
Image Search Engine with Different Image

Similarity Semantics

Wiwit Rifa’i

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

wiwitrifai@gmail.com

Dr. Ir. Rinaldi Munir, M.T.

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

rinaldi.munir@itb.ac.id

Abstract— The increasing number of image collections makes

image search engines increasingly needed to efficiently search for

images in large image collections. Image collections that have

descriptive text can utilize the descriptive text to be used in text-

based search engines, but for text-free image collections it is

necessary to use a content-based image search engine (CBIR)

that is only based on visual information on the image. In CBIR,

image similarity is based on features that can be extracted from

images such as color, texture and shape. One of the main

problems in CBIR is the semantic gap, the gap that occurs

because of the limitations of extraction features in describing the

expected semantics. Semantics that are used to compare the

similarities of two images are very dependent on user’s

perspective that tend to be subjective. Therefore, the similarity

semantic of the image can vary greatly depending on the

judgment and intent of the user. One approach in overcoming

semantic gap is by weighting the image extraction feature. The

weighting of these features determines the features that are

considered more dominant in comparing image based on the

intended image similarity semantic. Relevance feedback can be

used to calculate the weighting of features based on feedback

from users in order to get closer to the intended image similarity

semantic. The relevance feedback method used in weighting

calculations is Self Order Feature Reweighting. The Inverted

Multi-Index is also used as an index data structure so that the

image search process becomes more efficient. The test results

show that the application of relevance feedback can provide

increased accuracy but not too significant. The Inverted Multi-

Index data structure is able to increase the search speed for a

small number of images taken. The weakness of the Inverted

Multi-Index has the effect of decreasing accuracy and does not

work well if the number of images taken is too much.

Keywords—image, similarity semantic, relevance feedback,

inverted multi-index

I. INTRODUCTION

The ease in making, storing and disseminating digital
images makes the number of images increase over time. The
amount of digital image that is too much can make it difficult
for people to find the desired image. One solution to solve
these problems is with the image search engine. With a digital
image search engine, users only need to enter several queries
stating the criteria of the desired image. Then the query will be
processed by a digital image search engine and will output the
results of several images that correspond to the query entered
by the user.

Query used in digital image search can be text or image.
The advantage of digital images rather than text is that images
sometimes have more information that cannot be expressed in a
text so that queries in the form of digital images can provide
more information than text. In addition, the shortcomings of
queries in text form are that not all image collections have
descriptive text that can be used as a comparison with the query
text. Descriptive text is generally obtained when the image
retrieval process from an article or web page. So that image
collections that do not have descriptive text are only able to use
a Content Based Image Retrieval (CBIR).

Digital images can store a variety of visual information that
is quite complex such as the composition of colors, object
shapes, textures and so on. To process queries in the form of
digital images, low-level feature information is extracted from
these images which will then be used as information to
describe query criteria. But such low-level information is
sometimes too limited or difficult to describe semantics at the
conceptual level. [1] refer to these problems as "semantic gap"
and are the most challenging problem in CBIR.

When someone uses digital image as a query, semantic gap
problems also arise in interpreting the image criteria that they
want to search based on the given query image. In general, the
criteria of the image you want to look for when using an image
as a query is how similar the image is to the query image.
According to the user's point of view, the assessment of
similarity between images is subjective and depends on the
semantic similarity used. Similarity semantic is semantics or
the meaning of the user's assessment of how similar the images
are compared. For example for a collection of images with a
mixture of various landscape images, building images, batik
pattern images, etc.,, when someone uses a landscape image as
a query the similarity semantics that tend to be used are based
on the scene's atmosphere where the color composition feature
in the image is more important than other visual features.
Whereas when someone uses the image of batik as a query, the
similarity semantic that tends to be used is based on the
characteristic of the batik pattern of the image where the
texture feature becomes the most dominant. For the same query
image sometimes several different semantics are needed, for
example when someone uses an image of batik-patterned
clothing there is a possibility that the person wants to look for
an image with the same pattern or maybe based on the shape

model. So that the definition of image similarity can vary
greatly depending on the purpose of the user.

II. RELATED WORKS

A. Relevance Feedback

Relevance feedback is a method used to improve the

results of an information retrieval based on user feedback on

the results provided. Users will provide feedback whether

every information displayed is relevant or not. Relevance

feedback will change a parameter in information retrieval

based on the feedback provided.

