
The Development of Push Up Counter Android
Application with Computer Vision

Renaldi Arlin
School of Electrical Engineering and Informatics

Bandung Institute of Technology
Bandung, Indonesia

renaldi.linar@gmail.com

Rinaldi Munir
School of Electrical Engineering and Informatics

Bandung Institute of Technology
Bandung, Indonesia

rinaldi@staff.stei.itb.ac.id

Abstract—Sports assistant devices in daily life have often
emerged, one of which is the push-up tracking assistant tool. There
are already several types of such devices, such as: 1) sensor-based
push-up counters with computers; 2) motion differentiation
devices for push-up and non-push-up based on multisensor
smartphones without cameras; and 3) camera and computer-
based push-up counters. From the previous devices, there is still
room for improvement in terms of accuracy and portability. One
alternative solution that can be used is the development of a
computer vision-based smartphone application. The application
development method follows the Waterfall method, and the
implementation is carried out gradually without repetition. In this
application, the Mediapipe Pose library is used for human pose
detection, which provides 33 body points from the smartphone
camera. For the classification of push-up body poses, the K-NN
algorithm is used, which compares body poses directly and
classifies them as upper or lower push-up movements. A total of
301 datasets were used, consisting of 246 CSV files and 55 images,
with a total of 173 upper push-up movements and 128 lower push-
up movements. The movement model was successfully created
from the previous datasets by labeling and normalization,
including translation, resizing, and rotation. The application was
successfully created using Android Studio, and it includes: the
previous model; camera usage program and connectivity with
Mediapipe Pose; and push-up counter program, including the
classification of push-up movement poses using the K-NN
algorithm. The performance of the previous model was tested with
176 test cases, and an accuracy of 84.7% was achieved.

Keywords—push up counter; computer vision; mediapipe pose;
K-NN algorithm; Android application

I. INTRODUCTION
Hypertrophy is the growth of muscle cells in humans [1].

This can be achieved specifically in human skeletal muscles by
engaging in sports activities with hypertrophic stimuli.
According to Schoenfeld, one way to activate such stimuli is by
providing mechanical tension, which is resistance force applied
to a muscle to make it work [2]. One way to achieve this is by
performing exercises such as sit-ups, which provide mechanical
tension to the abdominal muscles, pull-ups that primarily target
the back muscles, and push-ups for the chest muscles. Engaging
in compound movements like squats and deadlifts can also
promote hypertrophy in multiple muscle groups simultaneously.

However, it can be quite challenging to achieve hypertrophy,
and even more difficult to adopt regular physical activity as a
healthy lifestyle. Yet, with adequate muscle growth, individuals
can avoid sarcopenia, a condition that leads to muscle mass and
function loss, resulting in reduced body endurance. This disease
is quite common in the Indonesian population. A study titled
"Sarcopenia and Frailty Profile in the Elderly Community of
Surabaya: A Descriptive Study," conducted with 308 subjects
aged 60-100 years, showed a prevalence rate of 41.8% for
sarcopenia [3].

Therefore, there is a need for assistance in helping
individuals increase their muscle mass. Some measures have
already been taken in modern times, such as workout tracking
devices that can help maximize the effectiveness of one's
exercise routine.

Wearable technology, including fitness trackers, has become
the highest trend in a global survey with 3,037 respondents [4].
Sports trackers have gained popularity among the general
population, especially for simple exercises like push-ups. There
have been numerous studies resulting in various push-up
counting devices, ranging from simple microcontroller-based
systems with ultrasonic sensors connected to computers [5];
accelerometer and gyroscope sensors on mobile phones to detect
hand movements [6]; to using computer vision to translate the
human body into a model of points and lines and count push-up
movements by joint angles through a computer [7].

However, the aforementioned devices have some
drawbacks, including less accurate counting of proper push-up
movements and complex accessibility due to the requirement of
using a computer for push-up tracking activities. The previous
approaches are challenging to implement in daily human life.

Currently, there is a rapid increase in the trend of using
smartphones for daily activities. This offers new possibilities for
creating better push-up counting solutions. Smartphones can
capture push-up movements with the camera and model the
human body as points and lines, similar to the previous computer
vision approach. To improve accuracy, Artificial Intelligence
can also be used for push-up movement counting, considering
that AI projects, references, and libraries are widely available,
including in Android applications.

