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Abstract— Recently, fluid simulation computation is not only 
limited for research or industrial purpose but can also be 
implemented into personal computer software. With the advent of 
interactive real-time fluid simulation. One challenge of real-time 
fluid simulation is to simulate interaction between fluids and solid 
bodies. In this paper, we extend a two-dimensional material-point 
method (MPM) based fluid simulation with fluid particle and solid 
body surface interaction calculation. To simulate the interactions, 
we use several geometry concepts such as reflection and shape in 
order to formulate the necessary equations of fluid particle 
velocity change. The equation is then implemented into an existing 
MPM-based fluid simulation. Based on the benchmark results, the 
proposed fluid-solid body interaction method is viable for real-
time fluid simulation. Performance drop between 21%-26% is 
observed in the implementation, with the maximum number of 
particles to be simulated while maintaining the average frame rate 
above 30 FPS is 75,000 particles. Finally, we found that the 
number of particles and solid body complexity affects the fluid 
simulation performance, while the number of solid body polygons 
does not affect the fluid simulation performance. 

Keywords— fluid simulation, material point method, solid body, 
polygon, reflection 

I. INTRODUCTION 

Recently, fluid simulation is not only limited in usage for 
industrial or research purpose. It is possible to implement real-
time fluid simulation in personal computer software, such as 
interactive applications or video games. This is because the 
capability of personal computer improves over time, while new 
and more efficient fluid simulation methods continues to be 
developed. For video games, it is possible to integrate fluids as 
part of the game mechanics in order to create more entertaining 
and realistic playing experience. One of the recent video games 
to use fluid simulation as an integral part of the game mechanism 
is PixelJunk Shooter [1]. 

Many fluid simulation methods have been developed using 
various models and approaches, such as smoothed-particle 
hydrodynamics (SPH), moving particle semi-implicit (MPS), 
and material-point method (MPM). MPM is a relatively new 
approach to fluid simulation, with possibilities to be developed 
further. Recent researches on fluid simulation using MPM are 
snow simulation in movie [2], interactive fluid simulation for 
mobile devices [3], and integration of graphics processing unit 
for fluid simulation computation [4]. 

One challenge in the development of real-time fluid 
simulation is to simulate interaction between fluids and other 
materials, such as solid bodies, in a relatively fast and 
inexpensive in terms of computing resources (memory and 
processing power). Several solutions have been proposed, such 
as using a coupling force to interfacing between fluid and solid 
body simulations [5] and performing direct velocity 
manipulation perpendicular to the solid body surface [6]. The 
latter solution has been successfully implemented for real-time 
fluid simulation using SPH, while no MPM-based real-time 
solution has been proposed so far. An ability to simulate fluid 
and solid body interaction would be useful for development of 
real-time MPM-based fluid simulation. 

In this paper, we described a method to simulate fluid-solid 
body interaction in a MPM-based fluid simulation. This is done 
by performing additional calculation to the simulated fluid 
particles. In order to perform the calculations, we modelled the 
solid bodies into a data structure suitable for performing the 
calculations in linear time. To show that the proposed method is 
viable for use in real-time fluid simulation, we implemented the 
method by modifying an existing MPM fluid simulation code 
and performed benchmark with the implementation result. 

II. RELATED WORKS 

Interactive real-time fluid simulation based on smoothed-
particle hydrodynamics (SPH) have been successfully 
developed previously [6]. Furthermore, an implementation of 
SPH for use in video game has been successfully developed and 
released [1]. SPH-based fluid simulations are particularly 
attractive since it is unnecessary to maintain a static grid, unlike 
other grid-based fluid simulations that requires an allocation of 
static grid to perform the necessary calculations. Furthermore, 
performing interaction between fluids and solid bodies is 
relatively easy because the position of fluid particles in SPH-
based fluid simulations can be manipulated. 

MPM-based fluid simulations have been implemented 
successfully for snow simulations in computer-animated 3D 
movie [2]. While MPM-based fluid simulations still model the 
fluid as particles, it still uses a Eulerian grid to calculate some 
variables such as force and pressure, making calculations of such 
variables relatively easier. Fluid particles also allow relatively 
simple fluid-solid interaction calculations by manipulating the 
position of the fluid particles. Finally, it is also trivial to 
implement a particle-based fluid renderer for MPM-based fluid 
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simulations. Real-time MPM-based fluid simulations have been 
implemented in mobile devices [3], and the fluid simulation 
calculations have been successfully implemented as compute 
shader for calculations using graphics processing unit (GPU) 
instead of computer processing unit (CPU), greatly improving 
the simulation performance [4]. 

