
Modified Email Header Steganography

Using LZW Compression Algorithm

Varian Caesar1, Dr. Ir. Rinaldi Munir, M.T.2, Dra. Harlili, M.Sc.3

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Indonesia

Email: variancaesar@gmail.com1, rinaldi@informatika.org2, harlili@informatika.org3

Abstract— Email Header Steganography or HeadStega

is a technique in Noiseless Steganography that utilizes

the header part of an email such as subject, to, cc, etc. to

hide secret messages. However, HeadStega has a low

hiding capacity. An email is only capable of hiding 4 to

11 bits of secret message. This paper propose a new

technique to improve the hiding capacity of HeadStega.

By using LZW compression algorithm and modifying

the message-hiding process, the capacity of HeadStega

can be improved. The experiment results show that

HeadStega hiding capacity increased by 39.72% for text

message and increased by 58.80% for binary messages.

Keywords- Email Header Steganography, Hiding

Capacity, LZW Compression Algorithm, Noiseless

Steganography.

I. INTRODUCTION

The needs to communicate safely and secretly

brings up various technique to conceal and secure the

message. Steganography is the art of message

concealments in a medium such as picture, audio,

video, etc. [2]. Noiseless Steganography, NoStega, is

a new paradigm of steganography that converts the

secret message into the medium itself [4]. One of the

NoStega techniques is Email Header Steganography,

HeadStega.

The widespread use of email nowadays and high

traffic of email exchanges allows a party to establish

a secret communication channel. This is the origin of

HeadStega. HeadStega was first proposed by Desoky

in 2010, HeadStega takes advantage of email headers

to store the hidden message [3]. As the name says,

HeadStega only hides secret message in the email

header. The body of the email remains genuine and

contains no secret message.

Unfortunately, HeadStega has a low capacity to

store secret message. In the original paper, one email

of HeadStega only able to hide combinations of 4 bits

and 7 bits of secret message. Attempt to improve

HeadStega hiding capacity have been made before by

Hasmawati and Barmawi [6]. They used combination

of vocal and consonant patterns to improve the hiding

capacity of HeadStega. However, this method only

works if the message is a text data. This method also

fails if there is no emails in the database that match

the pattern. This paper propose a method to improve

the hiding capacity of HeadStega by modifying the

message-hiding process and utilizing LZW

compression algorithm to reduce the size of the secret

messages. This method works for both binary data

and text data.

The rest of this paper is organized as follows:

Section II describes some theories for the proposed

approach. Section III presents the proposed approach

for improving HeadStega. Section IV presents about

experimental results and discussion. Finally, Section

V concludes this work with some future works.

II. PRELIMINARY

This section describes some preliminary studies

for HeadStega and LZW Compression. These two

concepts are the building block for the proposed

method in this paper.

A. HeadStega

In HeadStega, secret messages are hidden as email
headers, such as recipient’s email address. The
message will be converted into binaries and grouped
by a certain length. That binaries will then be
converted to a letter represented them. For Example,
binaries will be grouped by length of four and then
converted into a letter based on the Table 1 [3].

Table 1. Steganographic Code for four bits

Binary Letters Binary Letters

0000 a, q 1000 i, y

0001 b, r 1001 j, z

0010 c, s 1010 k

0011 d, t 1011 l

0100 e, u 1100 m

0101 f, v 1101 n

0110 g, w 1110 o

0111 h, x 1111 p

Generating recipient’s email address is done by taking
the alphabet one by one and then searching the
database for email that contains the same alphabet as
the prefix. In the receiver side, the receiver will take
the first letter of each email and convert it to binary
form using the same table. That binaries then will be
regrouped by the length of 8 to get the original
message. For the rest of this paper, terms for
converting binary into a letter will be called Coding.

B. LZW Compression Algorithm

LZW (Lempel-Ziv-Welch) is a data compression
algorithm proposed by Terry A. Welch in 1984 [1].
The working principle of LZW Compression is to
replace characters that have already appeared on files
with a symbol. Same String Table is required to do
both compression and decompression. Algorithm 1
and Algorithm 2 are the pseudocode for compression
and decompression using LZW [5].

