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Abstract—Artificial intelligence (AI) gives autonomous vehicle 

ability to drive by itself. It is believed that AI can reduce the risk 

of accidents caused by human error. One example of AI 

implementation on autonomous vehicle is visual system for 

detecting traffic sign. Convolutional Neural Network (CNN), a 

part of deep learning method, is used in this research to build 

traffic sign detection model for Indonesia. However, dataset is 

needed by this method to perform training. The unavailability of 

Indonesian traffic sign dataset may become challenge in building 

the model due to the distinct characteristics of traffic sign among 

countries. The proposed solution is to feed Extended Malaysian 

Traffic Sign Dataset (EMTD) into CNN to produce the detection 

model by reason that it contains traffic signs that are similar to 

Indonesian traffic signs. The solution adapts Faster R-CNN 

model which has been developed for detecting foreign traffic sign. 

The CNN model is coded with Python 3 using Keras-Tensorflow 

library. Input data preprocessing includes resize, histogram 

equalization, augmentation, and pixel scaling. This research 

evaluates and compares the performance of Faster R-CNN with 

VGG16 and ResNet50 backbone. 

Keywords—Traffic sign detection; Faster R-CNN; RPN; mean 

average precision; frame per second 

I.  INTRODUCTION 

Autonomous vehicle is expected to eliminate human 
dependency to control the vehicle. Therefore, it will reduce 
tension and fatigue of driving which can prevent the driver 
from making mistake. Around 90% of road accidents have 
been caused by human error. Implementation of AI on 
autonomous vehicle system is claimed to be able to reduce the 
90% of road accidents [1]. One example of its implementation 
is visual system for detecting traffic sign. The system uses 
camera as sensor and receives video as input data. By machine 
learning technique, the system has ability to identify the 
existence of traffic sign from video. 

There are eight challenges in developing a traffic sign 
detection and recognition system. They are variable lightning 
condition, fading and blurring, limited visibility, multiple 
appearance at once, motion artifacts, damaged or partially 
obscured, unavailability of public dataset, and real-time 
application [2]. The previous research proposed traffic sign 
detection using RGB normalization and thresholding for region 
of interest (ROI) segmentation. This has weakness when the 
size of traffic signs changes as the vehicle moves. It is 

impossible to do labeling and calculate the labeled area 
manually.     

CNN as a part of deep learning method is so popular in 
computer vision task. It is because the architecture of CNN is 
especially designed to handle image-based data. Many traffic 
sign detection and recognition research prove that CNN-based 
model produces a model that good at handling bad quality sign 
and partially obscured sign [2]. Besides, CNN runs feature 
extraction faster and generates a greater number of information 
than traditional image segmentation. It is why CNN is more 
reliable to be implemented for autonomous vehicle system than 
pure traditional image processing approach [3,4]. 

The unavailability of public dataset for Indonesian traffic 
sign detection may be an obstacle. Public dataset like German 
Traffic Sign Detection Benchmark (GTSDB) or Laboratory for 
Intelligent and Safe Automobiles (LISA) has different shapes 
and types of traffic sign than Indonesian traffic sign. 
Meanwhile, Malaysia already has had a public dataset, EMTD, 
which contains traffic signs that are similar to Indonesian 
traffic signs. Therefore, EMTD will be used as data source to 
build the detection model.  

The proposed solution is to feed Extended Malaysian 
Traffic Sign Dataset (EMTD) into CNN to produce traffic sign 
detection model. The architecture will be Faster R-CNN which 
is adapted from an open source model. It was trained and tested 
with GTSDB. To be trained and tested with EMTD, some 
modification and retraining is done. Final model then will be 
evaluated by applying the model to a road trip video that took 
place in Indonesia. 

II. LITERATURE REVIEW 

A. Traffic Sign and Dataset Review 

Traffic signs play a vital role in directing, informing and 
controlling road users' behavior in an effort to make the roads 
as safe as possible for everyone [5]. Three types of traffic sign 
are instruction, warning, and information. Each type has some 
unique characteristics that make it distinguishable. Generally, 
the instruction sign has a circular form, the warning sign has a 
triangular or rectangular form, and the information sign has 
rectangular or square form. But it may slightly vary in some 
countries.  