In order to perform fluid-solid interaction calculation, 
information about the solid body boundaries within the 
simulation is required. With the information of the boundaries, 
calculating the position of fluid particles is feasible by reflecting 
the particle velocity to the boundaries. Marching cubes 
algorithm has been used for visualizing the fluid in a fluid 
simulation implementation [6]. Using the algorithm, it is 
possible to obtain the boundaries of a solid body in a three-
dimensional grid. The analogue of marching cubes algorithm in 
the two-dimensional grid is the marching squares algorithm. 

We conclude that using a number of concepts such as 
geometrical reflections and marching squares algorithm, it 
should be feasible to provide a fluid-solid interaction method for 
a real-time MPM-based fluid simulation. 

III. RELATED CONCEPTS 

In order to implement the interaction between fluid particles 
and solid body surfaces, a number of mathematical concepts 
related to geometry is studied, such as line equations and vector 
mathematics. We also use several algorithms and predicate tests 
related to computational geometry. 

A. Line Equations 

Generally, a line can be represented using the general linear 
equation in the form of 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0. However, if two 
points of line is known, it is possible to represent the line in the 
form of 𝑦 − 𝑦௉ = 𝑚(𝑥 − 𝑥௉), with (𝑥௉, 𝑦௉ ) and ൫𝑥ொ, 𝑦ொ ൯ 

representing the points and 𝑚 =
௬ೂି௬ು

௫ೂି௫ು
 is the line gradient. Care 

must be taken for straight vertical lines, where 𝑥ொ − 𝑥௉ = 0. 

Using the line equation in the form of 𝑦 = 𝑚𝑥 + 𝑐, it is 
possible to determine whether a given point (𝑥௜, 𝑦௜) is above or 
below the line. If 𝑦௜ > 𝑚𝑥௜ + 𝑐, the point is located above the 
line; if 𝑦௜ < 𝑚𝑥௜ + 𝑐, the point is located below the line. 

B. Reflection 

Reflection is the direction change of an object movement due 
to interaction with a flat surface. The concept can be applied to 
various objects, such as balls and light rays. Given an original 
movement velocity 𝐯 and the reflected velocity 𝐯′, relationship 
between the two vectors can be expressed as 𝐯ᇱ = 𝐯 −
2(𝐯 ∙ 𝐧ෝ)𝐧ෝ, with 𝐧ෝ denoting the unit normal vector perpendicular 
to the surface. The equation can be derived geometrically by 
observing the projection of v to the normal vector as shown in 
Fig. 1. 

 
Fig. 1 A diagram illustrating the reflection of a vector to a flat surface. 

C. Counter-Clockwise Test 

Counter-clockwise test is a useful predicate test in 
computational geometry to determine the ordering for a set of 
points in two-dimensional space. Given three points 𝑃, 𝑄, and 
𝑅, it is possible to determine whether 𝑃𝑄𝑅തതതതതത constitutes a “left-
turn” (i.e. a counter-clockwise arc), a “right-turn” (i.e. a 
clockwise arc), or a straight line (i.e. 𝑄 is in 𝑃𝑅തതതത). The equation 
for the test can be derived from the cross-product result of two-
dimensional vectors. For a set of three points, 𝑃𝑅തതതത × 𝑄𝑅തതതത results 
in a vector with three possibilities for the value of z-coordinate: 
positive, zero, or negative. A positive number implies that 𝑃𝑄𝑅തതതതതത 
form a “left-turn”, a negative number implies a “right-turn”, and 
a zero implies a straight line. 

Generally, counter-clockwise test can be used to solve 
problems that require the set of points to be ordered based on 
certain angles. Counter-clockwise test is first used in an 
implementation of Graham scan algorithm to determine the 
convex hull from a set of points [7]. The counter-clockwise test 
can also be used to determine whether a line segment intersects 
each other [8]. 

