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Abstract—Sports assistant devices in daily life have often 
emerged, one of which is the push-up tracking assistant tool. There 
are already several types of such devices, such as: 1) sensor-based 
push-up counters with computers; 2) motion differentiation 
devices for push-up and non-push-up based on multisensor 
smartphones without cameras; and 3) camera and computer-
based push-up counters. From the previous devices, there is still 
room for improvement in terms of accuracy and portability. One 
alternative solution that can be used is the development of a 
computer vision-based smartphone application. The application 
development method follows the Waterfall method, and the 
implementation is carried out gradually without repetition. In this 
application, the Mediapipe Pose library is used for human pose 
detection, which provides 33 body points from the smartphone 
camera. For the classification of push-up body poses, the K-NN 
algorithm is used, which compares body poses directly and 
classifies them as upper or lower push-up movements. A total of 
301 datasets were used, consisting of 246 CSV files and 55 images, 
with a total of 173 upper push-up movements and 128 lower push-
up movements. The movement model was successfully created 
from the previous datasets by labeling and normalization, 
including translation, resizing, and rotation. The application was 
successfully created using Android Studio, and it includes: the 
previous model; camera usage program and connectivity with 
Mediapipe Pose; and push-up counter program, including the 
classification of push-up movement poses using the K-NN 
algorithm. The performance of the previous model was tested with 
176 test cases, and an accuracy of 84.7% was achieved. 

Keywords—push up counter; computer vision; mediapipe pose; 
K-NN algorithm; Android application 

I.  INTRODUCTION  
Hypertrophy is the growth of muscle cells in humans [1]. 

This can be achieved specifically in human skeletal muscles by 
engaging in sports activities with hypertrophic stimuli. 
According to Schoenfeld, one way to activate such stimuli is by 
providing mechanical tension, which is resistance force applied 
to a muscle to make it work [2]. One way to achieve this is by 
performing exercises such as sit-ups, which provide mechanical 
tension to the abdominal muscles, pull-ups that primarily target 
the back muscles, and push-ups for the chest muscles. Engaging 
in compound movements like squats and deadlifts can also 
promote hypertrophy in multiple muscle groups simultaneously. 

However, it can be quite challenging to achieve hypertrophy, 
and even more difficult to adopt regular physical activity as a 
healthy lifestyle. Yet, with adequate muscle growth, individuals 
can avoid sarcopenia, a condition that leads to muscle mass and 
function loss, resulting in reduced body endurance. This disease 
is quite common in the Indonesian population. A study titled 
"Sarcopenia and Frailty Profile in the Elderly Community of 
Surabaya: A Descriptive Study," conducted with 308 subjects 
aged 60-100 years, showed a prevalence rate of 41.8% for 
sarcopenia [3]. 

Therefore, there is a need for assistance in helping 
individuals increase their muscle mass. Some measures have 
already been taken in modern times, such as workout tracking 
devices that can help maximize the effectiveness of one's 
exercise routine. 

Wearable technology, including fitness trackers, has become 
the highest trend in a global survey with 3,037 respondents [4]. 
Sports trackers have gained popularity among the general 
population, especially for simple exercises like push-ups. There 
have been numerous studies resulting in various push-up 
counting devices, ranging from simple microcontroller-based 
systems with ultrasonic sensors connected to computers [5]; 
accelerometer and gyroscope sensors on mobile phones to detect 
hand movements [6]; to using computer vision to translate the 
human body into a model of points and lines and count push-up 
movements by joint angles through a computer [7]. 

However, the aforementioned devices have some 
drawbacks, including less accurate counting of proper push-up 
movements and complex accessibility due to the requirement of 
using a computer for push-up tracking activities. The previous 
approaches are challenging to implement in daily human life. 

Currently, there is a rapid increase in the trend of using 
smartphones for daily activities. This offers new possibilities for 
creating better push-up counting solutions. Smartphones can 
capture push-up movements with the camera and model the 
human body as points and lines, similar to the previous computer 
vision approach. To improve accuracy, Artificial Intelligence 
can also be used for push-up movement counting, considering 
that AI projects, references, and libraries are widely available, 
including in Android applications. 



