature component.  is the 

standard deviation for the  image retrieved.  is the 

standard deviation of relevant images in the k iteration.  is a 

very small decimal to prevent division by 0. 

 

 

 
 

From the weight that has been calculated in the formula 

(1), the calculation of the overall distance value of query 

image and DBImg image is as in formula (2). The f function in 

formula (2) is the distance function used to calculate the 

distance between two features on the same component. 

Usually the f function used is euclidean distance. 

 

B. Index Data Structure 

The index data structure is a data structure to store 

information about image collections in the form of image 

extraction features and manage these features so that image 

search can be performed efficiently. But storage in memory 

may be larger because it is used to store structural information 

to organize stored data. There are several types of index data 

structures such as Partition Tree [3], Neighbors Graph [3], 

Compact Codes [3], Inverted Index [4], and Inverted Multi-

Index [4]. 

III. PROPOSED METHOD 

A. Image Features 

The image extraction feature is used to be a basic 

characteristic that distinguishes one image from another. 

There are several types of features such as features based on 

color, texture and shape. In CBIR, one or more extraction 

features are used to describe the image. The more features 

used, the better the ability to compare between images, but too 

many features will make long time performance. 

In order for the semantics that can be achieved based on 

the image extraction feature to be greater, the selected image 

extraction features must have a different semantic tendency. 

With these considerations, one method of extraction features 

will be selected for each category (color, texture and shape). 

So that the extraction feature that will be used is HSV with 

color moments as a color feature, the gabor filter as a texture 

feature, and the GIST as a shape feature. 

B. Index Data Structure 

Changes in the index data structure must be carried out 

efficiently. In the search engine that is built, changes in the 

data structure occur when adding new image similarity 

semantics or making improvements to a image similarity 

semantic with relevance feedback. Partition tree and 

neighborhood graph structures are not suitable for storing 

more than one image similarity semantic because changes 

from relevance feedback to the structure data are too large. 

Standard Inverted Index will produce very different clustering 

for different similarity semantics. But the standard Inverted 

Index can be combined with a compact code so that clustering 

is only done on each feature that tends to be different. So that 

weighting can be done on each feature. The structure data is 

called the Inverted Multi-Index [4]. 

C. Relevance Feedback 

The approach used in representing image similarity 

semantic is weighting on features. Therefore the relevance 

feedback used must be able to calculate the weighting based 

on the feedback provided. The chosen relevance feedback is 

Self Order Feature Reweighting (SOFRW). SOFRW was 

chosen because [2] claimed that this weighting method 

provided better results than previous similar researches. 

D. Architecture 

The process in search engines in general can be divided 

into 2 separate processes i.e. indexing and search. The process 

flow in the search engine built is as in Figure 1 and Figure 2. 

Based on the process flow, the architecture of the search 

engine is as shown in Figure 3 and Figure 4. 

The architecture is divided into 5 modules: interface 

module, extractor module, indexer module, searcher module, 

and improver module. Interface module are used to handle 

interactions with users. Extractor module is responsible for 

extracting image features. Indexer module is a module that is 

tasked with storing information on a collection of images 

along with image features that have been extracted with the 

Extractor module into an index data structure. Searcher 

module is a module that is tasked with finding a number of 

images in an index that are considered to be most similar to 

query images based on a specific feature weighting. Improver 

module is a module that is responsible for improving search 

results and processing relevance feedback. 



 
 

Fig. 1. Indexing Flowchart 

 

 
Fig. 2. Searching Flowchart 

 

Fig. 3.  Indexing Architecture 

 

Fig. 4. Searching Architecture 

IV. IMPLEMENTATION AND EXPERIMENTS 

Implementation and testing are carried out on the same 

computer that has specifications as in Table I. The tests are 

carried out with Holiday [5] and Mirflikr [6] datasets. Image 

relevance is chosen based on the relevance that has been given 

or the same tag in the dataset. Some queries are randomly 

selected. 