II. LITERATURE REVIEW

A. Musculoskeletal Hypertrophy
According to Guyton and Hall, hypertrophy is the growth of

muscle cells in humans [1]. Musculoskeletal hypertrophy
specifically refers to the growth of skeletal muscle cells, which
are the muscles responsible for moving the human bones,
excluding the cardiac muscle in the heart and smooth muscles in
other organs of the body.

1) Stimulus Musculoskeletal Hypertrophy
According to Schoenfeld, hypertrophy stimulus refers to

the increase in muscle protein synthesis through specific
activities performed by the skeletal muscles [2]. This
stimulus encompasses several factors, including mechanical
tension. Beardsley states that mechanical tension is a force
that provides resistance to the muscles, requiring them to
perform work [8].

B. Artificial Intelligence
Artificial Intelligence, or AI, is a mechanical simulation

system designed to gather knowledge and information, process
it using pre-existing intelligence (such as organizing and
interpreting), and disseminate actionable intelligent information
[9]. When developing AI programs, there are numerous
algorithms that can be applied, including artificial neural
networks, Naive Bayes, and K-nearest neighbors. These
algorithms serve as tools to enable AI systems to learn from data,
make predictions, and perform intelligent tasks.

1) Algoritma K-Nearest Neighbor
The K-Nearest Neighbors (K-NN) algorithm is a

parameter-free supervised learning method used for
classification and regression tasks [10]. In the K-NN
classification algorithm, the output is the class or label of a
given data point, while in the K-NN regression algorithm,
the output is a property, attribute, or feature of an object.

In K-NN classification, when a new data point is to be
classified, the algorithm looks for the K nearest data points
(neighbors) in the training set based on a similarity measure
(such as Euclidean distance) and assigns the majority class
label among those neighbors to the new data point.

In K-NN regression, the algorithm finds the K nearest
neighbors and predicts the output value for the new data
point by taking the average (or weighted average) of the
output values of those neighbors.

Both K-NN classification and regression algorithms are
based on the idea that similar data points tend to have similar
output values, and they rely on the proximity of data points
in the feature space to make predictions.

C. Computer Vision
Computer Vision is the discipline concerned with how

computers can gain a high-level understanding of images or
videos [11]. It encompasses various tasks, including:

1. Image Formation: Understanding the process of image
creation, including camera models, optics, and image
formation principles.

2. Image Processing: Applying techniques to enhance,
analyze, and manipulate images, such as filtering, noise
reduction, and image restoration.

3. Model Fitting and Optimization: Fitting models to image
data and optimizing parameters to align models with
observed image features.

4. Deep Learning: Utilizing deep neural networks to learn
and extract meaningful features from images, enabling tasks
such as object recognition and segmentation.

5. Image Recognition: Identifying and categorizing objects
or patterns within images using machine learning and pattern
recognition techniques.

6. Feature Detection and Matching: Locating distinctive
image features and matching them across different images
for tasks like object tracking and image registration.

7. Image Alignment and Stitching: Aligning multiple images
to create a seamless panoramic or composite image.

8. Motion Estimation: Analyzing temporal image sequences
to estimate motion and track object trajectories.

9. Computational Photography: Combining computer vision
and imaging techniques to enhance image quality, achieve
special effects, or enable novel image capturing methods.

10. Structure from Motion and SLAM: Reconstructing 3D
structure and camera poses from 2D image sequences or
performing simultaneous localization and mapping for
navigation tasks.

11. Depth Estimation: Inferring depth information from 2D
images, often using stereo vision or depth estimation
algorithms.

12. 3D Reconstruction: Building a three-dimensional
representation of objects or scenes from multiple images or
point cloud data.

13. Image-based Rendering: Generating novel views or
synthesizing new images using existing image data.

These tasks collectively form the field of Computer Vision,
which aims to enable machines to understand and interpret
visual information like humans do [12]. When developing AI
programs, there are numerous algorithms that can be applied,
including artificial neural networks, Naive Bayes, and K-nearest
neighbors [9]. These algorithms serve as tools to enable AI
systems to learn from data, make predictions, and perform
intelligent tasks.

