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Abstract— A pre-rendered foreign language text on a 

desktop is hard to translate because the text can’t be copied 

directly to the translator. This can be solved by using scene text 

detection and recognition to acquire the text into machine-

readable text and integrate it with a translator. A scene text 

detection and recognition framework is used to directly 

integrate the detection and recognition process and use its pre-

trained model. The application uses the Google Cloud 

Translation service as its translator to support multiple text 

translations. It has a GUI module to capture a particular area 

of the screen and put the translation result to the location of 

the original text using TKinter. This application managed to 

translate a text in many conditions, with some downsides like 

unique text and tilted text. Its execution time range is 0.45–3.0 

sec. While some inconsistencies result in a bad situation (noised 

visuals, high usage of memory), the application manages to put 

the text directly next to each original text on the screen. 

Keywords—scene text detection; scene text recognition; 

translation; screen capture; text overlays; 

I. INTRODUCTION 

One of the most common forms of information is text. 
The variation of culture in this world makes the text have so 
many character scripts and languages. An example is a video 
game that was developed by a Japanese studio, which often 
only developed the game in Japanese. While learning a new 
language is an option, not everyone wants to or can learn 
every language they need to understand. The translation 
machine plays a big role in this, converting the original text 
into one that the user understands. 

In some cases, not every text can be translated by the 
translator, as the text can’t be copied by the machine. A text 
like image text or video game text can’t be translated by 
copying the text to the translator, as seen in Fig. 1. There’s 
an option to write back every character of the text to the 
translation machine, but this will take a lot of time for a 
larger text count, and there’s a possibility that the user didn’t 
know how to write it. Based on this, there’s a need for a tool 
that can acquire these texts into machine-readable text and 
make it possible to directly integrate their results into the 
translation machine. 

Some developers have already tried to build an 
application to solve this problem, whose application name is 
DeskTranslate [1]. It asks the user to select the region to be 
translated, and a translation result is shown in a special 
window. Another option is Google Lens, which is able to put 
the translation result directly on the smartphone screen by 
using its camera. Both solve some issues with each of its 
downsides, as the DeskTranslate result will be stacked into 
that special window, making it hard to read the translation 

result for a larger text count and an impractical use of Google 
Lens for a repeating task like playing heavy-text video games 
as the user should keep capturing the screen using their 
phone every time. Based on that, there’s a need for an 
application that manages to convert every text selected by the 
user into machine-readable text, translate the text, and output 
the translation result efficiently. 

 

Fig. 1. A video game that contain a text with Cyrilic script 

II. LITERATURE REVIEW 

A. Computer Vision 

Computer vision is one of the artificial intelligence 
disciplines that focuses on utilizing a computational system 
to extract useful information from a visual component [2]. 
Computer vision replicates a human way of processing 
vision information, for instance, by using sensors to receive 
an input and then processing it using a trained pattern 
recognizer. The pattern recognizer was already trained using 
certain training data that related to the information target. 
Recently, computer vision technology has already been 
applied to many fields, such as medical diagnosis, automatic 
manufacturing and surveillance, autonomous vehicles, and 
many more [3]. Another example of a computer vision 
application is the use of a camera to understand human 
writing, object detection, mechanical inspection, etc. 

B. Deep Learning 

Deep learning is a computer model that consists of many 
processing layers of an artificial neural network to 
understand data at a certain abstraction level. Deep learning 
can be used to classify any kind of input, like images or 
texts. This classification ability is gained from model training 
with certain datasets. 

 



An artificial neural network (ANN) replicates a 
biological neural system by processing information in a 
parallel way that is distributed to many neurons [4]. It has 
three types of layers: the input layer, the hidden layer, and 
the output layer. These neurons are functions that will define 
specific features or characteristics of an input. For example, 
there’s two layers consisting of neurons that represent an 
edge and texture processing in an object detection context. 
Every neuron in one layer is connected to another neuron in 
the next layer with a certain coefficient called weight. In 
every neuron, the sum of weights is done and then processed 
by an activation function and bias as a decision to activate or 
deactivate that particular neuron. These activations hold a 
great role in influencing the results in the next layers. All of 
those calculations are done in the hidden layer. The result 
will be delivered to an output layer, producing a result of the 
classification process. 

