
Software Availability Enhancement in

Preemptible Instance Kubernetes Cluster

Rika Dewi

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Surabaya, Indonesia

rikadewi4444@gmail.com

Rinaldi Munir

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

rinaldi@informatika.org

Abstract— From users perspective, cloud is often seen as an

unlimited resource that can be used anytime and anywhere. In

order to create the illusion as an unlimited resource, cloud

service providers must always provide excess resources that

exceed users demand. To increase the efficiency usage of their

resources, some cloud service providers rent out their excess

resources at lower prices with various limitations. Google Cloud

Platform is one of the cloud service providers that rents out its

excess resources called preemptible instances. Various limitations

that preemptible instances have causes a decrease in the

availability of the software running on it. In this study, a tool

called preemptible lifecycle scheduler is implemented to enhance

availability on top of preemptible instances. This is done by

scheduling the termination of the preemptible instance so that it

occurs outside the application's peak hour range. Based on

experiments, the use of preemptible instances in Kubernetes

clusters can reduce infrastructure costs by up to 53.085%, but

the software will experience a decrease in availability and no

graceful shutdown period. By using the preemptible lifecycle

scheduler tool, it is proven that it can increase the availability of

the software system up to 0.629% during peak hours and

increase the chance of graceful shutdown period by 37.1429% to

75% on software that is terminated by the preemptible lifecycle

scheduler tool when scheduling the instance life cycle.

Keywords—preemptible instance; availability; Kubernetes

I. INTRODUCTION

As technology evolves, the software development process
also evolves. Various technologies, architectural patterns, and
best practices have continued to emerge over the last few years.
IT companies are striving to build a sustainable and scalable
software system. One of the architectural patterns that offer
solutions for sustainable and scalable system is microservices.

The microservice architecture adopts the Single
Responsibility Principle which states to gather things that
change for the same reason, and separate things that change for
different reasons [1]. A microservice architecture will consist
of various services that are loosely coupled to each other so
that they can be developed independently [2]. For example, an
e-commerce application can consist of several services, such as
service for payment, logistic, promotion, etc.

With a lot of small services running independently on a
microservice architecture, there comes a diversity of

environments in which a service runs. Imagine there is an e-
commerce company that has thousands of software engineers.
One of them might use Ubuntu Linux, while the other uses
Windows, MacOS, or other operating systems. This diversity
can result in a service which running well in one environment,
but failing in another environment. To avoid this, the delivery
of these services is carried out with the help of container
technology. Containers provide an isolated environment to run
a service within. With containers, the process of packaging and
shipping applications across environments is made easier.

As the development goes, many more containers have to be
set up to support one same software. For reference, in 2020
Netflix has more than 1000 microservices [3]. Rooted in the
complexity problem of managing multiple containers, Google
released a platform called Kubernetes as a container
orchestration solution for container management. Kubernetes
makes it easier to deploy multiple containers on multiple
virtual machines, manage resource consumption by a container,
migrate a container from one host to another, and many more
[4].

Google Cloud Platform provides an infrastructure
composed of multiple virtual machines (VMs) and utilize
Kubernetes as an orchestration mechanism called Google
Kubernetes Engine (GKE). In GKE, there are two types of VM
which called on-demand instances and preemptible instances.
On-demand instances have a much higher level of availability
than preemptible instances, but at a much higher price as well.
With the same specs and performance, preemptible instances
can cost 70-80% less than on-demand instances. However,
preemptible instances cannot live for more than 24 hours, and
may be shut down at any time.

Related research has been done by Veena, et al. in 2017
concerning the challenges of using preemptible instances on
AWS. In that study, there are several hypothetical solutions to
the existing challenges, but there are no practical
implementation, nor testing to these proposed solutions [5].
Another study conducted by Costa, et al. in 2018 to review the
performance and cost differences required to run programs on
on-demand and preemptible instances. The results of this study
prove that preemptible instances have a cheaper price with the
same performance compared to on-demand instances [6]. In
this study, a research will be conducted to increase the

availability of a software system that runs on preemptible GKE
instances.

