
Traffic Sign Detection Using Convolutional Neural

Network on Autonomous Vehicle System

Rabbi Fijar Mayoza

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

fijarmayoza.rabbi@gmail.com

Dr. Ir. Rinaldi Munir, M.T.

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

rinaldi@informatika.org

Abstract—Artificial intelligence (AI) gives autonomous vehicle

ability to drive by itself. It is believed that AI can reduce the risk

of accidents caused by human error. One example of AI

implementation on autonomous vehicle is visual system for

detecting traffic sign. Convolutional Neural Network (CNN), a

part of deep learning method, is used in this research to build

traffic sign detection model for Indonesia. However, dataset is

needed by this method to perform training. The unavailability of

Indonesian traffic sign dataset may become challenge in building

the model due to the distinct characteristics of traffic sign among

countries. The proposed solution is to feed Extended Malaysian

Traffic Sign Dataset (EMTD) into CNN to produce the detection

model by reason that it contains traffic signs that are similar to

Indonesian traffic signs. The solution adapts Faster R-CNN

model which has been developed for detecting foreign traffic sign.

The CNN model is coded with Python 3 using Keras-Tensorflow

library. Input data preprocessing includes resize, histogram

equalization, augmentation, and pixel scaling. This research

evaluates and compares the performance of Faster R-CNN with

VGG16 and ResNet50 backbone.

Keywords—Traffic sign detection; Faster R-CNN; RPN; mean

average precision; frame per second

I. INTRODUCTION

Autonomous vehicle is expected to eliminate human
dependency to control the vehicle. Therefore, it will reduce
tension and fatigue of driving which can prevent the driver
from making mistake. Around 90% of road accidents have
been caused by human error. Implementation of AI on
autonomous vehicle system is claimed to be able to reduce the
90% of road accidents [1]. One example of its implementation
is visual system for detecting traffic sign. The system uses
camera as sensor and receives video as input data. By machine
learning technique, the system has ability to identify the
existence of traffic sign from video.

There are eight challenges in developing a traffic sign
detection and recognition system. They are variable lightning
condition, fading and blurring, limited visibility, multiple
appearance at once, motion artifacts, damaged or partially
obscured, unavailability of public dataset, and real-time
application [2]. The previous research proposed traffic sign
detection using RGB normalization and thresholding for region
of interest (ROI) segmentation. This has weakness when the
size of traffic signs changes as the vehicle moves. It is

impossible to do labeling and calculate the labeled area
manually.

CNN as a part of deep learning method is so popular in
computer vision task. It is because the architecture of CNN is
especially designed to handle image-based data. Many traffic
sign detection and recognition research prove that CNN-based
model produces a model that good at handling bad quality sign
and partially obscured sign [2]. Besides, CNN runs feature
extraction faster and generates a greater number of information
than traditional image segmentation. It is why CNN is more
reliable to be implemented for autonomous vehicle system than
pure traditional image processing approach [3,4].

The unavailability of public dataset for Indonesian traffic
sign detection may be an obstacle. Public dataset like German
Traffic Sign Detection Benchmark (GTSDB) or Laboratory for
Intelligent and Safe Automobiles (LISA) has different shapes
and types of traffic sign than Indonesian traffic sign.
Meanwhile, Malaysia already has had a public dataset, EMTD,
which contains traffic signs that are similar to Indonesian
traffic signs. Therefore, EMTD will be used as data source to
build the detection model.

The proposed solution is to feed Extended Malaysian
Traffic Sign Dataset (EMTD) into CNN to produce traffic sign
detection model. The architecture will be Faster R-CNN which
is adapted from an open source model. It was trained and tested
with GTSDB. To be trained and tested with EMTD, some
modification and retraining is done. Final model then will be
evaluated by applying the model to a road trip video that took
place in Indonesia.

II. LITERATURE REVIEW

A. Traffic Sign and Dataset Review

Traffic signs play a vital role in directing, informing and
controlling road users' behavior in an effort to make the roads
as safe as possible for everyone [5]. Three types of traffic sign
are instruction, warning, and information. Each type has some
unique characteristics that make it distinguishable. Generally,
the instruction sign has a circular form, the warning sign has a
triangular or rectangular form, and the information sign has
rectangular or square form. But it may slightly vary in some
countries.