C. Convolutional Neural Network 

A convolutional neural network (CNN) is a type of 
artificial neural network that focuses on processing a grid-
like input. The CNN architecture is designed to extract 
specific features from an input. ANN can actually process a 
grid-like input with very low performance due to the 
complexity of the input, which has a very large weight, 
making it very hard to process. CNN has three main steps: 
feature extraction, followed by classification, and a 
probabilistic distribution to complete the steps. The 
architecture visualization shown in Fig. 2. 

1. Convolutional Layer 

This layer is responsible for extracting all input 
features. The extraction is done using a convolution 
operation. This operation is focused on region calculation 
based on a certain hyperparameter called the kernel. The 
kernel will cover parts of the input. The operation will 
change the middle value of a covered part with the 
calculation result after the result is processed by an 
activation function. The activation function used in this 
part is ReLU, which will convert every negative number 
to 0 and let another value keep the value. 

2. Pooling Layer 

  This layer will reduce the input dimensions in order 
to make the process lighter [5]. It uses max pooling or 
average pooling to keep the essential value while 
reducing the dimensions. Max pooling will take the 
highest value as the essential value, while average 
pooling will take the average value as the essential value. 

 

Fig. 2. General CNN architecture 

 The classification steps will classify the extracted 
features into a certain class through the fully connected layer. 
It will process a flattened set of features to get the 

classification result at the output layer. In the output layer, a 
probabilistic distribution is done using a softmax activation 
function to normalize the classification result. 

D. Scene Text Detection & Recognition 

Scene text detection and recognition is a task that detects 
the existence of texts from an image input and recognizes 
every detected text as machine-readable text. Scene text 
detection generally predicts pixels if a text exists and 
simultaneously produces a bounding box. Scene text 
recognition predicts the text of the image parts that are 
predicted to have text. This task can be solved using 
traditional or deep learning approaches, but much research in 
recent years has been done using deep learning [6]. Many 
architectures have been proposed to do these tasks, for 
instance, the CRAFT [7] and AF-RPN [8] as detectors and 
the CRNN [9] and CNN-DBLSTM [10] as recognizers. 

With the many architectures proposed by researchers, 
some developers decided to build a framework to facilitate 
other users or developers using those architectures (in this 
case, as trained models) easier. One example of these 
frameworks is EasyOCR [11], which provides scene text 
detection and recognition model integration, a tool that 
enables the user to easily train and/or use a model. These 
frameworks usually come with their own pre-trained models 
in various languages. 

E. Google Translate 

Google Translate is an online service developed by 
Google to translate a text, document, image, or website from 
one language to another. It is available in many devices and 
shapes, such as websites, smartphones, and APIs for 
developers. 

Google Translate has been using a deep learning version 
of translation named neural machine translation (NMT) since 
2016. The method used in that update is example-based 
machine translation, which makes the model “learn from a 
million examples." The accuracy of it increased because it 
translated the text for every word simultaneously, giving the 
translation a better understanding of the context of the text 
[12].  

III. PROPOSED SOLUTION 

We propose an application that integrates scene text 
detection and recognition with the translator so that the text 
can be translated without further work from the user. The 
translation result will be placed on the screen exactly at each 
location of the original text, making the translation result 
“replace” the original text. 

The application will have a general flow that starts with a 
translation configuration, as shown in Fig. 3. This step asks 
users to choose the text language and the translation 
language. For example, an English text that wants to be 
translated to Indonesian will be both English and Indonesian. 
A text detection process is followed to detect every text in 
the input. It will produce a bounding box that shows where 
the text exists in the input. There’s a need to crop every part 
of the text as a standalone image so the text recognizer can 
start predicting its machine-readable text version. The results 
can now be translated for the translator. On the screen, the 
application will draw a bounding box from the detection 



result as a container for the translation result. All translated 
text will be placed in each corresponding box. 

 

Fig. 3. General flow of the solution 

This general flow is a rough idea of how to process this 
problem. From the application perspective, there’s some 
difference as constraints exist like execution time, memory 
usage, and library-dependent tasks. Based on the general 
flow, we decided to create the architecture of the application 
as shown in Fig. 4. There are three core modules: the 
Graphical User Interface module, the Text Detection and 
Recognition module, and the Text Translation module. These 
three cores can’t directly communicate due to the existence 
of threads to run the text detection, recognition, and 
translation modules. A shared memory and a queue are 
placed between these three modules to communicate 
properly without any blocking. 