II. LITERATURE REVIEW 

A. Musculoskeletal Hypertrophy 
According to Guyton and Hall, hypertrophy is the growth of 

muscle cells in humans [1]. Musculoskeletal hypertrophy 
specifically refers to the growth of skeletal muscle cells, which 
are the muscles responsible for moving the human bones, 
excluding the cardiac muscle in the heart and smooth muscles in 
other organs of the body. 

1) Stimulus Musculoskeletal Hypertrophy 
According to Schoenfeld, hypertrophy stimulus refers to 

the increase in muscle protein synthesis through specific 
activities performed by the skeletal muscles [2]. This 
stimulus encompasses several factors, including mechanical 
tension. Beardsley states that mechanical tension is a force 
that provides resistance to the muscles, requiring them to 
perform work [8]. 

B. Artificial Intelligence 
Artificial Intelligence, or AI, is a mechanical simulation 

system designed to gather knowledge and information, process 
it using pre-existing intelligence (such as organizing and 
interpreting), and disseminate actionable intelligent information 
[9]. When developing AI programs, there are numerous 
algorithms that can be applied, including artificial neural 
networks, Naive Bayes, and K-nearest neighbors. These 
algorithms serve as tools to enable AI systems to learn from data, 
make predictions, and perform intelligent tasks. 

1) Algoritma K-Nearest Neighbor 
The K-Nearest Neighbors (K-NN) algorithm is a 

parameter-free supervised learning method used for 
classification and regression tasks [10]. In the K-NN 
classification algorithm, the output is the class or label of a 
given data point, while in the K-NN regression algorithm, 
the output is a property, attribute, or feature of an object.  

In K-NN classification, when a new data point is to be 
classified, the algorithm looks for the K nearest data points 
(neighbors) in the training set based on a similarity measure 
(such as Euclidean distance) and assigns the majority class 
label among those neighbors to the new data point.  

In K-NN regression, the algorithm finds the K nearest 
neighbors and predicts the output value for the new data 
point by taking the average (or weighted average) of the 
output values of those neighbors. 

Both K-NN classification and regression algorithms are 
based on the idea that similar data points tend to have similar 
output values, and they rely on the proximity of data points 
in the feature space to make predictions. 

C. Computer Vision 
Computer Vision is the discipline concerned with how 

computers can gain a high-level understanding of images or 
videos [11]. It encompasses various tasks, including: 

 

1. Image Formation: Understanding the process of image 
creation, including camera models, optics, and image 
formation principles. 

2. Image Processing: Applying techniques to enhance, 
analyze, and manipulate images, such as filtering, noise 
reduction, and image restoration. 

3. Model Fitting and Optimization: Fitting models to image 
data and optimizing parameters to align models with 
observed image features. 

4. Deep Learning: Utilizing deep neural networks to learn 
and extract meaningful features from images, enabling tasks 
such as object recognition and segmentation. 

5. Image Recognition: Identifying and categorizing objects 
or patterns within images using machine learning and pattern 
recognition techniques. 

6. Feature Detection and Matching: Locating distinctive 
image features and matching them across different images 
for tasks like object tracking and image registration. 

7. Image Alignment and Stitching: Aligning multiple images 
to create a seamless panoramic or composite image. 

8. Motion Estimation: Analyzing temporal image sequences 
to estimate motion and track object trajectories. 

9. Computational Photography: Combining computer vision 
and imaging techniques to enhance image quality, achieve 
special effects, or enable novel image capturing methods. 

10. Structure from Motion and SLAM: Reconstructing 3D 
structure and camera poses from 2D image sequences or 
performing simultaneous localization and mapping for 
navigation tasks. 

11. Depth Estimation: Inferring depth information from 2D 
images, often using stereo vision or depth estimation 
algorithms. 

12. 3D Reconstruction: Building a three-dimensional 
representation of objects or scenes from multiple images or 
point cloud data. 

13. Image-based Rendering: Generating novel views or 
synthesizing new images using existing image data. 

These tasks collectively form the field of Computer Vision, 
which aims to enable machines to understand and interpret 
visual information like humans do [12]. When developing AI 
programs, there are numerous algorithms that can be applied, 
including artificial neural networks, Naive Bayes, and K-nearest 
neighbors [9]. These algorithms serve as tools to enable AI 
systems to learn from data, make predictions, and perform 
intelligent tasks. 

1) Image Recognition  
Image Recognition is the process of identifying an 

image or video and detecting objects or features effectively 
using artificial intelligence [13]. It encompasses various 
tasks, including facial recognition and body pose 
recognition.  