1) Image Recognition
Image Recognition is the process of identifying an

image or video and detecting objects or features effectively
using artificial intelligence [13]. It encompasses various
tasks, including facial recognition and body pose
recognition.

Facial recognition involves analyzing and identifying
specific facial features to match them with known identities,
enabling applications such as biometric authentication,
surveillance systems, and social media tagging. It utilizes
algorithms that extract facial landmarks, analyze facial
expressions, and compare them against a database of known
faces.

Body pose recognition focuses on understanding and
estimating the positions and orientations of human body
joints and limbs. It enables applications such as gesture
recognition, action recognition, and human-computer
interaction. Body pose recognition algorithms analyze the
spatial relationships between body joints, track movement
patterns, and classify different poses or actions.

Image Recognition techniques leverage machine
learning, deep learning, and computer vision algorithms to
process and analyze visual data, allowing machines to
recognize and interpret images and videos with a level of
intelligence similar to human perception.

2) Face Detection

Face Detection is an advanced technology derived from
image recognition that can locate and extract facial areas
from the background of an image [14]. The core process of
face detection is determining whether a face is present or not
in any given image. If one or more faces are detected, the
locations of each face are extracted.

In face detection, there are two broad approaches:
feature-based approach and image-based approach.

1. Feature-based Approach: This approach involves
defining specific facial features or patterns and designing
algorithms to detect those features. Examples of facial
features include eyes, nose, mouth, and facial contours. The
algorithm searches for these features in the image and
analyzes their spatial relationships to identify and locate
faces. Techniques such as Haar cascades and Viola-Jones
algorithm are commonly used in feature-based face
detection.

2. Image-based Approach: In this approach, face
detection algorithms analyze the overall characteristics and
patterns of the image to determine the presence of faces. The
algorithms typically leverage machine learning techniques,
such as convolutional neural networks (CNN), to learn and
recognize patterns associated with faces. These models are
trained on a large dataset of labeled images, enabling them
to generalize and detect faces accurately in various
conditions.

Both approaches have their strengths and limitations.
Feature-based approaches tend to be faster and more
efficient but may rely on predefined features and struggle
with variations in pose, lighting, and occlusions. Image-
based approaches, on the other hand, can handle more
complex scenarios but may require more computational
resources and training data.

Face detection is a fundamental step in many face-
related applications, including facial recognition, emotion
detection, age estimation, and face tracking. It serves as a

crucial building block for higher-level face analysis and
understanding.

3) Pose Estimation

Pose in Computer Vision refers to the visual
representation of the position and orientation of an object,
typically in three dimensions [15]. Pose Estimation is the
process of estimating the pose of an object, usually in three
dimensions. One of the key applications of pose estimation
is estimating the pose of a human.

Pose estimation for humans involves analyzing an image
or video to determine the positions and orientations of
various body joints, such as the head, shoulders, elbows,
wrists, hips, knees, and ankles. The goal is to understand the
spatial configuration of the human body and accurately
estimate the pose.

There are different approaches to pose estimation,
including model-based and data-driven methods. Model-
based methods utilize predefined models or templates of the
human body and match them to the image or video data.
These methods often rely on prior knowledge of the human
body's anatomical structure and joint relationships.

Data-driven methods, on the other hand, leverage
machine learning and deep learning techniques to learn the
correlations between image features and human poses from
a large dataset. These methods train models to directly
predict the joint positions or orientations given an input
image or video. They can handle more complex poses and
variations but require significant amounts of annotated
training data.

Pose estimation has numerous applications, including
action recognition, motion capture, human-computer
interaction, augmented reality, and robotics. It plays a
crucial role in understanding human movements and
behaviors from visual data, enabling a wide range of
applications in various fields.

D. Pose Estimation Library
Mediapipe Pose is a technology developed by Google that

combines machine learning and computer vision to model
human body pose estimation as a set of 3D skeletal points. It is
based on the BlazePose library developed by Valentin
Bazarevsky. BlazePose is a fast neural network architecture that
can produce 33 key body landmarks for a human and run at 30
frames per second on devices like the Pixel 2 smartphone [16].