As the alternative of Indonesian traffic sign dataset, EMTD 
is used because of the similarity. Fig.1. shows how similar are 
the Malaysian traffic signs compared to Indonesian traffic 
signs. EMTD consists of 763 image files in both jpg and png 
with various sizes. It has also an annotation text file which 
saves the traffic sign pixel coordinates on each image file. 
There are 1452 annotated traffic signs in total. As the label, the 
annotation will be generated as ground truth bounding box and 
ground truth class later in the model. The dataset is split into 
train, validation, and test. The ratio of train to validation is 
85:15. While the test set is 20% of whole dataset.  

 

 

Fig. 1. Malaysian traffic signs (top)  compared to Indonesian traffic signs 

(bottom).    

B. Faster R-CNN 

The detection algorithm used in this research is Faster R-
CNN. Proposed by Ren with Girshick, the author of Fast R-
CNN, it improves Fast R-CNN by taking out the selective 
search [6]. Instead, it uses region proposal network (RPN) to 
find ROI. So the whole network is separated into three part 
which are base net / feature extractor, RPN, and classifier net 
/Fully Connected. RPN allows the network to determine ROI 
by learning, not using greedy approach like Fast R-CNN.  Fig. 
2 shows the architecture of Faster R-CNN.  

 

Fig. 2. Faster R-CNN Network [6] 

 

The Faster R-CNN contains a base CNN which extracts the 
feature maps from the raw image. The input of the CNN is the 
training image and the output of the CNN is the feature map 
corresponding to the input image. While the previous research 
of traffic sign detection used VGG16 and ZFNet for 
experiment [4], VGG16 and ResNet50 will be implemented as 
the base CNN in the experiment.  

The next important part of Faster R-CNN is RPN. The RPN 
generates different proposals which may contain the object to 
be detected by using four coordinates as a bounding box. 
Besides the proposals, the RPN also gives the information 
about the confidence of each proposal as binary classification 
scores. the input of the RPN is the feature maps generated by 
the base net, and the output of the RPN are positive proposals. 
The positive proposal is determined by several reference boxes 
called anchors. By comparing these anchors with the ground 
truth boxes, we get the positive proposals which may contain 
the traffic sign objects. The anchors stride across the feature 
maps. The positive proposals that really contains the traffic 
sign is a ROI.  

ROI pooling is done then to standardize different anchors in 

the same size, since the RPN generate several proposals with 

different sizes. To feed the region proposals into classifier 



network, all ROI must be standardized into a fixed size. The 

adjustment of the proposals includes cropping and resizing. 

Lastly, there is a classifier network which contains two 

separate fully connected layers. Specifically, one is for 

classification of traffic sign type denoted as class number and 

confidence score, another is for regression of the box location 

denoted as 4 coordinates (x,y,w,h). This classifier takes the 

ROI pooling results as the input and generates predicted boxes 

and make the classification. 

III. IMPLEMENTATION AND EVALUATION 

The implementation of the solution is based on the open 
source code shared by previous research [4]. Some changes are 
made to accommodate the dataset and the problem and also to 
enhance the performance. It is written in Python3 with Keras 
2.2.4 and OpenCV2. The computational resource is another 
important factor when doing a deep learning project. The 
Faster R-CNN model needs a lot of computational resources 
which requires GPU computing. Due to some limitations, this 
research only uses free version of Google Colab. It provides 
Intel(R) Xeon(R) @ 2.00GHz CPU. NVIDIA Tesla P100-
PCIE-16GB and NVIDIA Tesla T4 GPUs are used during 
training. The solution is implemented by following the design 
which is given on Fig.3.  

 

 

Fig. 3. Solution design 

 

A. Data Preprocessing 

Data preprocessing includes resizing, histogram 
equalization, augmentation, and pixel scaling. Resizing is a 
dimension reduction technique by changing the image size into 
fixed and smaller value. If length size is longer than width size 
then the image size becomes 600 px * (ratio of actual length 
size to actual width size) X 600 px. Else it becomes 600 X 
600px * (ratio of actual length/ to actual width size. After 
resizing it, we enhance the image quality by using histogram 
equalization technique. Then the augmentation is done to the 
image by applying random rotation of 90, 180, or 270 degrees. 