Facial recognition involves analyzing and identifying 
specific facial features to match them with known identities, 
enabling applications such as biometric authentication, 
surveillance systems, and social media tagging. It utilizes 
algorithms that extract facial landmarks, analyze facial 
expressions, and compare them against a database of known 
faces. 

Body pose recognition focuses on understanding and 
estimating the positions and orientations of human body 
joints and limbs. It enables applications such as gesture 
recognition, action recognition, and human-computer 
interaction. Body pose recognition algorithms analyze the 
spatial relationships between body joints, track movement 
patterns, and classify different poses or actions. 

Image Recognition techniques leverage machine 
learning, deep learning, and computer vision algorithms to 
process and analyze visual data, allowing machines to 
recognize and interpret images and videos with a level of 
intelligence similar to human perception. 

 
2) Face Detection 

Face Detection is an advanced technology derived from 
image recognition that can locate and extract facial areas 
from the background of an image [14]. The core process of 
face detection is determining whether a face is present or not 
in any given image. If one or more faces are detected, the 
locations of each face are extracted. 

In face detection, there are two broad approaches: 
feature-based approach and image-based approach. 

1. Feature-based Approach: This approach involves 
defining specific facial features or patterns and designing 
algorithms to detect those features. Examples of facial 
features include eyes, nose, mouth, and facial contours. The 
algorithm searches for these features in the image and 
analyzes their spatial relationships to identify and locate 
faces. Techniques such as Haar cascades and Viola-Jones 
algorithm are commonly used in feature-based face 
detection. 

2. Image-based Approach: In this approach, face 
detection algorithms analyze the overall characteristics and 
patterns of the image to determine the presence of faces. The 
algorithms typically leverage machine learning techniques, 
such as convolutional neural networks (CNN), to learn and 
recognize patterns associated with faces. These models are 
trained on a large dataset of labeled images, enabling them 
to generalize and detect faces accurately in various 
conditions. 

Both approaches have their strengths and limitations. 
Feature-based approaches tend to be faster and more 
efficient but may rely on predefined features and struggle 
with variations in pose, lighting, and occlusions. Image-
based approaches, on the other hand, can handle more 
complex scenarios but may require more computational 
resources and training data. 

Face detection is a fundamental step in many face-
related applications, including facial recognition, emotion 
detection, age estimation, and face tracking. It serves as a 

crucial building block for higher-level face analysis and 
understanding. 

 
3) Pose Estimation 

Pose in Computer Vision refers to the visual 
representation of the position and orientation of an object, 
typically in three dimensions [15]. Pose Estimation is the 
process of estimating the pose of an object, usually in three 
dimensions. One of the key applications of pose estimation 
is estimating the pose of a human. 

Pose estimation for humans involves analyzing an image 
or video to determine the positions and orientations of 
various body joints, such as the head, shoulders, elbows, 
wrists, hips, knees, and ankles. The goal is to understand the 
spatial configuration of the human body and accurately 
estimate the pose. 

There are different approaches to pose estimation, 
including model-based and data-driven methods. Model-
based methods utilize predefined models or templates of the 
human body and match them to the image or video data. 
These methods often rely on prior knowledge of the human 
body's anatomical structure and joint relationships. 

Data-driven methods, on the other hand, leverage 
machine learning and deep learning techniques to learn the 
correlations between image features and human poses from 
a large dataset. These methods train models to directly 
predict the joint positions or orientations given an input 
image or video. They can handle more complex poses and 
variations but require significant amounts of annotated 
training data. 

Pose estimation has numerous applications, including 
action recognition, motion capture, human-computer 
interaction, augmented reality, and robotics. It plays a 
crucial role in understanding human movements and 
behaviors from visual data, enabling a wide range of 
applications in various fields.  

D. Pose Estimation Library 
Mediapipe Pose is a technology developed by Google that 

combines machine learning and computer vision to model 
human body pose estimation as a set of 3D skeletal points. It is 
based on the BlazePose library developed by Valentin 
Bazarevsky. BlazePose is a fast neural network architecture that 
can produce 33 key body landmarks for a human and run at 30 
frames per second on devices like the Pixel 2 smartphone [16]. 