Here is a detailed explanation of how the Mediapipe Pose
library works:

1. Input: The library takes an input image or video frame as
input, typically obtained from a camera or stored media.

2. Preprocessing: The input image or frame is preprocessed
to enhance its quality and normalize the data. This may involve
resizing, cropping, or applying filters to improve the accuracy of
pose estimation.

3. Pose Estimation: The preprocessed image is fed into the
BlazePose neural network architecture. The network processes
the image and produces a set of 2D or 3D keypoints representing

the detected body landmarks. These keypoints correspond to
important body joints such as the head, shoulders, elbows,
wrists, hips, knees, and ankles.

4. Keypoint Refinement: The detected keypoints are refined
and adjusted to improve their accuracy and consistency. This
step helps to reduce any noise or errors introduced during the
pose estimation process.

5. Pose Representation: The refined keypoints are used to
construct a pose representation, typically as a set of lines or
skeletal connections between the body landmarks. This
representation provides a visual depiction of the estimated
human body pose.

Figure I. Pose Landmark List

6. Output: The final output of the Mediapipe Pose library
includes the pose representation, which can be used for various
applications such as motion tracking, gesture recognition,
augmented reality, and more.

The Mediapipe Pose library combines advanced machine
learning techniques, efficient neural network architectures, and
real-time processing capabilities to provide accurate and robust
human pose estimation. It offers developers a powerful tool for
integrating pose estimation capabilities into their applications
and systems.

E. Android Application Development
Android is a mobile operating system based on a modified

version of the Linux operating system. The architecture of the
Android operating system consists of five main components: the
Linux kernel, libraries, Android runtime, application
framework, and applications. In Android app development,
developers can use either the Java programming language or the
Kotlin programming language [17].

Here's a breakdown of the different components in the
Android architecture:

1. Linux Kernel: The Linux kernel forms the core of the
Android operating system. It provides low-level functionalities
such as device drivers, memory management, process
management, and security.

2. Libraries: Android includes a set of libraries that provide
various capabilities and functionalities to developers. These
libraries cover a wide range of areas, including graphics

rendering, database access, networking, multimedia, and more.
Developers can leverage these libraries to build robust and
feature-rich applications.

3. Android Runtime (ART): The Android runtime is the
engine responsible for executing and managing Android
applications. It includes the core libraries and the Dalvik Virtual
Machine (DVM) or, more recently, the Android Runtime
(ART), which performs just-in-time (JIT) compilation and
optimization of the application bytecode.

4. Application Framework: The application framework
provides a set of reusable components and services that simplify
the development of Android applications. It includes high-level
APIs for activities, content providers, broadcast receivers, and
services. The framework also offers functionalities such as
resource management, user interface controls, and inter-process
communication.

5. Applications: This layer comprises the actual applications
that users interact with on their Android devices. These can be
pre-installed system apps or third-party apps downloaded from
the Google Play Store or other sources. Applications can range
from simple utility apps to complex games and productivity
tools.

Developers have the flexibility to choose between Java and
Kotlin as the programming languages for Android app
development. Both languages are officially supported by Google
and provide extensive libraries, tools, and frameworks for
building Android applications.

Overall, the Android architecture provides a robust and
flexible platform for developers to create a wide variety of
applications for mobile devices.

III. PROPOSED SOLUTION
Solution is built with training process, Android application

development, and lastly the push up counter algorithm.

A. Training Process
The training process of the model consists of four phases: 1)

Data labeling, 2) Image-to-pose conversion, 3) Normalization,
and 4) Attribute adjustment.

1) Data Labeling

In this phase, the acquired dataset is labeled. For CSV file
type datasets obtained from the internet, the data already has
labels and can directly proceed to the next phase. However, for
image data, labeling is performed by separating and categorizing
the images into specific folders within the program's code scope,
namely "pushups_up" and "pushups_down."

2) Image-to-Pose Conversion

This phase is applied to image data only. The images are
processed using the Mediapipe Pose library's method,
"mp.solutions.pose.process(image)," which translates the image
into 33 points or poses.