As the alternative of Indonesian traffic sign dataset, EMTD
is used because of the similarity. Fig.1. shows how similar are
the Malaysian traffic signs compared to Indonesian traffic
signs. EMTD consists of 763 image files in both jpg and png
with various sizes. It has also an annotation text file which
saves the traffic sign pixel coordinates on each image file.
There are 1452 annotated traffic signs in total. As the label, the
annotation will be generated as ground truth bounding box and
ground truth class later in the model. The dataset is split into
train, validation, and test. The ratio of train to validation is
85:15. While the test set is 20% of whole dataset.

Fig. 1. Malaysian traffic signs (top) compared to Indonesian traffic signs

(bottom).

B. Faster R-CNN

The detection algorithm used in this research is Faster R-
CNN. Proposed by Ren with Girshick, the author of Fast R-
CNN, it improves Fast R-CNN by taking out the selective
search [6]. Instead, it uses region proposal network (RPN) to
find ROI. So the whole network is separated into three part
which are base net / feature extractor, RPN, and classifier net
/Fully Connected. RPN allows the network to determine ROI
by learning, not using greedy approach like Fast R-CNN. Fig.
2 shows the architecture of Faster R-CNN.

Fig. 2. Faster R-CNN Network [6]

The Faster R-CNN contains a base CNN which extracts the
feature maps from the raw image. The input of the CNN is the
training image and the output of the CNN is the feature map
corresponding to the input image. While the previous research
of traffic sign detection used VGG16 and ZFNet for
experiment [4], VGG16 and ResNet50 will be implemented as
the base CNN in the experiment.

The next important part of Faster R-CNN is RPN. The RPN
generates different proposals which may contain the object to
be detected by using four coordinates as a bounding box.
Besides the proposals, the RPN also gives the information
about the confidence of each proposal as binary classification
scores. the input of the RPN is the feature maps generated by
the base net, and the output of the RPN are positive proposals.
The positive proposal is determined by several reference boxes
called anchors. By comparing these anchors with the ground
truth boxes, we get the positive proposals which may contain
the traffic sign objects. The anchors stride across the feature
maps. The positive proposals that really contains the traffic
sign is a ROI.

ROI pooling is done then to standardize different anchors in

the same size, since the RPN generate several proposals with

different sizes. To feed the region proposals into classifier

network, all ROI must be standardized into a fixed size. The

adjustment of the proposals includes cropping and resizing.

Lastly, there is a classifier network which contains two

separate fully connected layers. Specifically, one is for

classification of traffic sign type denoted as class number and

confidence score, another is for regression of the box location

denoted as 4 coordinates (x,y,w,h). This classifier takes the

ROI pooling results as the input and generates predicted boxes

and make the classification.

III. IMPLEMENTATION AND EVALUATION

The implementation of the solution is based on the open
source code shared by previous research [4]. Some changes are
made to accommodate the dataset and the problem and also to
enhance the performance. It is written in Python3 with Keras
2.2.4 and OpenCV2. The computational resource is another
important factor when doing a deep learning project. The
Faster R-CNN model needs a lot of computational resources
which requires GPU computing. Due to some limitations, this
research only uses free version of Google Colab. It provides
Intel(R) Xeon(R) @ 2.00GHz CPU. NVIDIA Tesla P100-
PCIE-16GB and NVIDIA Tesla T4 GPUs are used during
training. The solution is implemented by following the design
which is given on Fig.3.

Fig. 3. Solution design

A. Data Preprocessing

Data preprocessing includes resizing, histogram
equalization, augmentation, and pixel scaling. Resizing is a
dimension reduction technique by changing the image size into
fixed and smaller value. If length size is longer than width size
then the image size becomes 600 px * (ratio of actual length
size to actual width size) X 600 px. Else it becomes 600 X
600px * (ratio of actual length/ to actual width size. After
resizing it, we enhance the image quality by using histogram
equalization technique. Then the augmentation is done to the
image by applying random rotation of 90, 180, or 270 degrees.