TABLE I.  IMPLEMENTATION & TESTING ENVIRONMENT 

Aspect Specification 

Processor Intel® Core™ i7-4720HQ CPU @ 2.60GHz × 8 

RAM 11.6 GiB 

Operating System Fedora 28 64-bit 

Programming Language C++17 and Python 3.6.5 

Image Processing Library Open CV 3.4.1 

Web Framework Flask 1.0.2 

 

A. Implementation 

Extractor, indexer, searcher, and improver modules are 

implemented with the C++17. The extractor module uses 

OpenCV library to perform basic operations in image 

processing. These modules are built into a shared object 

library. The shared object library will be loaded by the 

interface module so that its functions can be called directly. 

The interface module is implemented in Python using 

Framework Flask as a web service. 

B. Accuracy Testing 

In Table II it can be seen that the resulting accuracy is 

small. This happens because of the incompatibility of the 

image extraction feature implemented in the search engine 

against several queries and semantic similarities used in 

testing. If you look at the dataset used, the query and the basis 

of similarity tend to depend on the shape features of objects in 

the image (local features) and ignore the remaining objects 

while the shape features used in search engines are features of 

the shape of the overall image (global features). So that the 

extraction feature used is less able to describe the query given. 

 



TABLE II.  MAP SCORES OF IMAGE SEARCH ENGINE 

Iteration 

Mean Average Precision (MAP) 

Inverted Multi-Index Exhaustive Search 

50 

Feedbacks 

500 

Feedbacks 

50 

Feedbacks 

500  

Feedbacks 

0 0,002234 0,002234 0,086127 0,086127 

1 0,007545 0,009398 0,096627 0,116024 

2 0,008055 0,010056 0,175251 0,173096 

3 0,008458 0,010134 0,175628 0,172274 

4 0,008416 0,010189 0,175982 0,172185 

 

Although there is a query mismatch with the extraction 

feature used, the experiment shows an increase in accuracy by 

relevance feedback. From Table II, compare the MAP values 

for each iteration with the previous iteration. MAP tends to 

increase, especially from the 0 iteration to the 1st iteration 

even up to 4.2 times. But there is also a decrease in accuracy 

which is not too significant to 0.995 times, this can be due to 

the noise that causes weighting to be less accurate. The 

decrease can also be due to the distribution of features from 

the given feedback increasingly mixing the relevant and 

irrelevant feedback so that it becomes increasingly difficult to 

separate it by weighting. 

Then by comparing the experiments using 50 feedback per 

iteration with experiments using 500 feedback per iteration it 

was found that accuracy tends to be better for the number of 

feedback per iteration of 500. But in the experiment without 

Inverted Multi-Index in the 2nd, 3rd, and 4th iterations shows 

the opposite result. The cause of this can also be due to noise 

or increasingly mixed features distribution between relevant 

feedback and irrelevant ones. 

The use of the Inverted Multi-Index has the effect of 

reducing accuracy. If you look at Table II and compare each 

MAP value between those who use the Inverted Multi-Index 

and those who only use Exhaustive Search, then the average is 

calculated, the decrease in accuracy is around 5.3% of the 

initial accuracy. This decrease occurs because image 

collection in search using Inverted Multi-Index is done in 

clusters and image comparison is done to the center of the 

cluster first to get the desired number of images. Therefore, 

the accuracy of Inverted Multi-Index depends on the 

clustering process performed. Accuracy in the Inverted Multi-

Index also depends on the division of dimensions of the 

extraction feature because the dimensions need to be divided 

into sections first before clustering is carried out. After that, 

the smaller parts are clustered. Therefore the Inverted Multi-

Index also depends on the dimension division of the extraction 

feature used. The division of dimensions will give better 

results if the interrelationship between parts of the small 

dimension becomes smaller. 

C. Time Performance Testing 

Based on Table III, the search time in the Inverted Multi-

Index is longer than the exhaustive search when the 

comparison of the number of images taken is too much. But if 

the comparison of the number of images taken with the 

number of images in the dataset is very small, then the search 

in the Inverted Multi-Index will also run quickly. This 

happens because the search for too many images, the Inverted 

Multi-Index checks almost all clusters while the total number 

of clusters is more than the number of images in the dataset. 

