

COMPUTER VISION BASED APPLICATION

DEVELOPMENT FOR SCREEN TEXT

TRANSLATION

Raka Wirabuana Ninagan

School of Electrical Engineering and Informatics

Bandung Institute of Technology

Bandung, Indonesia

rkvilena11@gmail.com

Rinaldi Munir

School of Electrical Engineering and Informatics

Bandung Institute of Technology

Bandung, Indonesia

rinaldi@staff.stei.itb.ac.id

Abstract— A pre-rendered foreign language text on a

desktop is hard to translate because the text can’t be copied

directly to the translator. This can be solved by using scene text

detection and recognition to acquire the text into machine-

readable text and integrate it with a translator. A scene text

detection and recognition framework is used to directly

integrate the detection and recognition process and use its pre-

trained model. The application uses the Google Cloud

Translation service as its translator to support multiple text

translations. It has a GUI module to capture a particular area

of the screen and put the translation result to the location of

the original text using TKinter. This application managed to

translate a text in many conditions, with some downsides like

unique text and tilted text. Its execution time range is 0.45–3.0

sec. While some inconsistencies result in a bad situation (noised

visuals, high usage of memory), the application manages to put

the text directly next to each original text on the screen.

Keywords—scene text detection; scene text recognition;

translation; screen capture; text overlays;

I. INTRODUCTION

One of the most common forms of information is text.
The variation of culture in this world makes the text have so
many character scripts and languages. An example is a video
game that was developed by a Japanese studio, which often
only developed the game in Japanese. While learning a new
language is an option, not everyone wants to or can learn
every language they need to understand. The translation
machine plays a big role in this, converting the original text
into one that the user understands.

In some cases, not every text can be translated by the
translator, as the text can’t be copied by the machine. A text
like image text or video game text can’t be translated by
copying the text to the translator, as seen in Fig. 1. There’s
an option to write back every character of the text to the
translation machine, but this will take a lot of time for a
larger text count, and there’s a possibility that the user didn’t
know how to write it. Based on this, there’s a need for a tool
that can acquire these texts into machine-readable text and
make it possible to directly integrate their results into the
translation machine.

Some developers have already tried to build an
application to solve this problem, whose application name is
DeskTranslate [1]. It asks the user to select the region to be
translated, and a translation result is shown in a special
window. Another option is Google Lens, which is able to put
the translation result directly on the smartphone screen by
using its camera. Both solve some issues with each of its
downsides, as the DeskTranslate result will be stacked into
that special window, making it hard to read the translation

result for a larger text count and an impractical use of Google
Lens for a repeating task like playing heavy-text video games
as the user should keep capturing the screen using their
phone every time. Based on that, there’s a need for an
application that manages to convert every text selected by the
user into machine-readable text, translate the text, and output
the translation result efficiently.

Fig. 1. A video game that contain a text with Cyrilic script

II. LITERATURE REVIEW

A. Computer Vision

Computer vision is one of the artificial intelligence
disciplines that focuses on utilizing a computational system
to extract useful information from a visual component [2].
Computer vision replicates a human way of processing
vision information, for instance, by using sensors to receive
an input and then processing it using a trained pattern
recognizer. The pattern recognizer was already trained using
certain training data that related to the information target.
Recently, computer vision technology has already been
applied to many fields, such as medical diagnosis, automatic
manufacturing and surveillance, autonomous vehicles, and
many more [3]. Another example of a computer vision
application is the use of a camera to understand human
writing, object detection, mechanical inspection, etc.

B. Deep Learning

Deep learning is a computer model that consists of many
processing layers of an artificial neural network to
understand data at a certain abstraction level. Deep learning
can be used to classify any kind of input, like images or
texts. This classification ability is gained from model training
with certain datasets.