 

Fig. 4. Proposed architecture the TexTranslator application 

A. Text Detection & Recognition Module 

The application idea has the ability to change the 

language, resulted in the need of model flexibility. With so 

many language requirements, the existence of scene text 

detection & recognition frameworks become very important. 

For example, EasyOCR claim that a 80 language is ready to 

be processed by only change the configuration to the 

preferred language. This makes the framework to hold a 

responsibility in recognizing a text into a machine readable 

text. Another strong point of the frameworks utilitization is 

its integration processing. Generally, the bounding box 

resulted from the scene text detection model shown by a 

marked pixel with a text existence prediction, makes the 

application need to process it into a bounding box format 

(for instance, 4-points coordinates). A framework handle its 

processing, removing the needs to produce a bounding box 

format. The recognition process also got its benefit by 

removing the need for manual image cropping as recognizer 

input. Those two points makes the utilization of frameworks 

very important. 

The proposed solution uses 2 frameworks, that is 

EasyOCR and WinOCR. These 2 frameworks use a 

different model for every step. EasyOCR uses CRAFT and 

CRNN as their default detection & recognition model. On 

the other hand, WinOCR uses Windows OCR Engine with 

AF-RPN and CNN-DBLSTM as their models. EasyOCR 

implementation has more modifications freedom compared 

to WinOCR as WinOCR only integrate Windows OCR 

Engine with an application that developed in Python. 

EasyOCR provided a threshold argument that controls the 

limit of box merging like width_ths and height_ths. It also 

offers a detection & recognition in paragraph levels, makes 

the text merged if x_ths and y_ths limitation permit those 

merging. As this module will took quite a while in 

processing an input, it will be running in a thread to make 

the main thread free from blocking. 

The module will receive an image as an input from the 

shared memory. The image format is in numpy array format. 

The module will put the image as an input for the used 

framework. A produced result from the framework 

processing is a machine readable text and its bounding box. 

The module will convert all of the bounding box format 

from 4-points coordinates to a format with the specification 

of height, width, x and y of the left top corner (h, w, x, y). 

Lastly, the recognized text will be delivered to the Text 

Translation Module. These process visualizations shown in 

Fig. 5. 

 

Fig. 5. Text detection & recognition module process visualization 

B. Text Translation Module 

This module will translate all of recognized text from the 

detection and recognition module with online translator, 

specifically Google Translate. There are an options to use a 

local translator and even both translator. The local translator 

offer an offline use of the application, as the translator is 

running in the device. The problem is that the device will 

need to load and run the model together with the framework 

models. This will take so many memory resulting in 



application lag and/or crash for a mid-end device. Another 

downside is that the quality of the translation result is not as 

good as online service because the online service has a 

development and maintenance guaranteed. 

In Python, a numerous of library developed to connect a 

python program with Google Translate API. A program can 

only request a translation for one strings, makes the 

translation process longer when the texts are two or more 

strings. Multiple texts translation used to handle such 

problems. It can be done using Google Cloud Translation 

with v2 library. The limit of the strings now up to 128, 

which make translation process faster. 

The process that happen in this module shown in Fig. 6. 

The recognized texts will be translated to Google Cloud 

Translation. For a texts with more than 128 strings, there 

will be some iterations to translate all of it. The translated 

text will be merged back with the newly-formatted bounding 

boxes. A queue will become the communication path for the 

texts and bounding boxes to the Graphical User Interface 

module. 

 

Fig. 6. Text Translation module process visualization 

C. Graphical User Interface module 

Graphical User Interface (GUI) module will be 

responsible for capturing a screen as an input. The 

application uses tkinter as its GUI. The GUI can draw a 

rectangle on the screen to determine the area of the screen 

that want to be captured and processed. This rectangle is 

called screenbox. Screenbox has a transparent interface so 

the user still can interact with the screen while an overlay 

drawn there. Tkinter can’t have a root window more than 

one, so the screenbox window type is a child of the root. 

