
Blockchain-based Multisignature Wallet System for
Decentralized Autonomous Organization

Vincentius Lienardo
School of Electrical Engineering and Informatics

Bandung Institute of Technology
Bandung, Indonesia

vincentiuslienardo@gmail.com

Rinaldi Munir
School of Electrical Engineering and Informatics

Bandung Institute of Technology
Bandung, Indonesia

rinaldi@informatika.org

Abstract—As a decentralized organization whose governance

decisions are governed democratically by its members, a
decentralized autonomous organization (DAO), just like a
traditional organization, requires a system to manage its finances.
In this case, the proposed system is in the form of a wallet to
manage assets owned by DAO. Wallets need to be designed in such
a way that before a transaction can be executed, it needs to be
approved by a majority of the committee within the DAO. In
addition, the system needs to ensure transparency or openness and
integrity of each transaction so that the system can mitigate the
potential for fraud or crime that is at risk of occurring. Therefore,
a blockchain-based multisignature wallet system is designed and
implemented that allows a transaction to be signed by DAO
committees. By using blockchain, the system guarantees that no
one party can change or manipulate transaction data.

Keywords—DAO; multisignature wallet; blockchain;
cryptocurrency.

I. INTRODUCTION
Blockchain is getting more popular. In 2015, Ethereum

became the first public blockchain platform to support smart
contracts with Turing-complete virtual machine called the
Ethereum Virtual Machine (EVM). With smart contracts, users
can build various decentralized applications (dApps) on the
blockchain. Inspired by this, there is a thought that the
management of an organization and operational rules can be
coded on the blockchain in the form of smart contracts so that
the organization will operate independently according to
predetermined business logic without the intervention of third
parties, which is then called a decentralized autonomous
organization (DAO) [1]. Real implementations of DAOs benefit
from the emergence of blockchain. With DAO, everyone can
collaborate together around the world, there is no centralized
authority or power thus eliminating hierarchies and bureaucracy
that might exist. The decision-making process within the DAO
is carried out on a bottom-up basis so that the direction of
movement of the DAO is regulated by its members through a set
of rules that define it, which resides in the blockchain.

In contrast to traditional organizations that need trust from
certain parties in their development process, especially
investors, DAOs can be trusted by outside parties through smart

contract codes that represent the rules in DAO, which are
transparent and verifiable. However, like organizations in
general, DAO provides an opportunity for stakeholders to invest
their capital, through tokens, which are cryptocurrencies. To run
the economy and business in DAO, assets (treasury) need to be
managed as effectively and safely as possible. This treasury
management encourages the idea that it is necessary to
implement a system that stores cryptocurrencies in the form of a
wallet and a system that manages transactions carried out by the
committees within the DAO.

As a place to store cryptocurrency assets, a wallet, or more
specifically a crypto wallet, is a tool that allows users to interact
with the blockchain network [2]. With this, cryptocurrency can
be sent and received through a wallet. The majority of wallets
that have been implemented, for example, MetaMask, Trust
Wallet, etc., can generate one or more public and private key
pairs. The public key is used to generate the address needed to
receive the transaction, while the private key is used during the
creation of digital signatures and the transaction verification
process. Some wallets that have been in circulation can only sign
a transaction individually, if these existing wallets are
implemented in the DAO, the verification and approval process
for transactions can only be carried out by one person who is on
the DAO committees, a wallet is needed that can handle the
majority of approvals from the committees. Therefore, a
multisignature wallet may be an alternative solution.

Multisignature wallet aims to increase security by enabling
a group of users to approve a transaction by providing a
signature owned by each user and dividing the responsibility for
the transmission of cryptocurrency assets among multiple users
[3]. Various architectural wallet system solutions will be
analyzed along with their advantages and disadvantages, as well
as their relationship to DAOs.