Finally Fig.4. While the pixel value of the image is scaled by
using zero-center techniques. All these data preprocessing tasks
are done by data generator. Fig.4. shows the output of data
generator.

Fig. 4. The output of data generator, green box is ground truth box and

purple box is anchor box

B. Training Configuration

As our traffic sign detection model is intended to be

deployed on autonomous vehicle system, it aims to perform

within a small amount of time with fairly high accuracy. But

to reduce the problem space of this thesis, we decide to set the

scope:

• The solution will be tested on a non-real-time video.

• The solution is assumed not to encounter bad weather
condition.

• The solution’s configuration is set for traffic sign
detection in Indonesia.

There are two types of configuration for training our

model. The first one is default configuration which uses same

configuration with Nie’s [4]. The second one is best

modification configuration which chooses the best config of

several attempts from experiment. Default configuration uses

VGG16 as feature extractor, while the modification uses

ResNet50. The anchor box scales for both configurations are

8, 16, 32, and 64 pixels. The anchor box ratios for both

configurations are 1:1, 1:2, and 2:1. The RPN stride has

different value for each configuration, 8 pixels for default and

16 pixels for modification. It is because it depends on the

architecture of the CNN.

The training is done in two steps in order to speed up the

training time. For the first step, we train RPN only. In the next

step, we train whole Faster R-CNN by loading the RPN

weight obtained from the previous step. The maximum epoch

number for RPN training is 20, while for the whole network

training is 30. There are 500 batches during one epoch of

training. The loss function used in our network is defined by

Ren [4] as

 cross_entropy(predicted _class, actual_class) (1)

for classification loss and

 (2)

for bounding box loss with the smooth function as

 (3)

The detections are considered to be true if the predicted

bounding box overlaps with at least 50% of ground truth box.

C. Experiment

The experiment’s goal is to build Faster R-CNN model
with Nie’s proposed configuration and one improved Faster R-
CNN model with the best configuration. Transfer learning is
done by loading weights from pretrained ImageNet model
before training the model with our dataset. Here is the
experiment scenario.

1) Build the default config model

2) Build the modification config model

3) Every model is trained until 20 epoch for the RPN and

until maximum 30 epoch for whole CNN. The final weight

output is from an epoch with the least validation loss

4) Choose one model that has the best mAP value among

all modification config model

Grid search technique is used to find the best configuration

from experiment. The variation of hyperparameter value are
shown by Table 1. The default value is the hyperparameter
value proposed by Nie [4].

TABLE I. HYPERPARAMETER VARIATION FOR EXPERIMENT

Hyperparameter Default Value Custom Value

RPN stride 8 16

Optimizer Adam Adam, SGD

Learning rate 0.00001 0.001, 0.00001

Backbone CNN VGG16 ResNet50

The training loss and RPN training accuracy chart of
default configuration is shown by Fig. 5. After passing train
phase, mAP is measured by evaluating model with data test
from EMTD. Same thing happened to the other four custom
models. It took 36 hours to train default configuration model.
Plenty of hours are spent too just to train 4 custom models.

Unfortunately, the free version of Google Colab only provides
us 12 hours of machine runtime. So the runtime was paused
and resumed until last epoch. From all custom models, The
best modified model is picked by choosing a model with the
best mAP value. Its training loss and RPN training accuracy
chart is shown by Fig.6. Table 2 gives the brief of our
experiment result.