The root will only consist of language configuration, 

paragraph mode and fullscreen mode button, and delete 

button. The delete button exist to give the user an option to 

delete some of the translated result. 

The screen capture process can be executed from a direct 

command by the user. There’s two options to do this, by 

clicking a green-colored button on the screenbox or by 

clicking ‘c’ in the keyboard. It uses mss library in Python to 

capture the screen based on the screenbox position. 

Its another responsibility is to place the translated text 

into the screenbox. This process has 4 main subprocess, that 

is text size adjustment, text background blurring, text 

coloring, and text placement. 

1. Text Size Adjustment: The translated text has 

possibilities to produce a larger or smaller width compared 

to the original text. Tkinter Canvas provided a text size 

calculation when the canvas already placed in the screen. 

The module will calculate a text size prediction based on the 

ratio of the screenbox height to the screen height. The 

predicted result will be simulated by placing the translated 

text to the screen with that size. If the text canvas becomes 

too large compared to the original bounding box, the module 

will simulate the text again with a smaller size. The process 

will be repeated until the simulated size has a smaller size 

compared to the bounding box. 

2. Text Background Blurring: The idea is to place the 

translated text into the original text location. Without any 

preparation, the translated text won’t be visible too much 

because of the conflict with the original text. An image 

contain the original text is blurred to make the original text 

less visible while still keep the general visual color of the 

background. The blurring function used is median blur as 

other blur have a tendency to make the original text blurry 

but with a larger spread. 

3. Text Coloring: A blurred background has a certain 

degree of brightness. To make sure that the translated text 

visible, the text color should has a brightness level that 

didn’t look similar to the background. The blurred image is 

converted to the HSV to take the V (brightness) value. If the 

image has V above 128, the text will get a black color, and 

vice versa (text with white color for a darker brightness). 

4. Text Placement: Each translated text will have its 

own Tkinter Canvas. Each canvas will have a different 

background color and bounding box size. 

IV. TESTING AND EVALUATION 

Testing is conducted with the aim to check the 
integration quality, the best models as a whole application, 
the output consistency, the accuracy and executing time of 
the application in various situations, and compare the result  
quality with a similar application. 

A. Test Case 

There will be two cases types, the first one is a text in an 
image/still visual and the second one will be a text in a video 
game. An image/still consume small memory while video 
game consume large amounts of memory, makes the 
application can be tested in an optimal and not optimal 
situation. 

B. Testing Scenario 

An image will be used to check the integration quality. 
This screnario aims to check if the existence/nonexistence of 
text can be checked correctly. The second scenario uses an 
image to check the best models, with the aims to know which 
models are better between EasyOCR models and WinOCR 
models. Consistency of the output will be checked by 
running the application for a video game with english and 
japanese language model and three iterations for each 
language. This setup aims to check if a high usage of 
memory and unstable condition (the video game that used 



has a noise as its visual effect) will produce a different 
recognition result. Another scenario is to check the 
application capabilities in many situations. This aims to 
check if the application is flexible enough to be used in 
various conditions. The last scenario uses a video game and a 
document as a cases to check the application quality in terms 
of accuracy, execution time, and text placing efficiency 
compared to its predecessor, DeskTranslate. Every scenario 
besides the second will use EasyOCR as the framework. 

C. Testing Results 

The application tested to 4 images to test the first 
scenario. It managed to detect the existence/nonexistence of 
the text properly, as when the text exist, there’s a translation 
result and vice versa. The application hit 100% accuracy for 
two cases while another one has 92,8% accuracy (the image 
is blurry). 

The second scenario performed with 2 images. The result 
shows  that EasyOCR produce a better accuracy of the 
bounding box compared to WinOCR. EasyOCR managed to 
show a better flexibility as a very large of characters can be 
detected  by EasyOCR while WinOCR couldn’t. That being 
said, WinOCR perform extremely faster compared to 
EasyOCR due to the engine exist the machine compared to 
EasyOCR that need to load the model every initialization as 
shown in Table I. 