The main problem that will be discussed and solved is the
development of a multisignature wallet system for DAO using
blockchain so as to ensure transaction security. The main
problem can be divided into several subproblems: what type of
blockchain is suitable for use in a multisignature wallet system
for DAO, how to design an architecture of multisignature wallet
system using blockchain, and how a multisignature wallet
system using blockchain can solve problems that arise in

conventional systems. Therefore, the main goal to be achieved
is to build a proposed multisignature wallet system using
blockchain. To achieve this goal, it is necessary to achieve the
following subgoals: analyzing the right type of blockchain to
build a multisignature wallet system, designing an architecture
of multisignature wallet system using blockchain, implementing
a multisignature wallet system using blockchain, and testing the
integrity of data in a multisignature wallet system using
blockchain.

The scope and limitations of this research are as follows: the
system to be implemented includes but is not limited to
transaction execution in the form of sending coins/tokens that
are approved by the majority of parties; all parties who use this
system are on the same blockchain network, the transactions
carried out run in a certain network protocol; the parties referred
to as transaction executors on the blockchain are elected
members of the DAO committee; majority of miners/validators
behave honestly, transactions validated by several
miners/validators through the consensus used are valid
transactions; various transaction data flowing in the blockchain
is assumed to be true and trusted; and the system to be built may
not be officially recognized by current regulations in Indonesia
so it can be assumed that the implementation of the system has
been approved by local regulations.

II. RELATED WORKS
Several studies on related systems will be described,

consisting of research on an externally owned account (EOA)
wallet system, namely MetaMask, research on a multisignature
wallet system, namely Gnosis Safe, and research on a DAO
system, namely Developer DAO.

A. MetaMask
MetaMask is a crypto wallet system in the form of a browser

extension that is used to interact with the blockchain. MetaMask
was first built by ConsenSys in 2016 [4]. With MetaMask, users
can store and manage keys on their accounts, broadcast
transactions, and send and receive cryptocurrencies [5].
MetaMask uses an account of type EOA, meaning that users
have control over access to assets or contracts that can be done
using a private key so that the private key needs to be strictly
kept confidential.

Fig. 1. MetaMask interaction in Web3

In Fig. 1., it can be seen that if the client wants to execute a
transaction on the blockchain, the client can use MetaMask
which connects the client and the frontend. Then, the data is
passed to the node provider, such as Infura and Alchemy, which
are the infrastructure for managing the nodes connected to the
blockchain. After that, the data will be forwarded to a smart
contract, which can be analogized as a backend, which functions
to execute program commands that meet certain conditions that
will change the state of the blockchain.

B. Gnosis Safe
Gnosis Safe is a system for managing multisignature wallets

built by Gnosis. This system consists of several features: safe
contracts, safe UI, safe transaction service, and safe apps. Unlike
MetaMask which uses EOA, Gnosis Safe operates entirely with
smart contracts that can define access control rights and can
increase security in conducting transactions [6]. Gnosis Safe is
perfect for a group of people who want to collectively manage
their cryptocurrency assets.

Fig. 2. Gnosis Safe interaction in Web3 [7]

In Fig. 2., Gnosis Safe as a multisignature wallet system will
process a transaction if the proposed transaction is approved by
the majority of users in the group. If the transaction has been
approved by the majority, the transaction will be executed.

C. Developer DAO (DDAO)
Developer DAO (DDAO) is an organization/community that

aims to educate and accelerate Web3 education. DDAO was
founded by Nader Dabit in 2021. DDAO has four values,
namely transparency, diversity and inclusion, responsibility,
and kindness and empathy. With its uniqueness of being
transparent and diverse, DDAO is made up of various people
around the world who collaborate with each other on Web3. In
accordance with general DAO rules, committees are selected
from a group of people who are highly trusted and selected by
the community to manage the wallet. Based on the results of the
deliberation, DDAO uses Gnosis Safe as its multisignature
wallet platform to manage treasuries with a 6/3 threshold [8].
6/3 threshold means that of the six members responsible for the
committee, three of whom need to sign a transaction in order
for cryptocurrency assets to exit the treasury.