Here is a detailed explanation of how the Mediapipe Pose 
library works: 

1. Input: The library takes an input image or video frame as 
input, typically obtained from a camera or stored media. 

2. Preprocessing: The input image or frame is preprocessed 
to enhance its quality and normalize the data. This may involve 
resizing, cropping, or applying filters to improve the accuracy of 
pose estimation. 

3. Pose Estimation: The preprocessed image is fed into the 
BlazePose neural network architecture. The network processes 
the image and produces a set of 2D or 3D keypoints representing 



the detected body landmarks. These keypoints correspond to 
important body joints such as the head, shoulders, elbows, 
wrists, hips, knees, and ankles. 

4. Keypoint Refinement: The detected keypoints are refined 
and adjusted to improve their accuracy and consistency. This 
step helps to reduce any noise or errors introduced during the 
pose estimation process. 

5. Pose Representation: The refined keypoints are used to 
construct a pose representation, typically as a set of lines or 
skeletal connections between the body landmarks. This 
representation provides a visual depiction of the estimated 
human body pose. 

 
Figure I. Pose Landmark List 

6. Output: The final output of the Mediapipe Pose library 
includes the pose representation, which can be used for various 
applications such as motion tracking, gesture recognition, 
augmented reality, and more. 

The Mediapipe Pose library combines advanced machine 
learning techniques, efficient neural network architectures, and 
real-time processing capabilities to provide accurate and robust 
human pose estimation. It offers developers a powerful tool for 
integrating pose estimation capabilities into their applications 
and systems. 

E. Android Application Development 
Android is a mobile operating system based on a modified 

version of the Linux operating system. The architecture of the 
Android operating system consists of five main components: the 
Linux kernel, libraries, Android runtime, application 
framework, and applications. In Android app development, 
developers can use either the Java programming language or the 
Kotlin programming language [17]. 

Here's a breakdown of the different components in the 
Android architecture: 

1. Linux Kernel: The Linux kernel forms the core of the 
Android operating system. It provides low-level functionalities 
such as device drivers, memory management, process 
management, and security. 

2. Libraries: Android includes a set of libraries that provide 
various capabilities and functionalities to developers. These 
libraries cover a wide range of areas, including graphics 

rendering, database access, networking, multimedia, and more. 
Developers can leverage these libraries to build robust and 
feature-rich applications. 

3. Android Runtime (ART): The Android runtime is the 
engine responsible for executing and managing Android 
applications. It includes the core libraries and the Dalvik Virtual 
Machine (DVM) or, more recently, the Android Runtime 
(ART), which performs just-in-time (JIT) compilation and 
optimization of the application bytecode. 

4. Application Framework: The application framework 
provides a set of reusable components and services that simplify 
the development of Android applications. It includes high-level 
APIs for activities, content providers, broadcast receivers, and 
services. The framework also offers functionalities such as 
resource management, user interface controls, and inter-process 
communication. 

5. Applications: This layer comprises the actual applications 
that users interact with on their Android devices. These can be 
pre-installed system apps or third-party apps downloaded from 
the Google Play Store or other sources. Applications can range 
from simple utility apps to complex games and productivity 
tools. 

Developers have the flexibility to choose between Java and 
Kotlin as the programming languages for Android app 
development. Both languages are officially supported by Google 
and provide extensive libraries, tools, and frameworks for 
building Android applications. 

Overall, the Android architecture provides a robust and 
flexible platform for developers to create a wide variety of 
applications for mobile devices. 

III. PROPOSED SOLUTION 
Solution is built with training process, Android application 

development, and lastly the push up counter algorithm.  

A. Training Process 
The training process of the model consists of four phases: 1) 

Data labeling, 2) Image-to-pose conversion, 3) Normalization, 
and 4) Attribute adjustment. 

1) Data Labeling 

In this phase, the acquired dataset is labeled. For CSV file 
type datasets obtained from the internet, the data already has 
labels and can directly proceed to the next phase. However, for 
image data, labeling is performed by separating and categorizing 
the images into specific folders within the program's code scope, 
namely "pushups_up" and "pushups_down." 

2) Image-to-Pose Conversion 

This phase is applied to image data only. The images are 
processed using the Mediapipe Pose library's method, 
"mp.solutions.pose.process(image)," which translates the image 
into 33 points or poses. 