Algorithm 1. LZW Compression Pseudocode
TABLE[0 to 255] <- ASCII CODE

STRING <- read input

while input not empty:

 SYMBOL <- read input

 if STRING + SYMBOL is in TABLE:

 STRING <- STRING + SYMBOL

 else:

 CODE <- CODE + TABLE[STRING]

 TABLE <- INSERT(STRING + SYMBOL)

 STRING <- SYMBOL

Output <- CODE

Algorithm 2. LZW Decompression Pseudocode
TABLE[0 to 255] <- ASCII CODE

TEXT = “ ”

CODE <- read symbol

STRING <- TABLE[CODE]

TEXT <- TEXT + STRING

while input is not empty:

 CODE = read next symbol

 if TABLE[CODE] is not exist:

 ENTRY <- STRING + STRING[0]

 else:

 ENTRY <- TABLE[CODE]

 TEXT <- TEXT + ENTRY

 TABLE <- STRING + ENTRY[0]

 STRING <- ENTRY

Output <- TEXT

III. PROPOSED METHOD

This Section presents the proposed method to
improve the hiding capacity of HeadStega. The
proposed method consists of two major components:

 Cover Generator

 Message Extractor

A. Cover Generator

Cover Generator is part of the system that conceals
the secret message into the recipient's email address.
Cover Generator receives secret message, LZW string
table and domain mapping table as the input and
produce list of recipient’s email address as the output.

First, string table will be used to compress secret
messages. The secret message is a list of integers now.
Next is the email-generating process, the concept of
domain mapping table will be introduced here.
Domain mapping table is simply a table consist of
various email domain and their respective value of k.
Table 2 shows the example of domain mapping table
that will be used for the rest of this paper

Table 2. Domain Mapping Table

Domain k Domain k

yahoo.com 0 lavabit.com 10

enron.com 1 comcast.net 11

hotmail.com 2 naver.com 12

msn.com 3 qq.com 13

gmail.com 4 orange.net 14

rocketmail.com 5 mail.ru 15

verizon.net 6 skynet.be 16

yahoo.co.uk 7 me.com 17

live.com 8 mac.com 18

outlook.com 9 gmx.com 19

This value of k will be used as additional
information in the message extracting process. For
example, gmail.com has value of four for its k, it
shows that the first four letters of any email with
domain of gmail contains the secret message.

Cover generating process starts with compressing
the message using LZW and converting it to list of
binary. Then we start to parse the binary one by one
by traversing the list. If the length of binary string is
larger than eight (integer value larger than 255) then
we query the database for a random name and append
it with the integer value of that binary to form the
recipient’s email. If the length of binary is eight or
less, then we start reading its first 4 bit and convert
into a letter. From this letter, we query database for a
name that starts with that letter as prefix. If such name
exists, then we continue to read the next 4 bit of
binary string and append the letter with the previous
letter to form a longer prefix. This process will
continue until database failed to give us a name that
matches the prefix. Next, we can generate a fake email
by combining the last name given by database and
email domain from domain mapping table that has
value of k matches the length of prefix. The cover-
generating process is shown in Algorithm 3.

Algorithm 3. Cover Generating Process
1. Compress the message m into compressed

 form, m2

2. Convert m2 to binary form, m3, ex:

 ['00001101', '00001111']