III. DESIGN AND IMPLEMENTATION
There are several important things that need to be considered

in the development of a system to manage electronic currency
assets, namely that each transaction cannot be falsified
(transaction data needs to be immutable) and the system must
also guarantee the integrity and transparency of transaction data.

The plan to develop a system for managing electronic
currency assets in the DAO has several alternative solutions
based on the wallet architecture used and the type of blockchain
as the system building platform.

There are two alternative blockchain-type solutions as a
platform for the development of this multisignature wallet
system, namely Ethereum and Hyperledger Fabric. In DAO, it is
important to have aspects of freedom and transparency, every
transaction made needs to be visible to the public. The main
difference between Ethereum and Hyperledger Fabric is the
permission type. On Ethereum, the blockchain is permissionless,

meaning that any individual can access the blockchain. Whereas
in Hyperledger Fabric, only certain groups/individuals who are
given access can access the blockchain.

Ethereum is a platform for creating B2C businesses and
decentralized applications. Ethereum was created to be able to
run smart contracts on EVM and build decentralized
applications that are used by the general public. Meanwhile,
Hyperledger Fabric is a platform for creating B2B business and
cross-industry applications. Hyperledger Fabric helps this
industry or business to collaborate with the developers who
build Distributed Ledger Technology (DLT). Ethereum is also a
public blockchain network where every transaction is
completely transparent and anyone on the Internet can view and
access the details of the transaction. While Hyperledger Fabric
is a blockchain network with limited access, only authorized
organizations/individuals (that have an authorization certificate)
can see all transactions on the network.

According to the information above, to support the
transparency of data so that every transaction flowing through
the DAO can be publicly verified by everyone, Ethereum as a
permissionless blockchain is a more appropriate blockchain
choice compared to the permissioned Hyperledger Fabric.

The smart contract based system for managing finances in
the DAO includes a wallet. There are several alternative wallet
solutions based on their respective uses, namely externally
owned account (EOA) software wallet and smart contract
account, which consists of single-signature (singlesig) smart
contract wallet and multisignature (multisig) smart contract
wallet.

Fig. 3. Architecture of externally owned account (EOA) and contract account

Externally owned account (EOA) wallet allows users to be
given a public key (0x…) which can be used to send and receive
electronic currency. To be able to enter the EOA wallet, users
are given a private key in the form of a seed phrase which
consists of twelve random words and needs to be backed up
because knowing the seed phrase means having full control over
the wallet account. In contrast to an externally owned account
(EOA), a contract account consists of a single-signature
(singlesig) smart contract wallet and a multisignature (multisig)
smart contract wallet. Single-signature (singlesig) smart contract
wallets are similar to EOA wallets in that there is a public key
and a private key. However, the difference lies in the account
represented by the address tied to the wallet. In singlesig, there
is a contract account consisting of codes that can be set to add
some additional features, such as recovery, 2FA, and so on.
Multisignature (multisig) smart contract wallets are similar to
single-signature wallets but require a minimum number of
signatures to approve a transaction before it can be executed.
Multisig ensures that no one can commit a crime.

 In DAO, the multisignature (multisig) wallet system is very
suitable to be used to ensure verification from several financial

managers to sign every transaction you want to make and
increase security against criminals. By using a contract account
that is executed through the code it contains (in the form of a
smart contract), a multisignature wallet can be implemented.

Non-functional requirements that must be met, in this case
by a multisignature wallet system, are availability and integrity,
as represented in Table I.

TABLE I. NON-FUNCTIONAL REQUIREMENTS

ID Parameter Requirement
NF-01 Availability The system as a

whole can still run
even though there
are some nodes
that are not
functioning
properly.

NF-02 Integrity The system can
prevent
modification of
transaction data in
any form.

 The architecture of the multisignature wallet system is
divided into three parts: the user interface (frontend), the part
that interacts with the smart contract (backend), and the system
part that executes orders based on input from the client (smart
contract) which is directly related to the blockchain. The general
architecture of the multisignature wallet system is represented in
Fig. 4., which describes the relationship between these three
sections.