An artificial neural network (ANN) replicates a
biological neural system by processing information in a
parallel way that is distributed to many neurons [4]. It has
three types of layers: the input layer, the hidden layer, and
the output layer. These neurons are functions that will define
specific features or characteristics of an input. For example,
there’s two layers consisting of neurons that represent an
edge and texture processing in an object detection context.
Every neuron in one layer is connected to another neuron in
the next layer with a certain coefficient called weight. In
every neuron, the sum of weights is done and then processed
by an activation function and bias as a decision to activate or
deactivate that particular neuron. These activations hold a
great role in influencing the results in the next layers. All of
those calculations are done in the hidden layer. The result
will be delivered to an output layer, producing a result of the
classification process.

C. Convolutional Neural Network

A convolutional neural network (CNN) is a type of
artificial neural network that focuses on processing a grid-
like input. The CNN architecture is designed to extract
specific features from an input. ANN can actually process a
grid-like input with very low performance due to the
complexity of the input, which has a very large weight,
making it very hard to process. CNN has three main steps:
feature extraction, followed by classification, and a
probabilistic distribution to complete the steps. The
architecture visualization shown in Fig. 2.

1. Convolutional Layer

This layer is responsible for extracting all input
features. The extraction is done using a convolution
operation. This operation is focused on region calculation
based on a certain hyperparameter called the kernel. The
kernel will cover parts of the input. The operation will
change the middle value of a covered part with the
calculation result after the result is processed by an
activation function. The activation function used in this
part is ReLU, which will convert every negative number
to 0 and let another value keep the value.

2. Pooling Layer

 This layer will reduce the input dimensions in order
to make the process lighter [5]. It uses max pooling or
average pooling to keep the essential value while
reducing the dimensions. Max pooling will take the
highest value as the essential value, while average
pooling will take the average value as the essential value.

Fig. 2. General CNN architecture

 The classification steps will classify the extracted
features into a certain class through the fully connected layer.
It will process a flattened set of features to get the

classification result at the output layer. In the output layer, a
probabilistic distribution is done using a softmax activation
function to normalize the classification result.

D. Scene Text Detection & Recognition

Scene text detection and recognition is a task that detects
the existence of texts from an image input and recognizes
every detected text as machine-readable text. Scene text
detection generally predicts pixels if a text exists and
simultaneously produces a bounding box. Scene text
recognition predicts the text of the image parts that are
predicted to have text. This task can be solved using
traditional or deep learning approaches, but much research in
recent years has been done using deep learning [6]. Many
architectures have been proposed to do these tasks, for
instance, the CRAFT [7] and AF-RPN [8] as detectors and
the CRNN [9] and CNN-DBLSTM [10] as recognizers.

With the many architectures proposed by researchers,
some developers decided to build a framework to facilitate
other users or developers using those architectures (in this
case, as trained models) easier. One example of these
frameworks is EasyOCR [11], which provides scene text
detection and recognition model integration, a tool that
enables the user to easily train and/or use a model. These
frameworks usually come with their own pre-trained models
in various languages.

E. Google Translate

Google Translate is an online service developed by
Google to translate a text, document, image, or website from
one language to another. It is available in many devices and
shapes, such as websites, smartphones, and APIs for
developers.

Google Translate has been using a deep learning version
of translation named neural machine translation (NMT) since
2016. The method used in that update is example-based
machine translation, which makes the model “learn from a
million examples." The accuracy of it increased because it
translated the text for every word simultaneously, giving the
translation a better understanding of the context of the text
[12].

III. PROPOSED SOLUTION

We propose an application that integrates scene text
detection and recognition with the translator so that the text
can be translated without further work from the user. The
translation result will be placed on the screen exactly at each
location of the original text, making the translation result
“replace” the original text.