[2] is one example of relevance feedback that is used to

change the weighting of features in image retrieval. They

named this method Self Order Feature Reweighting

(SOFRW). Feedback provided is whether each image

displayed is relevant to the query or not. Then the weighting

feature will be recalculated every time the feedback is given.

Feature weighting is calculated based on formula (1).

In formula (1), weighting is calculated based on the

standard deviation of each feature component. is the

standard deviation for the image retrieved. is the

standard deviation of relevant images in the k iteration. is a

very small decimal to prevent division by 0.

From the weight that has been calculated in the formula

(1), the calculation of the overall distance value of query

image and DBImg image is as in formula (2). The f function in

formula (2) is the distance function used to calculate the

distance between two features on the same component.

Usually the f function used is euclidean distance.

B. Index Data Structure

The index data structure is a data structure to store

information about image collections in the form of image

extraction features and manage these features so that image

search can be performed efficiently. But storage in memory

may be larger because it is used to store structural information

to organize stored data. There are several types of index data

structures such as Partition Tree [3], Neighbors Graph [3],

Compact Codes [3], Inverted Index [4], and Inverted Multi-

Index [4].

III. PROPOSED METHOD

A. Image Features

The image extraction feature is used to be a basic

characteristic that distinguishes one image from another.

There are several types of features such as features based on

color, texture and shape. In CBIR, one or more extraction

features are used to describe the image. The more features

used, the better the ability to compare between images, but too

many features will make long time performance.

In order for the semantics that can be achieved based on

the image extraction feature to be greater, the selected image

extraction features must have a different semantic tendency.

With these considerations, one method of extraction features

will be selected for each category (color, texture and shape).

So that the extraction feature that will be used is HSV with

color moments as a color feature, the gabor filter as a texture

feature, and the GIST as a shape feature.

B. Index Data Structure

Changes in the index data structure must be carried out

efficiently. In the search engine that is built, changes in the

data structure occur when adding new image similarity

semantics or making improvements to a image similarity

semantic with relevance feedback. Partition tree and

neighborhood graph structures are not suitable for storing

more than one image similarity semantic because changes

from relevance feedback to the structure data are too large.

Standard Inverted Index will produce very different clustering

for different similarity semantics. But the standard Inverted

Index can be combined with a compact code so that clustering

is only done on each feature that tends to be different. So that

weighting can be done on each feature. The structure data is

called the Inverted Multi-Index [4].

C. Relevance Feedback

The approach used in representing image similarity

semantic is weighting on features. Therefore the relevance

feedback used must be able to calculate the weighting based

on the feedback provided. The chosen relevance feedback is

Self Order Feature Reweighting (SOFRW). SOFRW was

chosen because [2] claimed that this weighting method

provided better results than previous similar researches.

D. Architecture

The process in search engines in general can be divided

into 2 separate processes i.e. indexing and search. The process

flow in the search engine built is as in Figure 1 and Figure 2.

Based on the process flow, the architecture of the search

engine is as shown in Figure 3 and Figure 4.

The architecture is divided into 5 modules: interface

module, extractor module, indexer module, searcher module,

and improver module. Interface module are used to handle

interactions with users. Extractor module is responsible for

extracting image features. Indexer module is a module that is

tasked with storing information on a collection of images

along with image features that have been extracted with the

Extractor module into an index data structure. Searcher

module is a module that is tasked with finding a number of

images in an index that are considered to be most similar to

query images based on a specific feature weighting. Improver

module is a module that is responsible for improving search

results and processing relevance feedback.

Fig. 1. Indexing Flowchart

Fig. 2. Searching Flowchart

Fig. 3. Indexing Architecture

Fig. 4. Searching Architecture

IV. IMPLEMENTATION AND EXPERIMENTS

Implementation and testing are carried out on the same

computer that has specifications as in Table I. The tests are

carried out with Holiday [5] and Mirflikr [6] datasets. Image

relevance is chosen based on the relevance that has been given

or the same tag in the dataset. Some queries are randomly

selected.

TABLE I. IMPLEMENTATION & TESTING ENVIRONMENT

Aspect Specification

Processor Intel® Core™ i7-4720HQ CPU @ 2.60GHz × 8

RAM 11.6 GiB

Operating System Fedora 28 64-bit

Programming Language C++17 and Python 3.6.5

Image Processing Library Open CV 3.4.1

Web Framework Flask 1.0.2

A. Implementation

Extractor, indexer, searcher, and improver modules are

implemented with the C++17. The extractor module uses

OpenCV library to perform basic operations in image

processing. These modules are built into a shared object

library. The shared object library will be loaded by the

interface module so that its functions can be called directly.