II. RELATED TOPICS

A. Kubernetes

Kubernetes is an open source container orchestration
system. Everything in Kubernetes is a declarative configuration
of objects that represent the desired state of the system.
Kubernetes aims to ensure that the actual conditions on the
system match the desired conditions at all times. That is,
Kubernetes not only initializes the system according to the
desired conditions, but also protects the system from failures
that cause the system to become unstable [4].

A pod is the smallest unit in Kubernetes that represents a
service unit consisting of one or more tightly connected
containers. Pods deployed in Kubernetes run on a node, a
computing unit within Kubernetes that can take the form of a
physical machine or a virtual machine. Each container in a pod
will share the same network data store [7].

Kubernetes is used to manage container workloads on a set
of nodes that are joined to form a Kubernetes cluster. In a
Kubernetes cluster there will be at least one node that
represents a VM/computer and a Control Plane. At each node,
there is a kubelet and a kube-proxy. The kubelet is in charge of
managing the pod work and communication between the
Kubernetes master and other nodes, while the kube-proxy is in
charge of forwarding the network from outside to inside the
node and vice versa.

All decisions that are global in a Kubernetes cluster will be
governed by the Control Plane including the decision to
schedule. In Kubernetes, scheduling is the process of a
scheduler finding and deciding the best node to run a pod on.
This scheduling process is specifically regulated by a Control
Plane component called the kube-scheduler. Control Plane also
provides an API server that connects to the cloud-controller-
manager to interact with cloud provider services such as
Google Cloud Platform.

B. Cost Optimization over Amazon EC2 Spot Instances-

Research Challenges

A study to find the challenges in performing cost
optimization on AWS spot instances was conducted by Veena,
et al. in 2017. AWS spot instances cost is determined by
bidding from the user for the instance. Spot instances will be
given to the user who bids the highest price for that instance.
Therefore, distribution and price prediction of spot instances is
a challenge in performing cost optimization on AWS spot
instances.

Apart from the bids to be made, the challenge for AWS
spot instances is to build a fault-tolerant system. This is
because systems that are running on top of the spot instance
can be terminated at any time if there is a higher bid for that
instance. Several techniques that can be used to build a fault-
tolerant system are check-pointing and process level
redundancy (PLR). In the check-pointing technique, it is

necessary to pay attention to the overhead generated when
forming check-pointing [5].

C. Performance and Cost Analysis Between On-Demand and

Preemptive Virtual Machines

Costa, et al. conducted a study comparing performance and
cost between on-demand VMs with high availability and high
costs against preemptive instances with the same
specifications, only that the availability depends on the cloud
service provider. In this study, an analysis was carried out on
two cloud service providers, which are AWS with preemptive
instances called spot instances and GCP with preemptive
instances called preemptible instances.

The test is carried out by running the map reduce program
on a cluster consisting of preemptive and on-demand instances.
The result is that there is no significant difference in
performance between on-demand and preemptive instances of
the two cloud service providers, but there is a significant
difference in cost. On AWS, there is a 68% cost reduction
when using preemptive instances. Whereas in GCP, a 26% cost
reduction was obtained when using preemptive instances but
this cost reduction can be increased as the use of a larger
cluster [6].

III. PROPOSED SOLUTION

A. Preemptible Instance Limitations

Preemptible instances have the following limitations:

1. Preemptible instances can be terminated at any time
by Google Compute Engine.

2. Google Compute Engine always terminates
preemptible instances after running for 24 hours.

3. Preemptible instances are limited resources, so there
is a possibility that preemptible instances are not
available.

4. Preemptible instances cannot automatically migrate to
on-demand instances, or are automatically restarted
during maintenance on Google Compute Engine.

The thing that is most affected by these four limitations is
the level of availability. In addition, another impact that occurs
is that applications running on preemptible instances cannot
have time to gracefully shutdown. Graceful shutdown itself is a
preparation period for the application just prior the termination.
Without this graceful shutdown period, data corruption may
occur or there may be remaining unreleased resources such as
connections to databases.

B. Peak Hour

In general, a software system will have peak hours that
occur when there is a high traffic from transactions. In software
systems, these peak hours tend to form a pattern that can be
easily predicted. For example in e-commerce applications,
peak hours will occur when there is a big sale. Another
example, in the online transportation application, peak hour
occurs during the hours of leaving and returning from work.
The unavailability of applications during peak hours will have

a more fatal impact, compared to the unavailability of
applications at other times.