3) Normalization

Pose normalization involves several processes, including
translation, scaling, and rotation. Translation shifts all 33 points
of the pose so that the right hip point is located at coordinates (0,
0, 0). Scaling adjusts the pose's size by dividing all points by the
distance between the left and right hips. Rotation performs a 3D
rotation on the pose, ensuring that the left hip point has
coordinates (X positive, 0, 0), and the left shoulder point has
coordinates (X positive, 0, Z positive).

4) Attribute Adjustment

In this phase, attribute adjustment is performed to assign
specific attributes to each data instance. The attributes are
arranged in the following order: pose_id, label, followed by the
33 pose points.

B. Android Application Development

Figure III. Flowchart of Android Application Module

In the Android Application module, there is a flow that
explains the process of executing the program in the Android
Application module. Android Application Module Flow
Diagram. The flow of the Android Application module starts
with the opening of MainActivity, then the
bindAllCameraUseCases method is executed. Next, the user will
provide input in the form of a single push-up movement. The
ImageProcessor will execute several functions within the Push-
Up Counter Module, and the output provided is a
List<PoseGraphic>. The GraphicOverlay will take the previous
output and call the add(PoseGraphic) method to draw it on the
phone screen using onDraw(Canvas). The Android App will
have this particular screen inside it.

Figure IIIII. Screnshot of the Push Up Detector

C. Push Up Counter Algorithm

Figure IVII. Flowchar of Push Up Counter Module

The flow of the Push-Up Counter module is explained in
Figure IV.4. The flow starts with the PoseClassifierProcessor
class executing loadPoseSamples with the model created in the
Data Set & Model Module. Then, input is provided in the form
of a single push-up movement. The image is received by the
PoseDetectorProcessor and the detectInImage method is
executed, which outputs a Pose. The PoseClassifierProcessor
executes getPoseResult with the previous Pose as input. The
PoseClassifier inside the PoseClassifierProcessor will then
execute the classify method, which classifies whether the given
Pose represents an upward push-up, a downward push-up, or a
non-push-up movement using the K-NN algorithm. The result
of the previous process is a ClassificationResult, and the output
is used in the RepetitionCounter to execute the
addClassificationResult method.

In this process, it first checks if a push-up movement is being
performed or if the downward push-up movement has already
been completed. If it has, it checks the confidence of the
previous result against the exit threshold. If the confidence is
higher, the numRepeats variable increases, indicating that an
upward push-up movement has been completed. If the upward
push-up movement has not been performed, it checks the
confidence of the ClassificationResult against the entry
threshold. If the confidence is higher, it means that a downward
push-up movement has been completed. If none of the previous
conditions are met, it means that a non-push-up movement has
been performed.

If the upward or downward push-up movement is classified
based on the previous conditional process, an integer value
representing the number of push-up repetitions is generated.

This number is converted to a string in the getPoseResult
method. The string output of the previous process,
lastRepResult, is passed from the PoseDetectorProcessor class
to the GraphicOverlay, where it is drawn on the phone screen.
contribute to the training process, enabling the model to learn
and make predictions based on the labeled and normalized pose
data.

IV. TESTING AND EVALUATION
Testing is conducted with the aim of obtaining accuracy of

the push-up counter. The accuracy is calculated using the metric
of incremental push-up count.

The testing process involves evaluating the system using a
set of push-up movements with known accurate repetition
counts. During the testing, the user performs push-up
movements that are detected and counted by the system. The
system's count is then compared to the actual count to determine
the accuracy. The metric of incremental push-up count measures
how accurately the system tracks the increase in the number of
push-up repetitions performed by the user.

A. Test Case
The testing cases will consist of two types: Type A,

involving real human users performing push-up movements, and
Type B, involving push-up movements performed in videos. For
each type, 10 test cases will be conducted. Each test case will
include five push-up movements and five non-push-up
movements. Examples of non-push-up movements include
performing squats, performing push-ups with one leg raised,
standing and moving the arms forward and backward like a
push-up motion, and others. By creating two types of testing
cases, the number of test cases can be increased, resulting in a
total of 200 push-up movements for testing.