3. set i = 0 and half = False,

while i < length(m3):

if length(m3[i]) > 8:

 name <- query database for random name

 email <- name + int(m3[i] + @ +

 domain map for k = 0

 insert email to the result

else:

 if half is false:

 word <- take first 4 bit from m3[i]

 else:

 word <- take last 4 bit from m3[i]

 l <- take the CODING of word

 name <- query database for name starts

 with l

 if name is not empty:

 repeat:

 temp <- name

 word <- take the next 4 bit

 l <- l + CODING of word

 name <- query database for name

 starts with l

 if name is not empty:

 half <- not half

 if not half: i + 1

 else: l <- l[:-1]

 until name is empty or i > length(m3)

 or length(l)>length(domain map)

 or length m3[i] > 8

 if half:

 email <- temp + @ +

 domain map[length(l)]

 else if i < length(m3):

 email <- temp + int(m3[i]) + @

 + domain map[length(l)]

 insert email to result

 else:

 name <- query database for random name

 email <- name + int(word) + @ +

 domain map for k = 0

 half <- not half

 insert email to result

4. Return result

B. Message Extractor

Message extractor is a component that runs on the
receiver side. It performs hidden message extraction
from the list of emails and do the decompression using
LZW Algorithm to get the original message. Message
Extractor receives list of emails, LZW string table and
domain mapping table as input and produces the
original message as the output.

First, the algorithm will take the domain of the
email and calculate the k value of that domain. If k is
equal to 0, then we know that the secret message only
contained in the numeric part of the username. If k is
not 0, then we simply extract the first k letters from
that email to get the hidden message. We also check
the numeric part from the username. If an email
contains numeric part in its username, we must also
extract that numeric part. After done with the message
extraction, we convert every element in the binary
string into integer and pass it to LZW Decompressor.
Message Extracting is shown in Algorithm 4.

Algorithm 4. Message Extraction Process
binstring = []

For email in input:

 domain <- get domain from email

 k <- get k from domain using domain mapping

 if k = 0:

 num <- get number from email

 binstring <- insert binary of num

 else:

 secret <- take first k letters from email

 for c in secret:

 binary <- convert c to binary

 if length(binstring[-1]) < 8:

 binstring[-1] <- append binary

 else:

 binstring <- insert binary

 num <- get number from email

 if num is not empty:

 binstring <- insert num

result <- convert every element of binstring

 into integer

message <- LZWDECOMPRESS(result)

C. Proposed Method Example

This subsection provides an end-to-end example
on how the proposed method works. Let us define the
secret message is “ICAICTA”. First, this secret
message will be compressed by LZW into a series of
integer:

73, 67, 65, 256, 84, 65

Next, this list of integer will be converted into list of
binary:

'01001001', '01000011', '01000001', '100000000',
'01010100', '01000001'

Next, Table 3 will shows the cover generating
process. This process gives us three recipient’s email
addresses: ujuanda@msn.com, debaji256@msn.com
and feurzieg@gmail.com.

Table 3. Cover Generating Process

Binary Prefix Email generated Note

0100 u - DB match

1001 uj - DB match

0100 uju - DB match

0011 ujud or
ujut

ujuanda@msn.com DB failed

0011 d - DB match

0100 de - DB match

0001 deb - DB match

100000000 deb debaji256@msn.com Value
larger than
255

0101 f - DB match

0100 fe - DBmatch

0100 feu - DB match

0001 feur feurzeig@gmail.com Stop

Next, in the receiver side, the receiver will get all
those emails and perform an extraction to get the
message. Table 4 shows the process of extracting
messages from emails.

Table 4. Message Extracting Process

Email K Message

ujuanda@msn.com 3 uju

debaji256@msn.com 3 deb, 256

feurzeig@gmail.com 4 feur

For every letter in the message, the algorithm will
convert it into list of binary based on Table 1 in
Section II. For numeric value, that value will be
converted into binary. So the resulting binaries from
the message extracted are:

'01001001', '01000011', '01000001', '100000000',
'01010100', '01000001'

If we convert it to integer, it will gives the following
result:

73, 67, 65, 256, 84, 65

Decompressing it, will gives the original message,
‘ICAICTA’.

IV. RESULTS AND DISCUSSIONS

This section describes performance of proposed
method compared to the original HeadStega, in terms
of hiding capacity. After that, this section also provide
some discussion about the results. For the experiment,
the original HeadStega is implemented based on [3][4]
and different type of files is used. Table 5 shows the
data used for the experiment.