The proposed solution in this study is based from the fact
that there is a peak hour pattern in the software system. Out of
the four limitations possessed by preemptible instances, the
second limitation is a limitation that also has a pattern, which is
the instance is not available after running for 24 hours. By
looking at these two patterns, scheduling can be done so that
preemptible instances will always be available during peak
hours. This scheduling will be done by a tool that will run in
the background and is called the Preemptible Lifecycle
Scheduler (PLS). This application will perform lifecycle
scheduling for each preemptible instance based on the age of
the instance

C. Implementation

The PLS will be built using Go language which will
communicate with Kubernetes using Kubernetes Go client
library and communicate with Google Cloud Platform (GCP)
using the Google Cloud API. To be able to communicate using
the Google Cloud API, PLS uses a service account as an
authentication method. There are two main function that will
be built in PLS which are scheduling function and node
processing function.

1) Scheduling

Fig. 1. Scheduling Process

The scheduler is a component that is responsible for
scheduling the termination of a node. Fig. 1, shows a flow chart
that represents the processes involved in the scheduling
process. At first, the scheduler will get the current state based
on the peak hour range. There are three possible states, which
are in peak hour, outside peak hour, and start peak hour. In
peak hour state, PLS will not schedule node termination, so
PLS will wait until peak hours are over. In outside peak hour
state, PLS will scan preemptible node pool. Each node age will
be checked. If any node approaches 24 hours limit, the node

will be processed to do gracefully termination. After all nodes
have been checked, PLS will wait until the next scheduling
time. The PLS wait duration is the smallest remaining node life
duration or just before the next peak hour starts. In start peak
hour state, PLS will scan preemptible node pool, then each
node age will be checked. If the node created time added by 24
hours is less than the end time of peak hour range, then the
node cannot survive the peak hour. Nodes that do not persist
during peak hours will be processed. Then PLS will wait until
the peak hour ends.

2) Node Processing
Node processing is a process to terminate node gracefully.

Node processing itself consists of three main processes as
shown in the flow chart in Fig. 2.

Fig. 2. Node Processing Function

a) Unschedule Node

Prior to termination, PLS will notify the kube-scheduler so
that no pods are scheduled to the node other than the pods that
are already running on the node. The purpose of this process is
to avoid scheduling the load (in this case the pod) to the node
because the node will soon be terminated.

b) Delete Pods in Node

After unscheduled, the next process is to terminate all pods
in the node. Termination of a pod is done by sending a
termination signal (SIGTERM) to every container running in
the pod. The purpose of this process is to gracefully terminate
pod while moving the pod to another node. By moving a pod to
another node, it can remain available to perform their job even
after the node is terminated. The process of moving the pod to
another node goes as follows:

1. PLS perform pod termination through Kubernetes
API.

2. The terminated pod will send a termination signal
(SIGTERM) to every container running in the pod.

3. After each container has stopped running, the pod will
be terminated. This changes will be known by the
controller of the pod, namely ReplicaSet. The
ReplicaSet is responsible for ensuring the number of
pod replicas in actual conditions matches the desired
number of pod replicas.

4. A ReplicaSet that knows that a pod has been
terminated will ask the kube-scheduler to schedule a
new pod that will replace the terminated pod so that
the number of pod replicas will satisfy the desired
number of pod replicas.

5. When scheduling a pod, kube-scheduler will look for
the appropriate node for that pod. Note that the first
process of node processing is to unscheduled node, so
the kube-scheduler will not select current node for
scheduling.

6. After the kube-scheduler finds a suitable node, the
pod will run on that node so the pod will move from
the node to be terminated to another node.

In terminating pods in a node, not all pods need to be
terminated. This is because there are certain types of pods that
cannot be moved from nodes. This pod will be attached to the
node even if the node is unscheduled. These types of pods
include pods from the kube-system namespace and pods from
DaemonSet. The kube-system namespace is a part of the
Kubernetes cluster dedicated to running resources created by
the Kubernetes system [7]. Pods residing in the kube-system
namespace are generally created to manage nodes in a
Kubernetes cluster, so this kind of pods will be re-scheduled on
the same node after termination. DaemonSet itself is a
component in Kubernetes that ensures that some or all nodes
are running a particular pod. DaemonSet is usually used to
collect logs or perform monitoring on all or some nodes.
Therefore, pods originating from DaemonSet will continue to
be scheduled on the same node after termination.

c) Delete Node

The third process after terminating the pods in the node is
terminating the node itself. To terminate the node, PLS will
communicate with the Kubernetes API which will
communicate with the Google Cloud API to terminate the node
that represents a preemptible instance on GCP.