 

 



3) Normalization 

Pose normalization involves several processes, including 
translation, scaling, and rotation. Translation shifts all 33 points 
of the pose so that the right hip point is located at coordinates (0, 
0, 0). Scaling adjusts the pose's size by dividing all points by the 
distance between the left and right hips. Rotation performs a 3D 
rotation on the pose, ensuring that the left hip point has 
coordinates (X positive, 0, 0), and the left shoulder point has 
coordinates (X positive, 0, Z positive). 

4) Attribute Adjustment 

In this phase, attribute adjustment is performed to assign 
specific attributes to each data instance. The attributes are 
arranged in the following order: pose_id, label, followed by the 
33 pose points.  

B. Android Application Development 

 
Figure III. Flowchart of Android Application Module 

In the Android Application module, there is a flow that 
explains the process of executing the program in the Android 
Application module. Android Application Module Flow 
Diagram. The flow of the Android Application module starts 
with the opening of MainActivity, then the 
bindAllCameraUseCases method is executed. Next, the user will 
provide input in the form of a single push-up movement. The 
ImageProcessor will execute several functions within the Push-
Up Counter Module, and the output provided is a 
List<PoseGraphic>. The GraphicOverlay will take the previous 
output and call the add(PoseGraphic) method to draw it on the 
phone screen using onDraw(Canvas). The Android App will 
have this particular screen inside it. 

 
Figure IIIII. Screnshot of the Push Up Detector 

C. Push Up Counter Algorithm 

 
Figure IVII. Flowchar of Push Up Counter Module 

The flow of the Push-Up Counter module is explained in 
Figure IV.4. The flow starts with the PoseClassifierProcessor 
class executing loadPoseSamples with the model created in the 
Data Set & Model Module. Then, input is provided in the form 
of a single push-up movement. The image is received by the 
PoseDetectorProcessor and the detectInImage method is 
executed, which outputs a Pose. The PoseClassifierProcessor 
executes getPoseResult with the previous Pose as input. The 
PoseClassifier inside the PoseClassifierProcessor will then 
execute the classify method, which classifies whether the given 
Pose represents an upward push-up, a downward push-up, or a 
non-push-up movement using the K-NN algorithm. The result 
of the previous process is a ClassificationResult, and the output 
is used in the RepetitionCounter to execute the 
addClassificationResult method. 

In this process, it first checks if a push-up movement is being 
performed or if the downward push-up movement has already 
been completed. If it has, it checks the confidence of the 
previous result against the exit threshold. If the confidence is 
higher, the numRepeats variable increases, indicating that an 
upward push-up movement has been completed. If the upward 
push-up movement has not been performed, it checks the 
confidence of the ClassificationResult against the entry 
threshold. If the confidence is higher, it means that a downward 
push-up movement has been completed. If none of the previous 
conditions are met, it means that a non-push-up movement has 
been performed. 

If the upward or downward push-up movement is classified 
based on the previous conditional process, an integer value 
representing the number of push-up repetitions is generated. 



This number is converted to a string in the getPoseResult 
method. The string output of the previous process, 
lastRepResult, is passed from the PoseDetectorProcessor class 
to the GraphicOverlay, where it is drawn on the phone screen. 
contribute to the training process, enabling the model to learn 
and make predictions based on the labeled and normalized pose 
data. 

IV. TESTING AND EVALUATION 
Testing is conducted with the aim of obtaining accuracy of 

the push-up counter. The accuracy is calculated using the metric 
of incremental push-up count. 

The testing process involves evaluating the system using a 
set of push-up movements with known accurate repetition 
counts. During the testing, the user performs push-up 
movements that are detected and counted by the system. The 
system's count is then compared to the actual count to determine 
the accuracy. The metric of incremental push-up count measures 
how accurately the system tracks the increase in the number of 
push-up repetitions performed by the user. 

A. Test Case 
The testing cases will consist of two types: Type A, 

involving real human users performing push-up movements, and 
Type B, involving push-up movements performed in videos. For 
each type, 10 test cases will be conducted. Each test case will 
include five push-up movements and five non-push-up 
movements. Examples of non-push-up movements include 
performing squats, performing push-ups with one leg raised, 
standing and moving the arms forward and backward like a 
push-up motion, and others. By creating two types of testing 
cases, the number of test cases can be increased, resulting in a 
total of 200 push-up movements for testing. 