B. Testing Scenario
The testing is conducted with the camera on the phone

positioned diagonally towards the side of the human body,
capturing the head to the feet, with the phone oriented vertically.
This setup aims to achieve an optimal condition for push-up
calculations. The optimal condition is when the entire face to
feet of the human body is visible on the phone's screen. This
ensures that there are no assumptions in the translation of the
image into Pose by the Mediapipe Pose library.

In type A testing, it starts with the user installing the
PushUpDetector Android application APK file on their
smartphone. The user places the smartphone on a wall or any
other stable surface facing them (using either the rear or front
camera). Then, the user opens the PushUpDetector application.
Next, the user performs five push-up movements and five non-
push-up movements.

In type B testing, it is conducted independently. It begins
with the installation of the PushUpDetector Android application
APK file on a smartphone. The smartphone is then directed
towards another device. On the other device, a video is played
demonstrating five push-up movements. Then, another video is
played demonstrating five non-push-up movements. This type B
testing is performed 10 times independently.

C. Testing Result
In Table I, the results of type A test cases are described.

There were 7 different users who performed the test with 5-6
push-up movements and 5-10 non-push-up movements.
Therefore, there were a total of 76 type A test cases. The test
results were recorded using the Xrecorder application and
uploaded to Google Drive on the following page:

https://drive.google.com/drive/folders/1X0e0B5Wqb8C4G
3V74q2iAzXuIQcg2t4 5?usp=share_linkz.

TABLE I. TESTING RESULT OF TYPE A

No.
Push Up
Counted
Correctly

Non-Push
Up Counted

Push Up Not
Counted

Non Push
Up not

Counted
1 5 0 0 10

2 5 0 0 5

3 5 0 0 5

4 5 0 0 5

5 5 0 0 5

6 5 0 0 5

7 3 0 3 5

In Table II, the results of type B test cases are described. It
provides the results of the type B test cases, which include a total
of 50 push-up movements and 50 non-push-up movements.
Therefore, there are a total of 100 test cases. The test results were
recorded using the Xrecorder application and uploaded to
Google Drive on the following page:

https://drive.google.com/drive/folders/15E5JPQ0duwdC5tjOe7
_m7G4juRQRRC Hx?usp=share_link.”

TABLE II. TESTING RESULT OF TYPE B

Push Up
Counted
Correctly

Non-Push
Up Counted

Push Up Not
Counted

Non Push
Up not

Counted
48 22 2 28

V. CONCLUSION AND FUTURE WORKS

A. Conclusion
1. The accurate calculation of push-up movements from a

video utilizes Computer Vision by detecting human body poses
and classifying them using a human body pose model during the
upward and downward phases of a push-up. When a pose is
classified as a push-up downward phase and the subsequent pose
is classified as a push-up upward phase, it counts as one
repetition. The push-up movement classification is performed
using the K-NN algorithm.

2. Creating a portable and computationally lightweight
solution for Android devices involves developing an Android
application that can quickly detect human body poses using the

Mediapipe Pose library. To ensure lightweight push-up
calculation, the model is first trained on a computer system.

3. A total of 301 datasets were obtained, consisting of 55
images and 246 CSV files. Among them, there were 173 datasets
of upward phase push-up movements and 128 datasets of
downward phase push-up movements.

4. The model's performance was tested with 176 cases,
resulting in an accuracy of 84.7%.

B. Future Works
For future research, the following suggestions can be

implemented:

1. Provide feedback and temporarily pause the push-up
calculation process when the body tilt angle is not 45 degrees
and the body position is not in the optimal state (ensuring that
the face, body, hands, and feet are fully visible on the screen).

2. When there are errors in push-up movements, provide
detailed information about the specific mistakes made and the
correct form of the movement.

3. Only utilize relevant keypoints in the push-up movement
calculation instead of using all 33 keypoints. Some keypoints,
such as the nose, may not be relevant to the push-up movement.
By focusing on relevant keypoints, it is expected to improve the
accuracy of the calculation.

These suggestions aim to enhance the accuracy and usability
of the push-up tracking system.