TABLE I.  EASYOCR & WINOCR MEMORY USAGE 

Framework 
Profiling Result 

Memory Usage Command 

EasyOCR 

1928,1 MiB 
CUDA load model to the 

GPU 

1616,5 MiB Detection & Recognition 

WinOCR 

0,0 MiB WinOCR initialization 

5,4 MiB Detection & Recognition 

  

 The application couldn’t produced a consistent result as 
each iteration for both languages has a different output. The 
recognized text in english are generally more consistent 
compared to the japanese. The output sometimes produces a 
nonexistent character or number. The translation result 
quality is linear with the detection & recognition output. 

 The fourth scenario is performed in 9 situations. The 
application managed to translate every text in every scenario, 
with some exception for a tilted text and unique font text that 
produced a bad result. The text can’t be placed with the same 
slope with the original and a unique font text case made the 
application unable to recognize each letter properly. The 
execution time of the application is in a range of 0,45 – 3,0 
second. The more text existed in a captured image, the longer 
the application to process it. Each cases execution time 
shown in Table II. 

 

 

 

TABLE II.  APPLICATION EXECUTION TIME FOR THE 4TH
 SCENARIO 

Situations 
Table Column Head 

Normal Mode Paragraph Mode 

Image text 0,469 0,667 

Website text 0,833 0,934 

Document text 1,329 1,248 

Zoomed 

document text 
1,526 1,453 

Tilted text 0,494 0,516 

Video game 

text 
1,204 1,275 

Non-latin text 1,515 1,042 

Right to left 
text 

2,767 2,974 

Unique font 

text 
0,799 1,071 

 

 The last scenario result shows that the implemented 
application produces a more efficient text placement 
compared to DeskTranslate. DeskTranslate process the text 
slightly faster than the implemented application because of 
its automatic capture, but the speed is actually similar in 
terms of each execution. The complete test result can be seen 
in the following page: 

https://docs.google.com/document/d/1b0Oz2Fo8HsmctwOM

2r4dO7jnMJv8FQKJ/edit?usp=sharing&ouid=11343557399

3133639499&rtpof=true&sd=true 

V. CONCLUSION AND FUTURE WORKS 

A. Conclusion 

1. The integration is a success with using a 

framework that focuses on integrating the detection & 

recognition part and completed the integration with the 

translator. The used framework is EasyOCR with CRAFT & 

CRNN as its models and WinOCR with AF-RPN and CNN-

DBLSTM as its models. Google Cloud Translation is the 

translator used in this integration. 

2. Text processing from a screen can be translated by 

using a GUI to configure the language properties, capturing 

the text on the screen, delivering the image to the text 

detection & recognition followed by the translation, and 

placing the translated text from the translation module. The 

text placement consist of text size adjustments, text 

background blurring, text coloring, and text placement on 

the screenbox. 

3. Application managed to translate a text from 

various cases such as images, websites, documents, video 

games, non-latin texts, and right to left texts, for the 

exception on tilted text and unique font text. The application 

can’t produced a consistent result in a bad condition such as 

high usage memory and noised images. It can produces a 

better text placement with normal mode in a low density 

condition and paragraph mode in a high density condition. 

Execution time of the application to various situation is in 

range of 0,45 – 3,0 seconds. 

https://docs.google.com/document/d/1b0Oz2Fo8HsmctwOM2r4dO7jnMJv8FQKJ/edit?usp=sharing&ouid=113435573993133639499&rtpof=true&sd=true
https://docs.google.com/document/d/1b0Oz2Fo8HsmctwOM2r4dO7jnMJv8FQKJ/edit?usp=sharing&ouid=113435573993133639499&rtpof=true&sd=true
https://docs.google.com/document/d/1b0Oz2Fo8HsmctwOM2r4dO7jnMJv8FQKJ/edit?usp=sharing&ouid=113435573993133639499&rtpof=true&sd=true


4. Application can produces more efficient text 

placement compared to another similar application by 

placing it in each of the original text. 

B. Future Works 

For future research, the following ideas and suggestion 

that can be implemented: 

1. Add another module to fix a recognition result to 

produce a better recognized and translated text, for instance 

a grammar checker. 

2. Change the application flow into an automatic 

process. Need to use a better framework/models or 

optimized EasyOCR. 

3. Increase the application speed to a real-time state. 

WinOCR that run very fast can be optimized in terms of the 

bounding box result. 

4. Change the text placement method by using a 4-

points format instead of (h, w, x, y) for a better flexibility. 
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