The interface module is implemented in Python using

Framework Flask as a web service.

B. Accuracy Testing

In Table II it can be seen that the resulting accuracy is

small. This happens because of the incompatibility of the

image extraction feature implemented in the search engine

against several queries and semantic similarities used in

testing. If you look at the dataset used, the query and the basis

of similarity tend to depend on the shape features of objects in

the image (local features) and ignore the remaining objects

while the shape features used in search engines are features of

the shape of the overall image (global features). So that the

extraction feature used is less able to describe the query given.

TABLE II. MAP SCORES OF IMAGE SEARCH ENGINE

Iteration

Mean Average Precision (MAP)

Inverted Multi-Index Exhaustive Search

50

Feedbacks

500

Feedbacks

50

Feedbacks

500

Feedbacks

0 0,002234 0,002234 0,086127 0,086127

1 0,007545 0,009398 0,096627 0,116024

2 0,008055 0,010056 0,175251 0,173096

3 0,008458 0,010134 0,175628 0,172274

4 0,008416 0,010189 0,175982 0,172185

Although there is a query mismatch with the extraction

feature used, the experiment shows an increase in accuracy by

relevance feedback. From Table II, compare the MAP values

for each iteration with the previous iteration. MAP tends to

increase, especially from the 0 iteration to the 1st iteration

even up to 4.2 times. But there is also a decrease in accuracy

which is not too significant to 0.995 times, this can be due to

the noise that causes weighting to be less accurate. The

decrease can also be due to the distribution of features from

the given feedback increasingly mixing the relevant and

irrelevant feedback so that it becomes increasingly difficult to

separate it by weighting.

Then by comparing the experiments using 50 feedback per

iteration with experiments using 500 feedback per iteration it

was found that accuracy tends to be better for the number of

feedback per iteration of 500. But in the experiment without

Inverted Multi-Index in the 2nd, 3rd, and 4th iterations shows

the opposite result. The cause of this can also be due to noise

or increasingly mixed features distribution between relevant

feedback and irrelevant ones.

The use of the Inverted Multi-Index has the effect of

reducing accuracy. If you look at Table II and compare each

MAP value between those who use the Inverted Multi-Index

and those who only use Exhaustive Search, then the average is

calculated, the decrease in accuracy is around 5.3% of the

initial accuracy. This decrease occurs because image

collection in search using Inverted Multi-Index is done in

clusters and image comparison is done to the center of the

cluster first to get the desired number of images. Therefore,

the accuracy of Inverted Multi-Index depends on the

clustering process performed. Accuracy in the Inverted Multi-

Index also depends on the division of dimensions of the

extraction feature because the dimensions need to be divided

into sections first before clustering is carried out. After that,

the smaller parts are clustered. Therefore the Inverted Multi-

Index also depends on the dimension division of the extraction

feature used. The division of dimensions will give better

results if the interrelationship between parts of the small

dimension becomes smaller.

C. Time Performance Testing

Based on Table III, the search time in the Inverted Multi-

Index is longer than the exhaustive search when the

comparison of the number of images taken is too much. But if

the comparison of the number of images taken with the

number of images in the dataset is very small, then the search

in the Inverted Multi-Index will also run quickly. This

happens because the search for too many images, the Inverted

Multi-Index checks almost all clusters while the total number

of clusters is more than the number of images in the dataset.

When the number of images taken is small, many clusters

need to be checked to be very small. The advantage of

Inverted Multi-Index is to find the next cluster that is closest

to the query can be done quickly. Therefore, if the number of

images taken is small, the search can be done quickly.

TABLE III. SEARCH PERFORMANCE TIME

Image

Collections

Retrieved

Images

Searching Time (s)

Inverted Multi-Index Exhaustive Search

10000 10 0,001721 0,047213

10000 100 0,466761 0,048655

10000 1000 6,340240 0,050830

100000 10 0,001395 0,456822

100000 100 0,003245 0,488266

100000 1000 0,904204 0,507607

100000 10000 14,642767 0,531176

1001491 10 0,001294 4,560423

1001491 100 0,002037 4,845413

1001491 1000 0,008494 5,085050

1001491 10000 0,531673 5,442233

1001491 100000 7,103843 5,576297

In Table IV, the relevance feedback process runs quickly

because it only takes 0.024257 seconds with a total feedback

of 1024. Based on the graph, it appears that the time needed in

relevance feedback is proportional to the amount of feedback

provided. This happens because the calculation of relevance

feedback is light so it is suitable for use in image search

engines to be real-time.