When the number of images taken is small, many clusters 

need to be checked to be very small. The advantage of 

Inverted Multi-Index is to find the next cluster that is closest 

to the query can be done quickly. Therefore, if the number of 

images taken is small, the search can be done quickly. 

TABLE III.  SEARCH PERFORMANCE TIME 

Image 

Collections 

Retrieved 

Images 

Searching Time (s) 

Inverted Multi-Index Exhaustive Search 

10000 10 0,001721 0,047213 

10000 100 0,466761 0,048655 

10000 1000 6,340240 0,050830 

100000 10 0,001395 0,456822 

100000 100 0,003245 0,488266 

100000 1000 0,904204 0,507607 

100000 10000 14,642767 0,531176 

1001491 10 0,001294 4,560423 

1001491 100 0,002037 4,845413 

1001491 1000 0,008494 5,085050 

1001491 10000 0,531673 5,442233 

1001491 100000 7,103843 5,576297 

 

In Table IV, the relevance feedback process runs quickly 

because it only takes 0.024257 seconds with a total feedback 

of 1024. Based on the graph, it appears that the time needed in 

relevance feedback is proportional to the amount of feedback 

provided. This happens because the calculation of relevance 

feedback is light so it is suitable for use in image search 

engines to be real-time. 

TABLE IV.  RELEVANCE FEEDBACK PERFORMANCE TIME 

Feedback Count Time (s) 

2 0,000076 

4 0,000126 

16 0,000452 

64 0,001497 

256 0,006659 

1024 0,024257 

4096 0,111431 

16384 0,400705 

65536 1,61677 

 



V. CONCLUSIONS 

Image search engine was successfully built using relevance 

feedback to weight the image features based on user feedback 

and use the Inverted Multi-Index as an index data structure. 

The image extraction feature used is the color moment with 

the HSV color system, gabor texture, and GIST. The image 

search engine built is able to accept images as queries and can 

choose semantic similarities that are expressed as feature 

weighting. 

The re-weighting calculation method used for relevance 

feedback in the search engine built is Self Order Feature 

Reweighting. The relevance feedback is successfully used to 

approach the semantic similarity that the user wants because 

accuracy tends to increase with relevance feedback to 

calculate feature weighting. 

Accuracy in the test shows a small value because there is an 

incompatibility of extraction features used to query and 

semantic similarities used in testing. The mismatch occurs 

because the query used depends heavily on the shape features 

of the objects in the image (local features) while the form 

features used are the shape features of the overall image 

(global features). But the tests carried out successfully showed 

an increase in accuracy by relevance feedback. The increase 

depends on the number of iterations and feedback provided. 

Sometimes the addition of feedback can also reduce the 

insignificant accuracy that can be caused by noise in the 

feedback provided or the more mixed features distribution 

between relevant feedback that is not relevant. 

Calculation of weighting in relevance feedback also 

requires a fast time of 0.024257 seconds for 1024 pieces of 

feedback and is linearly proportional to the large number of 

feedback. The Inverted Multi-Index works better than 

exhaustive search if the number of images taken is much 

smaller than the number of images in the dataset. Conversely, 

the Inverted Multi-Index will run poorly for the number of 

images taken too large. The Inverted Multi-Index was also 

successfully integrated with the weighting of Relevance 

Feedback, but the use of the Inverted Multi-Index has the 

effect of reducing accuracy to 5.3% of accuracy using 

exhaustive search. Therefore, the Inverted Multi-Index is only 

better used if the number of images is so large that the 

exhaustive search is considered too long. 

VI. FUTURE WORK 

Research on this image search engine must still be 

developed and further researched. The selection of datasets 

and queries in the test should pay more attention to their 

compatibility with the extraction features used. Accuracy may 

be enhanced by using a different method of relevance 

feedback or by giving different feedback, for example, there is 

a relevance weight for each image. Image similarity semantic 

can also be approached by other methods such as nonlinear 

transformations in order to better describe complex image 

similarity semantic. Research on the use of a better index data 

structure but does not reduce accuracy is also needed in the 

future. 
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