The application will have a general flow that starts with a
translation configuration, as shown in Fig. 3. This step asks
users to choose the text language and the translation
language. For example, an English text that wants to be
translated to Indonesian will be both English and Indonesian.
A text detection process is followed to detect every text in
the input. It will produce a bounding box that shows where
the text exists in the input. There’s a need to crop every part
of the text as a standalone image so the text recognizer can
start predicting its machine-readable text version. The results
can now be translated for the translator. On the screen, the
application will draw a bounding box from the detection

result as a container for the translation result. All translated
text will be placed in each corresponding box.

Fig. 3. General flow of the solution

This general flow is a rough idea of how to process this
problem. From the application perspective, there’s some
difference as constraints exist like execution time, memory
usage, and library-dependent tasks. Based on the general
flow, we decided to create the architecture of the application
as shown in Fig. 4. There are three core modules: the
Graphical User Interface module, the Text Detection and
Recognition module, and the Text Translation module. These
three cores can’t directly communicate due to the existence
of threads to run the text detection, recognition, and
translation modules. A shared memory and a queue are
placed between these three modules to communicate
properly without any blocking.

Fig. 4. Proposed architecture the TexTranslator application

A. Text Detection & Recognition Module

The application idea has the ability to change the

language, resulted in the need of model flexibility. With so

many language requirements, the existence of scene text

detection & recognition frameworks become very important.

For example, EasyOCR claim that a 80 language is ready to

be processed by only change the configuration to the

preferred language. This makes the framework to hold a

responsibility in recognizing a text into a machine readable

text. Another strong point of the frameworks utilitization is

its integration processing. Generally, the bounding box

resulted from the scene text detection model shown by a

marked pixel with a text existence prediction, makes the

application need to process it into a bounding box format

(for instance, 4-points coordinates). A framework handle its

processing, removing the needs to produce a bounding box

format. The recognition process also got its benefit by

removing the need for manual image cropping as recognizer

input. Those two points makes the utilization of frameworks

very important.

The proposed solution uses 2 frameworks, that is

EasyOCR and WinOCR. These 2 frameworks use a

different model for every step. EasyOCR uses CRAFT and

CRNN as their default detection & recognition model. On

the other hand, WinOCR uses Windows OCR Engine with

AF-RPN and CNN-DBLSTM as their models. EasyOCR

implementation has more modifications freedom compared

to WinOCR as WinOCR only integrate Windows OCR

Engine with an application that developed in Python.

EasyOCR provided a threshold argument that controls the

limit of box merging like width_ths and height_ths. It also

offers a detection & recognition in paragraph levels, makes

the text merged if x_ths and y_ths limitation permit those

merging. As this module will took quite a while in

processing an input, it will be running in a thread to make

the main thread free from blocking.

The module will receive an image as an input from the

shared memory. The image format is in numpy array format.

The module will put the image as an input for the used

framework. A produced result from the framework

processing is a machine readable text and its bounding box.

The module will convert all of the bounding box format

from 4-points coordinates to a format with the specification

of height, width, x and y of the left top corner (h, w, x, y).

Lastly, the recognized text will be delivered to the Text

Translation Module. These process visualizations shown in

Fig. 5.

Fig. 5. Text detection & recognition module process visualization

B. Text Translation Module

This module will translate all of recognized text from the

detection and recognition module with online translator,

specifically Google Translate. There are an options to use a

local translator and even both translator. The local translator

offer an offline use of the application, as the translator is

running in the device. The problem is that the device will

need to load and run the model together with the framework

models. This will take so many memory resulting in

application lag and/or crash for a mid-end device. Another

downside is that the quality of the translation result is not as

good as online service because the online service has a

development and maintenance guaranteed.

In Python, a numerous of library developed to connect a

python program with Google Translate API. A program can

only request a translation for one strings, makes the

translation process longer when the texts are two or more

strings. Multiple texts translation used to handle such

problems. It can be done using Google Cloud Translation

with v2 library. The limit of the strings now up to 128,

which make translation process faster.

The process that happen in this module shown in Fig. 6.