ACKNOWLEDGMENT
The researcher expresses gratitude to God for the blessings

received throughout the completion of this research. The
researcher hopes that this study will contribute to the
advancement of push up tracker and computer vision usage in
health and fitness world. During the research process, the
researcher received assistance from numerous individuals. The
researcher extends gratitude to their family for providing
motivation and support. The researcher would also like to
acknowledge Mr. Dr. Ir. Rinaldi Munir, M.T. for providing
guidance on this research. Additionally, the researcher
appreciates the assistance and support received from friends
throughout the research endeavor.

REFERENCES

[1] A. C. Guyton and J. E. Hall, Textbook of medical
physiology. Elsevier Saunders, 2006.

[2] B. Schoenfeld, Science and development of muscle
hypertrophy. 2020.

[3] N. Widajanti et al., “Sarcopenia and Frailty Profile in
the Elderly Community of Surabaya: A Descriptive
Study.,” Acta Med Indones, vol. 52, no. 1, pp. 5–13,
Jan. 2020.

[4] W. R. Thompson, “Worldwide Survey of Fitness
Trends for 2020,” ACSMs Health Fit J, vol. 23, no. 6,
pp. 10–18, Nov. 2019, doi:
10.1249/FIT.0000000000000526.

[5] D. Rosadi, L. Hardiansyah, and A. Rusdiana,
“PENGEMBANGAN TEKNOLOGI ALAT UKUR
PUSH UP BERBASIS MICROCONTROLLER
DENGAN SENSOR ULTRASONIC,” Jurnal Terapan
Ilmu Keolahragaan, vol. 3, no. 1, p. 34, Jun. 2018, doi:
10.17509/JTIKOR.V3I1.8064.

[6] M. Nilsson and H. Wilén, “Push-up Tracking through
Smartphone Sensors,” DEGREE PROJECT IN
TECHNOLOGY, FIRST CYCLE, 15 CREDITS, 2016.

[7] H. J. Park, J. W. Baek, and J. H. Kim, “Imagery based
Parametric Classification of Correct and Incorrect
Motion for Push-up Counter Using OpenPose,” IEEE
International Conference on Automation Science and
Engineering, vol. 2020-August, pp. 1389–1394, Aug.
2020, doi: 10.1109/CASE48305.2020.9216833.

[8] C. Beardsley, Hypertrophy: Muscle fiber growth
caused by mechanical tension. 2019.

[9] P. Dalvinder and S. Grewal, “A Critical Conceptual
Analysis of Definitions of Artificial Intelligence as
Applicable to Computer Engineering,” no. 2, 2014,
Accessed: Dec. 03, 2022. [Online]. Available:
www.iosrjournals.org

[10] E. Fix and J. L. Hodges, “Discriminatory Analysis.
Nonparametric Discrimination: Consistency
Properties,” Int Stat Rev, vol. 57, no. 3, p. 238, Dec.
1989, doi: 10.2307/1403797.

[11] D. H. Ballard and C. M. Brown, Computer Vision. New
York: Prentice Hall, 1982.

[12] R. Szeliski, “Computer Vision,” 2011, doi:
10.1007/978-1-84882-935-0.

[13] H. Bhardwaj, P. Tomar, A. Sakalle, and U. Sharma,
“Principles and Foundations of Artificial Intelligence
and Internet of Things Technology,” Artificial
Intelligence to Solve Pervasive Internet of Things
Issues, pp. 377–392, Jan. 2020, doi: 10.1016/B978-0-
12-818576-6.00020-4.

[14] A. R. Khan, Face Detection and Recognition Theory
and Practice. Chapman and Hall/CRC, 2015.
Accessed: Feb. 23, 2023. [Online]. Available:
https://www.academia.edu/26626901/Face_Detection_
and_Recognition_Theory_and_Practice_eBookslib

[15] W. A. Hoff, K. Nguyen, and T. Lyon, “Computer-
vision-based registration techniques for augmented
reality,” D. P. Casasent, Ed., Oct. 1996, pp. 538–548.
doi: 10.1117/12.256311.

[16] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu,
F. Zhang, and M. Grundmann, “BlazePose: On-device
Real-time Body Pose tracking,” Jun. 2020.

[17] J. DiMarzio, Beginning Android Programming with
Android Studio (Wrox Beginning Guides). 2016.