Table 5. File used in experiment

File Size (bytes)

Sample1.txt 91

Sample2.txt 527

Sample4_en.txt 649

Sample3.txt 2568

Home-icon_16.png 601

Landing-page_16.jpg 803

Sample_image_32.gif 4286

Sample_iamge_64.ico 16958

Code-icns_32.icns 3294

Perc13.wav 10504

Experiment conducted in Windows 10 Laptop, 8 GB
RAM, AMD A10-5750M and I TB Memory. The
email generated from both method are measured and
compared, as shown in Table 6. LZW HeadStega is
the name of the proposed method. Efficiency is a
comparison between the number of emails generated
by the original HeadStega and the number of emails
generated by the proposed method.

Table 6. Experimental Result

File

Emails generated Efficiency

(%) Head-

Stega

LZW

HeadStega

Sample1.txt 67 46 31.34

Sample2.txt 384 231 39.84

Sample4_en.txt 472 281 40.46

Sample3.txt 1868 985 47.26

Mean 39.72

Home-icon_16.png 438 328 25.11

Landing-page_16.jpg 584 385 34.07

Sample_image_32.gif 3118 285 90.85

Sample_iamge_64.ico 12334 1326 89.24

Code-icns_32.icns 2396 547 77.17

Perc13.wav 7640 4863 36.34

Mean 58.80

A. Effectiveness of the solution

As the Table 6 shows, the proposed method can
save the number of email generated by 39.72% for
text and 58.80% for binary files. The original
HeadStega, one recipient’s email address only
conceals maximum of 11 bits. In proposed method,
one email can conceals more than that. In fact, the
proposed method utilize all elements of an email to
the max. The LZW Compression also works pretty
well on binary files like gif and ico. The compression
cuts down the size of the secret message before
entering the cover generator.

B. Resistance against sending limit

Many email provider have a limitation for the
number of recipients you can include in the header.
For messages that have big size, the email generated
will be huge too. But, it can be solved by sending the
email in many batch. For example, for 1000
recipient’s emails, we can divide it into 5 batch with
200 emails in each batch. To lower the suspicions
from third party, sender can use multiple accounts to
send the email. For the example, batch-1 will be sent
using account1, batch-2 will be sent using account2
and so forth.

V. CONCLUSION AND FUTURE WORKS

The proposed method success to improve the
hiding capacity of HeadStega by utilizing LZW
Compression Algorithm and modifying the cover
generating process. Result shows that the proposed
method can improve the hiding capacity by 39.27%
for text data and 58.80% for binary data. The key for
this improvement is by utilizing an email to contains
much information. The writer knows that this work is
far from perfect, there are some performance issues

like slow embedding time and the needs of large data
on the database. This can be improved greatly by
using machine learning approach to generate email
username rather than querying the database, which
takes a lot of time.

REFERENCES

[1] Welch, T. A. A Technique for High-Performance Data

Compression. IEEE, 1984.

[2] Cox, I. J., Miller, M. L., Bloom J. A., Fridrich, J., & Kalker,
T. Digital Watermarking and Steganography. United States,
USA : McGraw-Hill, 2008.

[3] Abdelrahman Desoky. Headstega: e-mail-headers-based
steganography methodology. International Journal Electronic
Security and Digital Forensics,, 3(4):289_310, 2010.

[4] Desoky, A. Noiseless Steganography : The Key to Covert
Communications. North West, NW:CRC Press, 2012.

[5] Verghese, G. Compression Algorithm: Huffman and Lempel-
Ziv-Welch (LZW). lecture notes. Digital Communication
System EECS II Massachusetts Institute of Technology,
2012.

[6] Hasmawati, & Barmawi, A. M. HeadStega Modification
Based On Character Insertion [Modifikasi HeadStega
Berdasarkan Penyisipan Karakter]. Ind. Journal on
Computing Volume 2, Issue 1, 2017.