The recognized texts will be translated to Google Cloud

Translation. For a texts with more than 128 strings, there

will be some iterations to translate all of it. The translated

text will be merged back with the newly-formatted bounding

boxes. A queue will become the communication path for the

texts and bounding boxes to the Graphical User Interface

module.

Fig. 6. Text Translation module process visualization

C. Graphical User Interface module

Graphical User Interface (GUI) module will be

responsible for capturing a screen as an input. The

application uses tkinter as its GUI. The GUI can draw a

rectangle on the screen to determine the area of the screen

that want to be captured and processed. This rectangle is

called screenbox. Screenbox has a transparent interface so

the user still can interact with the screen while an overlay

drawn there. Tkinter can’t have a root window more than

one, so the screenbox window type is a child of the root.

The root will only consist of language configuration,

paragraph mode and fullscreen mode button, and delete

button. The delete button exist to give the user an option to

delete some of the translated result.

The screen capture process can be executed from a direct

command by the user. There’s two options to do this, by

clicking a green-colored button on the screenbox or by

clicking ‘c’ in the keyboard. It uses mss library in Python to

capture the screen based on the screenbox position.

Its another responsibility is to place the translated text

into the screenbox. This process has 4 main subprocess, that

is text size adjustment, text background blurring, text

coloring, and text placement.

1. Text Size Adjustment: The translated text has

possibilities to produce a larger or smaller width compared

to the original text. Tkinter Canvas provided a text size

calculation when the canvas already placed in the screen.

The module will calculate a text size prediction based on the

ratio of the screenbox height to the screen height. The

predicted result will be simulated by placing the translated

text to the screen with that size. If the text canvas becomes

too large compared to the original bounding box, the module

will simulate the text again with a smaller size. The process

will be repeated until the simulated size has a smaller size

compared to the bounding box.

2. Text Background Blurring: The idea is to place the

translated text into the original text location. Without any

preparation, the translated text won’t be visible too much

because of the conflict with the original text. An image

contain the original text is blurred to make the original text

less visible while still keep the general visual color of the

background. The blurring function used is median blur as

other blur have a tendency to make the original text blurry

but with a larger spread.

3. Text Coloring: A blurred background has a certain

degree of brightness. To make sure that the translated text

visible, the text color should has a brightness level that

didn’t look similar to the background. The blurred image is

converted to the HSV to take the V (brightness) value. If the

image has V above 128, the text will get a black color, and

vice versa (text with white color for a darker brightness).

4. Text Placement: Each translated text will have its

own Tkinter Canvas. Each canvas will have a different

background color and bounding box size.

IV. TESTING AND EVALUATION

Testing is conducted with the aim to check the
integration quality, the best models as a whole application,
the output consistency, the accuracy and executing time of
the application in various situations, and compare the result
quality with a similar application.

A. Test Case

There will be two cases types, the first one is a text in an
image/still visual and the second one will be a text in a video
game. An image/still consume small memory while video
game consume large amounts of memory, makes the
application can be tested in an optimal and not optimal
situation.

B. Testing Scenario

An image will be used to check the integration quality.
This screnario aims to check if the existence/nonexistence of
text can be checked correctly. The second scenario uses an
image to check the best models, with the aims to know which
models are better between EasyOCR models and WinOCR
models. Consistency of the output will be checked by
running the application for a video game with english and
japanese language model and three iterations for each
language. This setup aims to check if a high usage of
memory and unstable condition (the video game that used

has a noise as its visual effect) will produce a different
recognition result. Another scenario is to check the
application capabilities in many situations. This aims to
check if the application is flexible enough to be used in
various conditions. The last scenario uses a video game and a
document as a cases to check the application quality in terms
of accuracy, execution time, and text placing efficiency
compared to its predecessor, DeskTranslate. Every scenario
besides the second will use EasyOCR as the framework.

C. Testing Results

The application tested to 4 images to test the first
scenario. It managed to detect the existence/nonexistence of
the text properly, as when the text exist, there’s a translation
result and vice versa. The application hit 100% accuracy for
two cases while another one has 92,8% accuracy (the image
is blurry).