B. Testing Scenario 
The testing is conducted with the camera on the phone 

positioned diagonally towards the side of the human body, 
capturing the head to the feet, with the phone oriented vertically. 
This setup aims to achieve an optimal condition for push-up 
calculations. The optimal condition is when the entire face to 
feet of the human body is visible on the phone's screen. This 
ensures that there are no assumptions in the translation of the 
image into Pose by the Mediapipe Pose library. 

In type A testing, it starts with the user installing the 
PushUpDetector Android application APK file on their 
smartphone. The user places the smartphone on a wall or any 
other stable surface facing them (using either the rear or front 
camera). Then, the user opens the PushUpDetector application. 
Next, the user performs five push-up movements and five non-
push-up movements. 

In type B testing, it is conducted independently. It begins 
with the installation of the PushUpDetector Android application 
APK file on a smartphone. The smartphone is then directed 
towards another device. On the other device, a video is played 
demonstrating five push-up movements. Then, another video is 
played demonstrating five non-push-up movements. This type B 
testing is performed 10 times independently. 

C. Testing Result 
In Table I, the results of type A test cases are described. 

There were 7 different users who performed the test with 5-6 
push-up movements and 5-10 non-push-up movements. 
Therefore, there were a total of 76 type A test cases. The test 
results were recorded using the Xrecorder application and 
uploaded to Google Drive on the following page: 

https://drive.google.com/drive/folders/1X0e0B5Wqb8C4G
3V74q2iAzXuIQcg2t4 5?usp=share_linkz. 

TABLE  I.   TESTING RESULT OF TYPE A  

No. 
Push Up 
Counted 
Correctly 

Non-Push 
Up Counted 

Push Up Not 
Counted 

Non Push 
Up not 

Counted 
1 5 0 0 10 

2 5 0 0 5 

3 5 0 0 5 

4 5 0 0 5 

5 5 0 0 5 

6 5 0 0 5 

7 3 0 3 5 

 

In Table II, the results of type B test cases are described. It 
provides the results of the type B test cases, which include a total 
of 50 push-up movements and 50 non-push-up movements. 
Therefore, there are a total of 100 test cases. The test results were 
recorded using the Xrecorder application and uploaded to 
Google Drive on the following page: 

https://drive.google.com/drive/folders/15E5JPQ0duwdC5tjOe7
_m7G4juRQRRC Hx?usp=share_link.” 

TABLE  II.   TESTING RESULT OF TYPE B 

Push Up 
Counted 
Correctly 

Non-Push 
Up Counted 

Push Up Not 
Counted 

Non Push 
Up not 

Counted 
48 22 2 28 

 

V. CONCLUSION AND FUTURE WORKS 

A. Conclusion 
1. The accurate calculation of push-up movements from a 

video utilizes Computer Vision by detecting human body poses 
and classifying them using a human body pose model during the 
upward and downward phases of a push-up. When a pose is 
classified as a push-up downward phase and the subsequent pose 
is classified as a push-up upward phase, it counts as one 
repetition. The push-up movement classification is performed 
using the K-NN algorithm. 

2. Creating a portable and computationally lightweight 
solution for Android devices involves developing an Android 
application that can quickly detect human body poses using the 



Mediapipe Pose library. To ensure lightweight push-up 
calculation, the model is first trained on a computer system. 

3. A total of 301 datasets were obtained, consisting of 55 
images and 246 CSV files. Among them, there were 173 datasets 
of upward phase push-up movements and 128 datasets of 
downward phase push-up movements. 

4. The model's performance was tested with 176 cases, 
resulting in an accuracy of 84.7%. 

B. Future Works 
For future research, the following suggestions can be 

implemented: 

1. Provide feedback and temporarily pause the push-up 
calculation process when the body tilt angle is not 45 degrees 
and the body position is not in the optimal state (ensuring that 
the face, body, hands, and feet are fully visible on the screen). 

2. When there are errors in push-up movements, provide 
detailed information about the specific mistakes made and the 
correct form of the movement. 

3. Only utilize relevant keypoints in the push-up movement 
calculation instead of using all 33 keypoints. Some keypoints, 
such as the nose, may not be relevant to the push-up movement. 
By focusing on relevant keypoints, it is expected to improve the 
accuracy of the calculation. 

These suggestions aim to enhance the accuracy and usability 
of the push-up tracking system. 
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