The system flow process generally starts with the user
interacting with the frontend. The user will send a request to the
frontend through a browser. Then, the frontend will interact with
the provider and backend nodes, depending on each function to
be operated. In addition, there is MetaMask, an EOA wallet in
the form of a browser extension that functions as a link between
the browser and the frontend to handle accounts and connect
users to certain blockchains. The provider node will then interact
with the Ethereum blockchain, which consists of smart contract
code that is executed depending on the particular function being
called. Every command execution in the smart contract, the
Ethereum Virtual Machine (EVM) needs to broadcast any state
changed in the blockchain to other nodes so that every
miner/node has the same state. This state change is in the form
of adding a new block to the blockchain.

Fig. 4. Architecture diagram of multisignature wallet system

A. Frontend
The frontend functions as a system interface that interacts

directly with the user. In this section, several processes will be
carried out, namely receiving and validating input from the user,
sending requests to the backend or provider nodes, interacting
with MetaMask, and displaying the data results obtained from
the blockchain. The frontend is made in the form of a web
application to facilitate access by DAO members.

According to Fig. 4., the frontend interacts with four entities:
browser, wallet, provider node, and backend, making it a
component/part that connects the entire multisignature wallet
system. Judging from the communication method, the
communication between the frontend and the backend uses a
REST API; communication between frontend and provider
nodes using JSON RPC; and communication between the
frontend and MetaMask using a browser extension.

With a system design as shown in Fig. 4., the frontend
requires a strong and reliable client-side programming language.
Therefore, we consider TypeScript which has several
advantages over JavaScript, namely static/strong typing and pre-
compilation. Meanwhile, React will be used as a library to
support the development of an interactive frontend interface.

B. Backend
The backend section functions as an intermediary between

the frontend and the provider node which will then be forwarded
to the blockchain. In this section, several processes will be
carried out according to system requirements, namely receiving
requests from the frontend, performing actions according to
requests from the frontend, and translating these actions to then
be able to execute smart contract commands that are
communicated through the provider node.

According to Fig. 4., the backend interacts with two entities:
the frontend and the provider node. In terms of the process/way
of communication, communication between the frontend,
backend, and node provider is about the need to deploy smart
contracts when a user wants to create a new multisignature
wallet.

With a system design as shown in Fig. 4., the backend, just
like the frontend, uses the TypeScript programming language in
its development. Additionally, the backend uses a dedicated
development environment for Ethereum, namely Hardhat. By
using Hardhat, the system development process becomes easier
because Solidity files can be run locally.

C. Smart Contract
Smart contract in this multisignature wallet system are

divided into several functions, depending on the operations you
want to perform. There are owners, minimum number of
confirmations, and several other variables that function as state
variables (variables stored in the contract). In addition, there are
functions to submit transactions, add confirmations, execute
transactions, request transaction cancellations, approve
transaction cancellations, execute transaction cancellations, and

several functions to retrieve state variables in this contract.
These functions can only be operated under certain conditions,
for example only the owner of this contract can call the
function, function calls can only be made if the Transaction
struct has been created, function calls can only be made if the
transaction has been submitted, and various other conditions. In
addition, there are functions for hashing, verifying, and
recovering to support the digital signature validation process.