The second scenario performed with 2 images. The result
shows that EasyOCR produce a better accuracy of the
bounding box compared to WinOCR. EasyOCR managed to
show a better flexibility as a very large of characters can be
detected by EasyOCR while WinOCR couldn’t. That being
said, WinOCR perform extremely faster compared to
EasyOCR due to the engine exist the machine compared to
EasyOCR that need to load the model every initialization as
shown in Table I.

TABLE I. EASYOCR & WINOCR MEMORY USAGE

Framework
Profiling Result

Memory Usage Command

EasyOCR

1928,1 MiB
CUDA load model to the

GPU

1616,5 MiB Detection & Recognition

WinOCR

0,0 MiB WinOCR initialization

5,4 MiB Detection & Recognition

 The application couldn’t produced a consistent result as
each iteration for both languages has a different output. The
recognized text in english are generally more consistent
compared to the japanese. The output sometimes produces a
nonexistent character or number. The translation result
quality is linear with the detection & recognition output.

 The fourth scenario is performed in 9 situations. The
application managed to translate every text in every scenario,
with some exception for a tilted text and unique font text that
produced a bad result. The text can’t be placed with the same
slope with the original and a unique font text case made the
application unable to recognize each letter properly. The
execution time of the application is in a range of 0,45 – 3,0
second. The more text existed in a captured image, the longer
the application to process it. Each cases execution time
shown in Table II.

TABLE II. APPLICATION EXECUTION TIME FOR THE 4TH
 SCENARIO

Situations
Table Column Head

Normal Mode Paragraph Mode

Image text 0,469 0,667

Website text 0,833 0,934

Document text 1,329 1,248

Zoomed

document text
1,526 1,453

Tilted text 0,494 0,516

Video game

text
1,204 1,275

Non-latin text 1,515 1,042

Right to left
text

2,767 2,974

Unique font

text
0,799 1,071

 The last scenario result shows that the implemented
application produces a more efficient text placement
compared to DeskTranslate. DeskTranslate process the text
slightly faster than the implemented application because of
its automatic capture, but the speed is actually similar in
terms of each execution. The complete test result can be seen
in the following page:

https://docs.google.com/document/d/1b0Oz2Fo8HsmctwOM

2r4dO7jnMJv8FQKJ/edit?usp=sharing&ouid=11343557399

3133639499&rtpof=true&sd=true

V. CONCLUSION AND FUTURE WORKS

A. Conclusion

1. The integration is a success with using a

framework that focuses on integrating the detection &

recognition part and completed the integration with the

translator. The used framework is EasyOCR with CRAFT &

CRNN as its models and WinOCR with AF-RPN and CNN-

DBLSTM as its models. Google Cloud Translation is the

translator used in this integration.

2. Text processing from a screen can be translated by

using a GUI to configure the language properties, capturing

the text on the screen, delivering the image to the text

detection & recognition followed by the translation, and

placing the translated text from the translation module. The

text placement consist of text size adjustments, text

background blurring, text coloring, and text placement on

the screenbox.

3. Application managed to translate a text from

various cases such as images, websites, documents, video

games, non-latin texts, and right to left texts, for the

exception on tilted text and unique font text. The application

can’t produced a consistent result in a bad condition such as

high usage memory and noised images. It can produces a

better text placement with normal mode in a low density

condition and paragraph mode in a high density condition.

Execution time of the application to various situation is in

range of 0,45 – 3,0 seconds.

https://docs.google.com/document/d/1b0Oz2Fo8HsmctwOM2r4dO7jnMJv8FQKJ/edit?usp=sharing&ouid=113435573993133639499&rtpof=true&sd=true
https://docs.google.com/document/d/1b0Oz2Fo8HsmctwOM2r4dO7jnMJv8FQKJ/edit?usp=sharing&ouid=113435573993133639499&rtpof=true&sd=true
https://docs.google.com/document/d/1b0Oz2Fo8HsmctwOM2r4dO7jnMJv8FQKJ/edit?usp=sharing&ouid=113435573993133639499&rtpof=true&sd=true

4. Application can produces more efficient text

placement compared to another similar application by

placing it in each of the original text.