IV. EVALUATION

A. Availability

The purpose of this test is to analyze changes in availability
level metrics as a result using Preemptible Lifecycle Scheduler
on preemptible instances especially during application peak
hours.

1) Scenario
For the availability test, this study use a tool called uptime

monitor. Uptime monitor will send HTTP requests to health
check API endpoints owned by the service every 5 seconds
interval. If the response obtained from the HTTP request is an
HTTP 200 status code, then the service is available. Vice versa,
if the response is not an HTTP 200 status code, or the uptime

monitor tool doesn't even get a response, then the service is not
available. The uptime monitor will record the service
availability based on the number of available responses
compared to the total requests sent. The whole process of this
scenario is shown in Fig. 3.

Fig. 3. Availability Test Scenario

Each test case in this test scenario will be carried out for 3
days (3 x 24 hours) with several variations of test cases shown
in Table I.

TABLE I. AVAILABILITY TEST CASES

Test Code Number of Nodes
Number of

Pods*
PLS Existence

A-1 7 198 Exist

A-2 7 198 Not Exist

A-3 1 1 Exist

A-4 1 1 Not Exist

*this number does not include pods in the kube-system and DaemonSet
namespaces

The results of this test scenario will produce two types of
availability levels, which are the availability level in the peak
hour range and the overall availability level. Availability in the
peak hour range is obtained when testing is carried out in the
peak hour range, while the overall availability is carried out in
both the peak hour range and the outside peak range. All test
cases in Table I, use the peak hour range from 03.00 to 23.00.

2) Result
Table II, shows the test results according to the variation of

test cases in Table I. The results of the 1st day are the test
results obtained in the first 24 hours after the test starts, while
the results of the 2nd day are the test results obtained at the
duration of 2 x 24 hours after the test starts. Similarly, the
results of the 3rd day are the test results obtained at a duration
of 3 x 24 hours after the test started.

TABLE II. AVAILABILITY TEST RESULTS

Day

Availability (%)

A-1 A-2 A-3 A-4

Peak

Hour
All

Peak

Hour
All

Peak

Hour
All

Peak

Hour
All

1 99.5 100 98.5 98.2 99.9 100 99.8 99.7

2 99.1 99.6 98.9 98.7 99.9 100 99.8 99.7

3 98.8 99.1 98.8 98.5 99.9 100 99.8 99.7

In Fig. 4, and Fig. 5, it can be seen that there is an increase
in the availability level of the software system with the PLS
tool installed in the environment. If calculated on the third day,
in the Fig. 4, which shows A-1 and A-2 environments, there
was an increase of 0.0508% in the all hour range and an
increase of 0.629% in the peak hour range from not using PLS
(A-2) to using PLS (A-1). Likewise in the Fig. 5, which shows
A-3 and A-4 environments, there was an increase of 0.116% in
the all hours range and an increase of 0.26% in the peak hours
from not using PLS (A-4) to using PLS (A-3). This proves that
the use of PLS on preemptible instances increases the
availability of the software system.

Fig. 4. Availability Test A-1 vs A-2

Fig. 5. Availability Test A-3 vs A-4

If we look further at the increase in the level of availability
of this software, it is seen that the most significant increase
occurs in the peak hour range. This is because PLS is designed
to avoid downtime during peak hours. This is most clearly seen
in the results of the A-3 test, especially in the peak hour range.
It is seen that the software system is able to maintain its
availability level of up to 100% in the peak hour range.
However, in the A-1 test results, especially in the peak hour
range, it is seen that the software system is only able to
maintain a 100% availability level on the first day. This is
because PLS is only able to overcome the second limitation of

preemptible instances, which is the 24 hour age limitation on
the instance. There are several other limitations of preemptible
instances that may occur which reduce the level of availability
of the software.