Fig. 5. Class diagram of multisignature wallet

Based on Fig. 5., there are three entities:
MultisignatureContract, Transaction, and
ChangeOwnersTransaction. MultisignatureContract contains
some public attributes and functions. Transaction and
ChangeOwnersTransaction contain public attributes. The
relation of MultisignatureContract with Transaction and
MultisignatureContract with ChangeOwners can be seen in the
figure. MultisignatureContract can have 0 or more Transactions
or ChangeOwnersTransactions. In addition, there are several
functions to perform signing and verifying in
MultisignatureContract, namely getMessageHash,
getEthSignedMessageHash, verify, recoverSigner, and
splitSignature. To submit a transaction, there are three functions
depending on the transaction type (sending cryptocurrency,
changing owner addresses and minimum confirmations, or
submitting a transaction cancellation), namely
submitSendETHTransaction,
submitChangeOwnersTransaction, and rejectTransaction. To
approve the transaction, i.e. counter the confirmations,
confirmTransaction and confirmRejectTransaction are used
which will confirm the transaction to be executed and confirm
the transaction to be canceled, respectively. Finally, to execute
the transaction, there are three functions depending on the
transaction type as well (sending cryptocurrency, changing
owner addresses and minimum confirmations, or requesting
transaction cancellation), namely executeSendETHTransaction,
executeChangeOwnersTransaction, and
executeRejectedTransaction.

IV. EXPERIMENT AND ANALYSIS
Several testing methods are discussed on the multisignature

wallet system, starting from testing certain transaction cases and

non-functional testing which includes testing data integrity and
system availability.

Testing of certain transaction cases includes all tests of the
types of cases that may occur in the multisignature wallet
system. This aims to ensure that every type of case that may
occur in the multisignature wallet system has been handled
properly. This type of testing is declared successful if the testing
of the implementation of the multisignature wallet system is in
accordance with the expectations of the transaction handling
flow of the multisignature wallet system. There are three types
of cases tested on the multisignature wallet system, namely
testing certain transaction execution cases, testing on-chain
rejection transaction cases, and testing non-owner address cases.

In the first transaction case test, it is tested whether the
transactions should be executed sequentially.

Fig. 6. First transaction case test: sequential transaction execution

As in Fig. 6., it can be seen that each authorized user to
manage this multisignature wallet system can only execute
transactions with nonce 0, which is the earliest transaction in the
queue. It can be seen that the user cannot execute transactions
with nonce 1 and 2.

In the second transaction case test, it is tested regarding
transaction rejection.

The rejection transaction is used when one of the users in the
DAO wants to change an action that has already been submitted.
According to Fig. 7., the first transaction in the queue has been
submitted for rejection by someone in the DAO and suppose this
rejection is to be executed. Therefore, this transfer of 0.01 ether
will not take place. However, the transaction will still be
executed and it will be in the History tab.

Fig. 7. Second transaction case test: on-chain rejection

Fig. 8. Second transaction case test: on-chain rejection

After the rejection transaction is executed, according to Fig.
8., this transaction is said to have been completed and no action
can be taken against it. With this, it can be seen that the system
passed the on-chain rejection transaction case test.

In the third transaction case test, it is tested regarding
transaction rejection.

Fig. 9. Third transaction case test: non-owner address

 As in Fig. 9., it can be seen that the non-owner address is not
allowed to perform any actions. This user can only see
transactions, which include transactions that are in the queue and
transactions that have been executed in the history. With this, it
can be seen that the system passes the non-owner address case
test.

 Non-functional testing includes aspects of integrity and
availability of the multisignature wallet system. Integrity testing
is carried out to ensure that the data contained in the blockchain
cannot be changed, or in other words immutable. Meanwhile,
availability testing is carried out to ensure that the blockchain
can still run properly and properly even though one or more
nodes are not running.

 Integrity and availability testing can be declared successful
if each test result meets the standard criteria in accordance with
what has been described in the points in the non-functional
requirements.

In integrity testing, an experiment will be carried out to
change data that has been persistent on the blockchain. Integrity
testing includes changing transaction data. Attempts to change
transaction data cannot be carried out on the smart contract side
because the user can only perform actions defined as functions
in the smart contract. Changing transaction data in a block will

change the signature of the block so that the change request will
be easily considered invalid and rejected by miners.

 In availability testing, according to the current
multisignature wallet system, the Ethereum goerli test network
is used, where there are real miners around the world in such a
way that they build the original Ethereum network, only it does
not use the original cryptocurrency.