B. Future Works

For future research, the following ideas and suggestion

that can be implemented:

1. Add another module to fix a recognition result to

produce a better recognized and translated text, for instance

a grammar checker.

2. Change the application flow into an automatic

process. Need to use a better framework/models or

optimized EasyOCR.

3. Increase the application speed to a real-time state.

WinOCR that run very fast can be optimized in terms of the

bounding box result.

4. Change the text placement method by using a 4-

points format instead of (h, w, x, y) for a better flexibility.

ACKNOWLEDGMENT

The researcher expresses gratitude to God for the
blessings received during the completion of this research.
The researcher would like to thank Mr. Dr. Ir. Rinaldi Munir,
M.T., for providing guidance throughout the research
process. The researcher receives much help from family
members and many individuals and wants to appreciate all
the help and assistance. The researcher hopes that this
research will contribute to the advancement of screen text
translation usage.

REFERENCES

[1] Amelia, H. Lun, C. J. Hao, and GerardTWK, “DeskTranslate,”

DeskTranslate, 2021. https://desktranslate.github.io/DeskTranslate/

[2] F. Alsakka, I. El-Chami, H. Yu, and M. Al-Hussein, “Computer
vision-based process time data acquisition for offsite construction,”
Automation in Construction, vol. 149, p. 104803, May 2023, doi:
10.1016/j.autcon.2023.104803.

[3] K. K. Patel, A. Kar, S. N. Jha, and M. A. Khan, “Machine vision
system: a tool for quality inspection of food and agricultural
products,” Journal of Food Science and Technology/Journal of Food
Science and Technology, vol. 49, no. 2, pp. 123–141, Apr. 2011, doi:
10.1007/s13197-011-0321-4.

[4] T. M. Mitchell, Machine learning. McGraw-Hill
Science/Engineering/Math, 1997.

[5] K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” arXiv (Cornell University), Jan. 2015, doi:
10.48550/arxiv.1511.08458.

[6] F. Naiemi, V. Ghods, and H. Khalesi, “Scene text detection and
recognition: a survey,” Multimedia Tools and Applications, vol. 81,
no. 14, pp. 20255–20290, Mar. 2022, doi: 10.1007/s11042-022-
12693-7.

[7] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, “Character region
awareness for text detection,” arXiv.org, Apr. 03, 2019.
https://arxiv.org/abs/1904.01941

[8] Z. Zhong, L. Sun, and Q. Huo, “An Anchor-Free Region Proposal
Network for Faster R-CNN based Text Detection Approaches,” arXiv
(Cornell University), Jan. 2018, doi: 10.48550/arxiv.1804.09003.

[9] B. Shi, X. Bai, and C. Yao, “An End-to-End trainable neural network
for image-based sequence recognition and its application to scene text
recognition,” arXiv (Cornell University), Jan. 2015, doi:
10.48550/arxiv.1507.05717.

[10] H. Ding et al., “A Compact CNN-DBLSTM Based Character Model
for Offline Handwriting Recognition with Tucker Decomposition,”
2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), Nov. 2017, doi: 10.1109/icdar.2017.89.

[11] JaidedAI, “Jaided AI: EasyOCR.” https://www.jaided.ai/easyocr/

[12] B. Turovsky, “Found in translation: More accurate, fluent sentences
in Google Translate,” Google, Nov. 16, 2016. [Online]. Available:
https://blog.google/products/translate/found-translation-more-
accurate-fluent-sentences-google-translate/

https://arxiv.org/abs/1904.01941