Fig. 6. Availability Test A-1 vs A-3

Fig. 7. Availability Test A-2 vs A-4

In addition, it can be seen that the number of pods and
nodes also determines the level of software availability. The
comparison can be seen in Fig. 6, and Fig. 7. In these figures, it
can be seen that the level of availability in a small number of
pods and nodes (environments A-3 and A-4) is higher than the
level of availability in an environment with a higher number of
pods and nodes. This is most likely caused by the pod
scheduling process. In scheduling pod to node, kube-scheduler
will perform two operations, which are filtering and scoring.
The filtering process will produce a set of nodes that meet the
requirements for scheduling pods on that node. Then, nodes
that pass the filtering process will enter the next process, which
is the scoring process. In the scoring process, kube-scheduler
will assign scores to each node based on a certain scoring rules.
The results of this scoring process will be sorted and the node
with the highest rank is used for scheduling the pod.

In the case of a preemptible node pool, the filtering and
scoring process will run as follows. First of all, the kube-
scheduler will get all nodes in the preemptible node pool

except the node that will be terminated (because this node has
been subjected to the unscheduled node process). In the
experiment conducted in this study, there is no specific scoring
algorithm used in the kube-scheduler so it is very likely that the
kube-scheduler will choose nodes randomly from the filtered
set of nodes. This causes the pod to probably move to a node
that is near termination period. This causes a decrease in the
availability level of pods in the preemptible node pool with a
large number of nodes.

In the case of 1 node, as in environments A-3 and A-4, the
kube-scheduler still does not have a scoring algorithm, but the
number of nodes is only 1 so that the kube-scheduler will
always allocate new nodes that are 0 hours old. This causes
pods that have recently moved will not be immediately
terminated because the pod is moving to a newly allocated
node. To overcome this problem, the scoring algorithm in the
kube-scheduler must take into consideration the age of the
nodes. The newly allocated nodes will acquire higher score, so
pods will tend to move to newly allocated nodes.

B. Graceful Shutdown

The purpose of this test is to analyze whether there is a
graceful shutdown period in the software as a result of using
the Preemptible Lifecycle Scheduler tool on preemptible
instances.

1) Scenario
For the graceful shutdown test, this study use tools called

caller and callee. Caller will be installed in the preemptible
node pool. Caller will send an HTTP request to the callee
immediately after the caller is started and immediately after
receiving the SIGTERM. The callee will be responsible for
receiving HTTP requests from the caller and recording the total
requests it has received. This test scenario assumes that if the
software succeeds in carrying out activities after being
terminated, as the caller successfully sends a request shortly
after receiving SIGTERM, then the software successfully
performs a graceful shutdown. The whole process of this
scenario is shown in Fig. 8.

Fig. 8. Graceful Shutdown Test Scenario

Each test case in this test scenario will be carried out for 3
days (3 x 24 hours) with several variations of test cases shown
in Table III. All test cases in Table III, use the peak hour range
from 03.00 to 23.00.

TABLE III. GRACEFUL SHUTDOWN TEST CASES

Test Code Number of Nodes
Number of

Pods*
PLS Existence

G-1 7 198 Exist

G-2 7 198 Not Exist

G-3 1 1 Exist

G-4 1 1 Not Exist

*this number does not include pods in the kube-system and DaemonSet
namespaces

2) Result
Table IV, shows the results of the graceful shutdown test

after 3 days (3 x 24 hours). The percentage of graceful
shutdown in Table IV, is obtained from dividing the number of
successful graceful shutdowns (obtained from the total requests
received by the callee immediately after the caller receives
SIGTERM) to the number of software running (obtained from
the total requests received by the callee when caller starts).

TABLE IV. GRACEFUL SHUTDOWN TEST RESULTS

State
Total Request Received by Callee

G-1 G-2 G-3 G-4

When caller starts 7 5 4 5

When caller receives SIGTERM 4 1 3 0

Graceful Shutdown (%) 57.143 20 75 0

The results from Table IV, shows that there is an increase
in the percentage of graceful shutdown after using PLS on
preemptible instances. From G-2 to G-1, there is an increase
from 20% without using PLS (G-2) to 57.1429% after using
PLS (G-1). Meanwhile, in an environment with 1 node and 1
pod, there was an increase from 0% without PLS (G-4) to 75%
after using PLS (G-3). This proves that the use of PLS can
increase the chance of graceful shutdown for software systems
running on preemptible instances.