Finally  Fig.4. While the pixel value of the image is scaled by 
using zero-center techniques. All these data preprocessing tasks 
are done by data generator. Fig.4. shows the output of data 
generator. 

 

 

 

Fig. 4. The output of data generator, green box is ground truth box and 

purple box is anchor box 

B. Training Configuration 

As our traffic sign detection model is intended to be 

deployed on autonomous vehicle system, it aims to perform 

within a small amount of time with fairly high accuracy. But 

to reduce the problem space of this thesis, we decide to set the 

scope: 

• The solution will be tested on a non-real-time video. 

• The solution is assumed not to encounter bad weather 
condition. 

• The solution’s configuration is set for traffic sign 
detection in Indonesia. 

There are two types of configuration for training our 

model. The first one is default configuration which uses same 

configuration with Nie’s [4]. The second one is best 

modification configuration which chooses the best config of 

several attempts from experiment. Default configuration uses 

VGG16 as feature extractor, while the modification uses 

ResNet50. The anchor box scales for both configurations are 

8, 16, 32, and 64 pixels. The anchor box ratios for both 

configurations are 1:1, 1:2, and 2:1. The RPN stride has 

different value for each configuration, 8 pixels for default and 

16 pixels for modification. It is because it depends on the 

architecture of the CNN.  

The training is done in two steps in order to speed up the 

training time. For the first step, we train RPN only. In the next 



step, we train whole Faster R-CNN by loading the RPN 

weight obtained from the previous step. The maximum epoch 

number for RPN training is 20, while for the whole network 

training is 30. There are 500 batches during one epoch of 

training. The loss function used in our network is defined by 

Ren [4] as  

 

      cross_entropy(predicted _class, actual_class)        (1) 

 

for classification loss and 

 

 (2) 

 

for bounding box loss with the smooth function as 

 

 (3) 

The detections are considered to be true if the predicted 

bounding box overlaps with at least 50% of ground truth box. 

C. Experiment 

The experiment’s goal is to build Faster R-CNN model 
with Nie’s proposed configuration and one improved Faster R-
CNN model with the best configuration. Transfer learning is 
done by loading weights from pretrained ImageNet model 
before training the model with our dataset. Here is the 
experiment scenario. 

1) Build the default config model 

2) Build the modification config model 

3) Every model is trained until 20 epoch for the RPN and 

until maximum 30 epoch for whole CNN. The final weight 

output is from an epoch with the least validation loss 

4)  Choose one model that has the best mAP value among 

all modification config model 

 
Grid search technique is used to find the best configuration 

from experiment. The variation of hyperparameter value are 
shown by Table 1. The default value is the hyperparameter 
value proposed by Nie [4]. 

TABLE I.  HYPERPARAMETER VARIATION FOR EXPERIMENT  

Hyperparameter Default Value Custom Value 

RPN stride 8 16 

Optimizer Adam Adam, SGD 

Learning rate 0.00001 0.001, 0.00001 

Backbone CNN VGG16 ResNet50 

 

The training loss and RPN training accuracy chart of 
default configuration is shown by Fig. 5. After passing train 
phase, mAP is measured by evaluating model with data test 
from EMTD. Same thing happened to the other four custom 
models. It took 36 hours to train default configuration model. 
Plenty of hours are spent too just to train 4 custom models. 

Unfortunately, the free version of Google Colab only provides 
us 12 hours of machine runtime. So the runtime was paused 
and resumed until last epoch. From all custom models, The 
best modified model is picked by choosing a model with the 
best mAP value. Its training loss and RPN training accuracy 
chart is shown by Fig.6. Table 2 gives the brief of our 
experiment result.  