D. Marching Squares Algorithm 

Marching squares algorithm is an algorithm that can be used 
to determine a contour from a binary matrix. The algorithm 
works by determining the values of all 2 × 2 submatrices inside 
the matrix based on the value of each corner of the submatrices. 
For every submatrix, there are 2ସ = 16 binary possibilities, each 
representing a contour solution. Fig. 2 shows all possible 
combinations for a single contour cell. The resulting matrix 
represents the contour of the original binary matrix, which can 
be used for a variety of applications. A real-time fluid simulation 
by Génevaux [5] used the marching cubes algorithm, which is 
the equivalent of marching squares algorithm in three-
dimensional space, to visualize the particle fluids in a real-time 
fluid simulation. 
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Fig. 2 All possible configurations of marching squares algorithm, with red 

lines denoting the resulting contour line. 

IV. DESIGN 

A. Representation of Solid Bodies 

In order to be able to perform the necessary calculations, we 
need to determine an appropriate model and data structure for 
the solid bodies in the simulation. Since the simulation is two-
dimensional, the solid body should be in form of two-
dimensional shapes. 

For this simulation, we modelled solid bodies as polygons, 
represented as an array of points. Since a polygon is a surface 
constrained by a number of straight line segments and line 
segment can be represented by two points, we can represent a 
polygon as a set of points. We can argue that any shape with 
curved line segments can be approximated as a polygon using 
polygonal approximation algorithms, such as works by Zhu [9] 
and Kolesnikov [10]. 

A more useful model is to represent the solid bodies as a 
convex polygon. This is because we can also convert any 
polygon into a number of convex polygons using algorithms 
such as ear-clipping triangulation by Eberly [11]. Therefore, we 
can store the polygon points in counter clockwise order. This is 
required so that the test for testing whether a point is inside a 
polygon, as described in Fig. 3, can run in linear time. 

B. Point Test for Convex Polygons 

Given a list of polygon points ordered counter clockwise 𝐿 
and a point 𝑅, it is possible to determine whether 𝑅 is inside or 
outside of the polygon. This is done by looping through every 
three consecutive points and perform the counterclockwise test. 
𝑅 is inside the polygon if and only if every three consecutive 
points of 𝐿 formed a left-turn. Fig. 3 is the pseudocode of the 
described test as a Boolean function which returns true if 𝑅 is 
inside the polygon of 𝐿 and false otherwise. 

function INSIDE(R: point, L: array of point): boolean 
  for i in [1..n(L)] 
    let j <- i + 1 if i < n(L), else 1 
    let turn <- TURN(Li, Lj, R) 
    if turn <> LEFT_TURN then 
      <- false 
  <- true 

Fig. 3 Test to determine whether a point is inside or outside a polygon. 

C. Polygon Rasterization 

Given a set of polygons, we convert the polygons into a 
binary matrix. For every cell in the matrix, the value 1 represents 
a polygon and 0 represents an empty space. This can be done by 
looping through all matrix cells and checking whether the cell 
centre coordinate is inside a polygon. 

A useful optimization can be done here by observing that the 
rasterization result remains the same if the set of polygons 
contains no changes. Therefore, the previously used binary 
matrix can be reused. In the implementation, we separate 
between static polygons (i.e. polygons that will not change 
during the simulation) and dynamic polygons (i.e. polygons that 
might change during the simulation). For the static polygon, we 
keep a binary matrix precomputed with the rasterization result. 
During the simulation, the binary matrix is simply copied and 
merged with the rasterization result of the dynamic polygons. 

D. Contour Matrix 

From the binary polygon matrix, the marching squares 
algorithm is used to determine the contour of every 2 × 2 
submatrices. The result is a contour matrix, which contains an 
integer in the range between 0 (00002) and 15 (11112) in every 
cell. 

E. Fluid Particle Velocity Calculation 

Using the values from contour matrix, it is possible to 
determine whether a fluid particle is inside or outside a solid 
body. As illustrated in Fig. 2, each of the contour value 
represents a unique configuration consisting of a straight-line 
segment as boundary between the solid body area and the empty 
space. To determine whether a particle position is inside the 
solid body area, thus inside a solid body, we use the straight-line 
equations to determine whether the point is above or below the 
line. This information is enough to determine which the area of 
the particle belongs to. Care is taken for special cell cases, such 
as cell containing vertical lines, the horizontal lines, and cells 
containing multiple diagonals. 