From the results of G-2 and G-4, it can be seen that without
PLS, software running on preemptible instances hardly gets a
chance to perform a graceful shutdown. With PLS, the
software has a better opportunity to gracefully terminate.
However, PLS can only gracefully terminated application that
is terminated by PLS when scheduling the node life cycle
which was carried out to overcome the 24-hour life limit of
preemptible instances.

C. Cost

The purpose of the test is to analyze the cost of using
preemptible instances compared to using on-demand instances
in the Kubernetes GKE cluster. Testing is done by substitution
the node pool with the same specifications that initially used
on-demand instances into preemptible instances. During the

test, daily cost will be recorded for 30 days before and after
substitution.

Fig. 9. Cost Test Result

Fig. 9, shows a graph of the cost per day for 2 months used
in a Kubernetes cluster. From Fig. 9, it can be seen that there
was a significant cost reduction around January 9, 2021. This
reduction was due to substitution of virtual machine used from
on-demand instances to preemptible instances. From December
9, 2020 to January 8, 2021, the total cost needed to run this
Kubernetes cluster is IDR 20,922,607. On the other hand, from
January 9, 2021 to February 8, 2021, the total cost needed to
run this Kubernetes cluster only IDR 9,815,861. The rate of
reduction after using preemptible instances in Kubernetes
clusters is 53.085%. This proves that the use of preemptible
instances can reduce costs on Kubernetes clusters.

V. CONCLUSION

The Preemptible Lifecycle Scheduler tool can increase the
availability of software systems running on preemptible
instances on a Kubernetes cluster up to 0.629% especially
during peak hours. The Preemptible Lifecycle Scheduler also
increases the chance of having graceful shutdown period by
37.1429% to 75% depends on the number of pod and node. By

using preemptible instances instead of on-demand instance in a
Kubernetes cluster, the cost used to run the software can be
decreased by 53.085%. The number of pods and nodes in a
Kubernetes cluster determines the level of availability of the
software systems running on it. The higher the number of pods
and nodes, the lower the availability level. This is because the
scoring algorithm does not consider the age of the node when
scheduling pods.

For future works, a better scoring algorithm on the kube-
scheduler that takes into account the age of the node during the
scoring process can be used. Future research to see the impact
of the number of replicas can also be done to achieve zero
downtime when terminating node.

ACKNOWLEDGMENT

The author would like to thank God the Almighty for grace
and blessings. The author would also thank Dr. Ir. Rinaldi,
M.T. for valuable and constructive guidance and teaching
during the whole process of this research. The author also
express gratitude to family and friends for their support in the
making of this paper

REFERENCES

[1] Martin, Robert C. (2003). Agile Software Development, Principles,
Patterns, and Practices. Prentice Hall. p. 95. ISBN 978-0135974445.

[2] Newman, S. (2015). Building Microservices: Designing Fine-Grained
Systems. O'Reilly Media, Inc. ISBN: 1491950315, 9781491950319.

[3] Venugopal, S. (2020). The Story of Netflix and Microservices.
GeeksForGeeeks, https://www.geeksforgeeks.org/the-story-of-netflix-
and-microservices/, accessed Desember 4, 2020.

[4] Beda, J., Hightower, K., & Burns, B. (2017). Kubernetes: Up and
Running. O'Reilly Media, Inc. ISBN: 9781491935675.

[5] Veena, K., Chaturvedi, A., & Gupta, C.P. (2017). Cost Optimization
over Amazon EC2 Spot Instances-Research Challenges.

[6] Costa, B., Reis, M., Araújo, A., & Solis, P. (2018). Performance and
Cost Analysis Between On-Demand and Preemptive Virtual Machines.
In Proceedings of the 8th International Conference on Cloud Computing
and Services Science - Volume 1: CLOSER, ISBN 978-989-758-295-0,
pages 169-178. DOI: 10.5220/0006709001690178.

[7] Kubernetes. (2021). Kubernetes Documentation,
https://Kubernetes.io/docs, accessed April 28, 2021.