TABLE IV. RELEVANCE FEEDBACK PERFORMANCE TIME

Feedback Count Time (s)

2 0,000076

4 0,000126

16 0,000452

64 0,001497

256 0,006659

1024 0,024257

4096 0,111431

16384 0,400705

65536 1,61677

V. CONCLUSIONS

Image search engine was successfully built using relevance

feedback to weight the image features based on user feedback

and use the Inverted Multi-Index as an index data structure.

The image extraction feature used is the color moment with

the HSV color system, gabor texture, and GIST. The image

search engine built is able to accept images as queries and can

choose semantic similarities that are expressed as feature

weighting.

The re-weighting calculation method used for relevance

feedback in the search engine built is Self Order Feature

Reweighting. The relevance feedback is successfully used to

approach the semantic similarity that the user wants because

accuracy tends to increase with relevance feedback to

calculate feature weighting.

Accuracy in the test shows a small value because there is an

incompatibility of extraction features used to query and

semantic similarities used in testing. The mismatch occurs

because the query used depends heavily on the shape features

of the objects in the image (local features) while the form

features used are the shape features of the overall image

(global features). But the tests carried out successfully showed

an increase in accuracy by relevance feedback. The increase

depends on the number of iterations and feedback provided.

Sometimes the addition of feedback can also reduce the

insignificant accuracy that can be caused by noise in the

feedback provided or the more mixed features distribution

between relevant feedback that is not relevant.

Calculation of weighting in relevance feedback also

requires a fast time of 0.024257 seconds for 1024 pieces of

feedback and is linearly proportional to the large number of

feedback. The Inverted Multi-Index works better than

exhaustive search if the number of images taken is much

smaller than the number of images in the dataset. Conversely,

the Inverted Multi-Index will run poorly for the number of

images taken too large. The Inverted Multi-Index was also

successfully integrated with the weighting of Relevance

Feedback, but the use of the Inverted Multi-Index has the

effect of reducing accuracy to 5.3% of accuracy using

exhaustive search. Therefore, the Inverted Multi-Index is only

better used if the number of images is so large that the

exhaustive search is considered too long.

VI. FUTURE WORK

Research on this image search engine must still be

developed and further researched. The selection of datasets

and queries in the test should pay more attention to their

compatibility with the extraction features used. Accuracy may

be enhanced by using a different method of relevance

feedback or by giving different feedback, for example, there is

a relevance weight for each image. Image similarity semantic

can also be approached by other methods such as nonlinear

transformations in order to better describe complex image

similarity semantic. Research on the use of a better index data

structure but does not reduce accuracy is also needed in the

future.

REFERENCES

[1] Gevers, Th, and A. W. M. Smeulders. "Image search engines: An

overview." Emerging Topics in Computer Vision (2004): 1-54.

[2] Kumar, K. Kranthi, and T. Venu Gopal. "A novel approach to self order
feature reweighting in CBIR to reduce semantic gap using Relevance
Feedback." In Circuit, Power and Computing Technologies (ICCPCT),
2014 International Conference on, pp. 1437-1442. IEEE, 2014.

[3] Wang, Jing, Jingdong Wang, Gang Zeng, Rui Gan, Shipeng Li, and
Baining Guo. "Fast neighborhood graph search using cartesian
concatenation." In Proceedings of the IEEE International Conference on
Computer Vision, pp. 2128-2135. 2013.

[4] Babenko, Artem, and Victor Lempitsky. "The inverted multi-index." In
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pp. 3069-3076. IEEE, 2012.

[5] Jegou, Herve, Matthijs Douze, and Cordelia Schmid. "Hamming
embedding and weak geometric consistency for large scale image
search." In European conference on computer vision, pp. 304-317.
Springer, Berlin, Heidelberg, 2008.

[6] Huiskes, Mark J., Bart Thomee, and Michael S. Lew. "New trends and
ideas in visual concept detection: the MIR flickr retrieval evaluation
initiative." In Proceedings of the international conference on
Multimedia information retrieval, pp. 527-536. ACM, 2010.