F. Integration into Fluid Simulation 

Based on the material-point method fluid simulation steps in 
[3], it is suggested that the particle velocity calculation due to 
wall collision is done at later stages of the fluid simulation step. 
This is necessary to ensure that the fluid simulation is working 
with the correct particle position and velocity from the previous 
simulation step. On the other hand, the fluid particle velocity 
calculation will have to take into account particles located inside 
the solid body. Meanwhile, the polygon rasterization and 
contour matrix calculation do not depend on any previous values 
and can be done anytime. 
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Fig. 4 shows the proposed modified fluid simulation steps. 
The original fluid simulation steps are drawn with white 
background, while the inserted fluid-solid interaction steps are 
drawn with grey background. 

 
Fig. 4 Flowchart of a single fluid simulation update steps with additional fluid-

solid interaction steps inserted (shown in grey background). 

V. IMPLEMENTATION RESULTS AND ANALYSIS 

We implemented the proposed fluid simulation using Cinder 
programming library in C++ language. The library provides 
several application programming interfaces to perform drawing 
using OpenGL. Cinder also provides a built-in helper library for 
vector calculations. 

To avoid reinventing the wheel, an existing fluid simulation 
implementation is modified instead of reimplement the whole 
fluid simulation code. This allows the research to focus on the 
fluid-solid interaction part of the fluid simulation. 

A. Implementation Issues and Solutions 

The implemented fluid simulation can generally produce 
visually correct fluid simulation with interaction between fluids 
and solid bodies. However, one particular bug in the 
implemented fluid simulation is the presence of fluid particles 
inside the solid bodies. This occurs because the particles are 
unable to exit the solid bodies if traversed too far inside the solid 
body grids. This is visible in parts of Fig. 5, where there are a 
number of particles (blue) trapped inside the solid bodies 
(brown). The problem is more visible with viscous fluids, which 
can attain greater velocity and traverse further inside the solid 
bodies. Another limitation of the implemented fluid simulation 
is the inability to represent very thin solid bodies, with most of 
the fluids will simply fall through. This happens if the fluid 
particles move fast enough to skip the solid body grids. 

 
Fig. 5 Screenshots of the implemented fluid simulation program with various 

polygon shapes. 

B. Implementation Performance 

To determine whether the proposed fluid simulation method 
is viable for real-time fluid simulation, a number of benchmarks 
are performed using several test cases. The benchmark is done 
by running the fluid simulation with certain configuration for 20 
seconds. Each second, three measurements are recorded into an 
external file: the average time to update (measured in 
milliseconds), the average time to draw (measured in 
milliseconds), and the average frame rate (measured in frames 
per second). The recorded measurement of first second is 
discarded since the first second also includes the time for 
simulation preparation, and the remaining recorded values are 
averaged. The benchmarks are performed using a computer with 
Intel Core i3-6006U processor, NVIDIA GeForce 940MX 
graphics chip, 8 GB DDR4 memory, and Windows 10 operating 
system. 

1) Number of particles 

The simulation is executed with increasing number of 
particles for each run, from 25,000 to 100,000. Table I shows the 
benchmark result, while Fig. 6 shows the graph of average 
update and draw time for each number of particles. 

TABLE I BENCHMARK RESULT WITH INCREASING NUMBER OF PARTICLES 

Number of 
Particles 

Average update 
time (ms) 

Average draw time 
(ms) 

Average 
FPS 

25,000 14.80 3.20 52.4 

50,000 19.59 4.01 40.5 

75,000 24.01 4.74 33.4 

100,000 30.50 5.61 27.1 
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It can be observed that the time to update and draw increases 
linearly relative to the number of particles. This is expected from 
the fluid simulation, which has the algorithm complexity in 
order of 𝑂(𝑛) where 𝑛 is the number of particles. 

 
Fig. 6 Graph of average update and draw time with increasing number of 

particles. 

2) Number of polygons 

The simulation is executed with increasing number of 
polygons for each run, from 250 to 1,000. Table II shows the 
benchmark result, while Fig. 7 shows the graph of average 
update and draw time for each number of polygons. 

TABLE II BENCHMARK RESULT WITH INCREASING NUMBER OF POLYGONS 

Number of 
Polygons 

Average update 
time (ms) 

Average draw time 
(ms) 

Average 
FPS 

250 20.93 11.29 29.8 

500 21.59 18.94 23.9 

750 20.94 25.73 20.6 

1,000 21.34 31.59 17.9 

    

It can be observed that the number of polygons does not 
significantly affect the simulation performance, while the draw 
time increases linearly with the increasing number of polygons. 
This result shows that the time to draw polygons at screen 
dominates the time to perform simulation update for large 
number of polygons; simulation implementations should 
implement an efficient method to draw the polygons. 