TABLE II.  EXPERIMENT RESULT 

Backbone 
CNN 

Optimizer 
Learning 

rate 
mAP 

RPN training 
accuracy 

VGG16 Adam 0.00001 0.534 0.964 

ResNet50 

Adam 0.00001 0.489 0.979 

Adam 0.001 N/A 0.961 

SGD 0.001 N/A 0.963 

SGD 0.00001 N/A 0.942 

 

 

 

Fig. 5. Traning result of default configuration model 

 

Fig. 6. Training result of modified model with the best configuration 



 The best mAP is given from default configuration model 
which gives 0.534 mAP. While the best RPN training accuracy 
is given from one of our custom models which gives 0.979 
accuracy. The best modified configuration has ResNet50 as the 
backbone CNN, Adam as the optimizer, and 0.00001 learning 
rate. The other 3 models are failed to generate mAP because no 
true positive result could be generated. Potential size of object 
that can be detected is also observed. The optimum detected 
object size is 13x13 to 1156x1136 pixels for default 
configuration and 26x26 to 1156x1136 pixels for our 
modification model. Next, these two models will be tested on 
the road trip video. 

D. Evaluation 

This evaluation phase is aimed to compare the performance 
of the two models from experiment phase especially the frame 
processing speed. The data for evaluation is a road trip video 
which was taken by a dashcam at Jakarta toll road. Fig.7 
depicts the footage of the evaluation video. The two models 
have been tested on the video. Default configuration model 
runs at 0.34 fps and our modified configuration model runs at 
1.51 fps. 

 

 

Fig. 7. Evaluation video’s footage 

 Unfortunately, the two models still do not work perfectly 
on the video. Several false positives and false negatives can be 
found either. The examples are shown by Fig.8. False negatives 
are believed to be caused by the damaged traffic sign condition 
plus unclear representation of traffic sign that may be caused 
by the environment or the quality of the video. While false 
positives happen because the shape of the detected object 
resembles traffic sign such as signboard.  

 

Fig. 8. Example of false negative (left) and false positive (right) 

IV. ANALYSIS 

The two models we created work well in detecting 
Indonesian traffic sign. This is indicated by the result of our 
experiment which gives fair scores of mAP and by the result of 
our evaluation which gives very good detections. Though the 
accuracy of the two models has met our expectations, we found 
out that by changing the original configuration made by Nie, 
our modified model has its processing speed increased by 
500%. The difference between the two models is only its base 
CNN which extracts the image’s feature. VGG16 is replaced 
by ResNet50. As claimed by He [7], ResNet reduces the 
computational load done by VGGNet. Hence our modified 
model’s speed outperforms the original one. 

The model we created is supposed to run on autonomous 
vehicle system. That means it should fulfill the requirements of 
having high accuracy as well as high speed and is able to act in 
real time. While the result of the experiment shows that many 
improvements are still needed by our model to meet that ideal 
condition. Another method aside from Faster R-CNN should be 
tried in the future as it is not suitable for near real time 
detection. Furthermore, the quality of the video may affect the 
model performance. We only hard coded the frame extractor by 
utilizing OpenCV library. Our frame extractor may drop the 
video quality. 

V. CONCLUSION AND FUTURE WORK 

Based on the experiment and evaluation results, it is 
concluded that traffic sign detection model built with Nie’s 
configuration has better mean average precision value than our 
model that is built with modified configuration. However, our 
model is much faster by 5 times. Computational load of the 
feature extractor really impacts on the model processing speed. 
Although the speed of the model has been increased greatly, 
for an autonomous vehicle system our model is still not fast 
enough to be implemented with its real-time sensors. But 
generally, the two models work well in detecting Indonesian 
traffic signs. 

 For future work, more Indonesian traffic sign samples 
should be gathered, or it can be said, a dataset of Indonesian 
traffic sign should be used in training to improve model ability 
so that it can detect and classify what sign it detects. Moreover, 
using relevant dataset the evaluation becomes more 
representative for the real condition. Consider using a machine 
with large computational resource so that the limitation of 
resource doesn’t hinder the experiment. The detection speed 
should be improved but the accuracy should not be reduced, so 
it is recommended to use another advanced method. We 
suggest using SSD or YOLO. It’s also better to try to find the 
optimum speed of the vehicle that allows model to detect the 
traffic sign. 
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