Fig. 10. Non-functional testing: integrity testing

 In Fig. 10., it can be seen that there are 17 active nodes out
of a total of 18 nodes, or in other words, there is one node that is
down or not running. However, Ethereum as a whole is still
doing well and can accept transactions that are submitted for
validation.

In accordance with the implementation and testing of the
multisignature wallet system, Ethereum as a public blockchain
is suitable to be used as a platform of this system because every
transaction made by the DAO can be verified publicly,
increasing the transparency of the system. Any flow of funds
through the DAO will be easily tracked and known by the public.

The proposed multisignature wallet system architecture is
also possible to implement and fulfill every certain transaction
case and non-functional requirement of the system. Regarding
testing, there are two types of tests performed: specific
transaction case tests and non-functional tests.

In certain transaction case testing, which includes sequential
transaction execution cases and on-chain rejection transaction
testing cases, it can also be seen that every possible case went
well. In non-functional testing, which includes integrity and
availability, integrity testing cannot be carried out from the
smart contract side so that testing cannot be carried out directly,
while availability testing can be carried out and meets the
availability standard metrics, namely the system can still run
well even though there is one or some dead nodes, as evidenced
by 17 of the 18 running nodes.

From the tests in various aspects that have been carried out,
the multisignature wallet system has several constraints, namely
the system runs on a secure network and the system is deployed
on a network built from original miners (Goerli test network)
which results in the system not being simulated locally.

 With this, it can be concluded that the overall test in general
went well. All possible cases have been tested, along with non-
functional requirements.

V. CONCLUSION
The blockchain-based multisignature wallet system has

successfully guarantee the integrity, availability, and
transparency. The system that has been designed and
implemented has also met the standards of certain transaction
cases and non-functional testing.

Ethereum as a public blockchain is very suitable to be used
as a platform for the development of a multisignature wallet
system. With the nature of the public blockchain, everyone can
participate in the blockchain network. Everyone does not need
to ask for special access permissions to enter the network.

The proposed multisignature wallet system already has the
main functionalities needed to perform certain tasks, such as
sending cryptocurrency that requires majority of signers,
managing the logic of queued transactions, and handling change
of owners and minimum number of confirmations.
Nevertheless, the system needs to be tested for scalability to
ensure the system is ready for use in a production environment
that involves many users.

ACKNOWLEDGMENT
The author would like to express gratitude to Dr. Ir. Rinaldi

Munir, M.T., as his advisor on author’s thesis at Bandung
Institute of Technology (ITB) for guiding and providing advice,
that helped the author to successfully finish this paper. The
author would also like to thank the parents of the author, who
have provided support and allowed the author to finish his
study. Lastly, the author would like to thank the friends of the
author, who have helped the author on the writing of this paper.

REFERENCES
[1] Wang, S., “Decentralized Autonomous Organizations: Concept, Model,

and Applications”, IEEE Transactions on Computational Social Systems,
2019.

[2] Volhov, D., “Wallet”, 2020. [Online]. Available:
https://academy.binance.com/en/glossary/wallet

[3] Han, J., “An Efficient Multi-Signature Wallet in Blockchain Using
Bloom Filter”, 36th Annual ACM Symposium on Applied Computing,
2021.

[4] Piore, A., “How Blockchain Technology Could Help Us Take Back Our
Data from Facebook, Google, and Amazon”, 2018.

[5] Leising, M., “Metamask’s Blockchain Mobile App Opens Doors for
Next-Level Web”, 2020.

[6] Sawinyh, N., “Gnosis Safe: Smart Contract-based Multisig Wallet”, 2019.
[Online]. Available: https://defiprime.com/gnosis-safe

[7] Ulfo, F., “Multisig Transactions with Gnosis Safe”, 2021. [Online].
Available: https://medium.com/gauntlet-networks/multisig-transactions-
with-gnosis-safe-f5dbe67c1c2d

[8] Kempster, W., “Initial Developer DAO Treasury Setup”, 2021. [Online].
Available: https://forum.developerdao.com/t/initial-developer-dao-
treasury-setup/549