 
Fig. 7 Graph of average update and draw time with increasing number of 

polygons. 

3) Polygon complexity 

The simulation is executed with two different configurations, 
one containing a relatively simple solid body shape and the other 
one containing a relatively complex solid body shape with many 
curves and corners. Table III shows the benchmark result, while 
Fig. 8 shows the graph of average update and draw time for both 
simple and complex configurations. 

TABLE III BENCHMARK RESULT WITH DIFFERENT POLYGON COMPLEXITY 

Polygon 
complexity 

Average update 
time (ms) 

Average draw time 
(ms) 

Average 
FPS 

Simple 29.05 5.41 28.2 

Complex 31.73 5.55 26.4 

    

It can be observed that there is noticeable difference in 
performance between the fluid simulation with simple and 
complex solid body shape, with the simpler shape having a 
higher performance as expected. This result can be explained by 
the increased number of fluid-solid body interactions in complex 
simulation compared to the simple simulation, causing an 
increase in number of computations for the complex simulation. 

 
Fig. 8 Graph of average update and draw time with different polygon shape 

complexity. 

4) Performance drop 

For this benchmark, a special compilation of the fluid 
simulation program is built with the fluid-solid body interaction 
codes disabled via C++ pre-processor feature. Therefore, both 
programs run the exact same code except for the fluid-solid body 
interaction calculations. The benchmark is run with three 
different shapes of solid body: ‘box’ representing a simple 
boundary box, ‘standard’ representing a solid body with few 
number of corners and curves, and ‘complex’ representing a 
solid body with many corners and curves. Table IV shows the 
benchmark result, while Fig. 9 and Fig. 10 show the graph of 
average update and draw time of the simulation. 

TABLE IV BENCHMARK RESULT WITHOUT AND WITH FLUID-SOLID 
INTERACTION 

Measurement 
Test case 

box standard complex 
Average 
update 
time 
(ms) 

Without interaction 23.73 24.26 24.10 

With interaction 31.68 32.01 30.55 

Performance drop 25.08% 24.20% 21.12% 
Average 

draw 
time 
(ms) 

Without interaction 5.61 5.56 5.51 

With interaction 5.86 5.54 5.45 

Performance drop 4.24% (0.47%) (1.13%) 

Average 
FPS 

Without interaction 33.1 32.4 32.7 

With interaction 26.0 26.2 27.1 

Performance drop 27.08% 23.88% 20.51% 

     

It can be observed that there is performance drop between 
fluid simulation without and with fluid-solid body interactions. 
This is expected from the implementation, since there are more 
calculations to be performed on the fluid simulation with fluid-
solid interaction. 
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From the benchmark result, the performance drop ranges in 
20.51%-27.08%, depends on the performance metric. This value 
can be used as performance lower bound; subsequent 
implementation of fluid simulations with fluid-solid interaction 
should be able to reach similar performance result. 

 
Fig. 9 Graph of average update time with various polygon shapes, comparing 

between simulation without and with fluid-solid interaction. 

 
Fig. 10 Graph of average draw time for various polygon shapes, comparing 

between simulation without and with fluid-solid interaction. 

VI. CONCLUSION 

We successfully extend a two-dimensional material-point 
method-based fluid simulation with interaction between fluid 
particles and solid bodies. We modelled solid bodies as 
polygons, which is rasterized into a binary matrix. The marching 
squares algorithm is used to determine the contour of the binary 
matrix, which can be used to determine normal vectors in each 
cell of the matrix. Detecting whether a fluid particle collide with 
a solid body is done geometrically using the contour values, and 
particle velocity calculation is done using the determined normal 
vector. 

To evaluate the proposed simulation method, the fluid 
simulation is implemented by modifying the existing fluid 

simulation implementation by Kotlin. Based on the benchmark 
result of the implementation, there is a 21%-26% performance 
drop between fluid simulation with fluid-solid interaction and 
without fluid-solid interaction. The maximum number of fluid 
particles that can be simulated while still keeping the average 
frame rate per second over 30 FPS is 75,000 particles. The 
factors affecting the fluid simulation performance is the number 
of particles and the complexity of the solid bodies. On the other 
hand, the number of polygons representing the solid bodies does 
not affect the fluid simulation performance. 
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