TABLE II. EXPERIMENT RESULT

Backbone
CNN

Optimizer
Learning

rate
mAP

RPN training
accuracy

VGG16 Adam 0.00001 0.534 0.964

ResNet50

Adam 0.00001 0.489 0.979

Adam 0.001 N/A 0.961

SGD 0.001 N/A 0.963

SGD 0.00001 N/A 0.942

Fig. 5. Traning result of default configuration model

Fig. 6. Training result of modified model with the best configuration

 The best mAP is given from default configuration model
which gives 0.534 mAP. While the best RPN training accuracy
is given from one of our custom models which gives 0.979
accuracy. The best modified configuration has ResNet50 as the
backbone CNN, Adam as the optimizer, and 0.00001 learning
rate. The other 3 models are failed to generate mAP because no
true positive result could be generated. Potential size of object
that can be detected is also observed. The optimum detected
object size is 13x13 to 1156x1136 pixels for default
configuration and 26x26 to 1156x1136 pixels for our
modification model. Next, these two models will be tested on
the road trip video.

D. Evaluation

This evaluation phase is aimed to compare the performance
of the two models from experiment phase especially the frame
processing speed. The data for evaluation is a road trip video
which was taken by a dashcam at Jakarta toll road. Fig.7
depicts the footage of the evaluation video. The two models
have been tested on the video. Default configuration model
runs at 0.34 fps and our modified configuration model runs at
1.51 fps.

Fig. 7. Evaluation video’s footage

 Unfortunately, the two models still do not work perfectly
on the video. Several false positives and false negatives can be
found either. The examples are shown by Fig.8. False negatives
are believed to be caused by the damaged traffic sign condition
plus unclear representation of traffic sign that may be caused
by the environment or the quality of the video. While false
positives happen because the shape of the detected object
resembles traffic sign such as signboard.

Fig. 8. Example of false negative (left) and false positive (right)

IV. ANALYSIS

The two models we created work well in detecting
Indonesian traffic sign. This is indicated by the result of our
experiment which gives fair scores of mAP and by the result of
our evaluation which gives very good detections. Though the
accuracy of the two models has met our expectations, we found
out that by changing the original configuration made by Nie,
our modified model has its processing speed increased by
500%. The difference between the two models is only its base
CNN which extracts the image’s feature. VGG16 is replaced
by ResNet50. As claimed by He [7], ResNet reduces the
computational load done by VGGNet. Hence our modified
model’s speed outperforms the original one.

The model we created is supposed to run on autonomous
vehicle system. That means it should fulfill the requirements of
having high accuracy as well as high speed and is able to act in
real time. While the result of the experiment shows that many
improvements are still needed by our model to meet that ideal
condition. Another method aside from Faster R-CNN should be
tried in the future as it is not suitable for near real time
detection. Furthermore, the quality of the video may affect the
model performance. We only hard coded the frame extractor by
utilizing OpenCV library. Our frame extractor may drop the
video quality.

V. CONCLUSION AND FUTURE WORK

Based on the experiment and evaluation results, it is
concluded that traffic sign detection model built with Nie’s
configuration has better mean average precision value than our
model that is built with modified configuration. However, our
model is much faster by 5 times. Computational load of the
feature extractor really impacts on the model processing speed.
Although the speed of the model has been increased greatly,
for an autonomous vehicle system our model is still not fast
enough to be implemented with its real-time sensors. But
generally, the two models work well in detecting Indonesian
traffic signs.

 For future work, more Indonesian traffic sign samples
should be gathered, or it can be said, a dataset of Indonesian
traffic sign should be used in training to improve model ability
so that it can detect and classify what sign it detects. Moreover,
using relevant dataset the evaluation becomes more
representative for the real condition. Consider using a machine
with large computational resource so that the limitation of
resource doesn’t hinder the experiment. The detection speed
should be improved but the accuracy should not be reduced, so
it is recommended to use another advanced method. We
suggest using SSD or YOLO. It’s also better to try to find the
optimum speed of the vehicle that allows model to detect the
traffic sign.

REFERENCES

[1] Litman, T.A. “Autonomous Vehicle Implementation Predictions:

Implications for Transport Planning”. 2019.

[2] Wali, Safat & Abdullah, Majid & Hannan, M. A. & Hussain, Aini &
Samad, Salina & Ker, Pin Jern & Mansor, Muhamad. “Vision-Based

Traffic Sign Detection and Recognition Systems: Current Trends and
Challenges”. Sensors. 19. 2093. 10.3390/s19092093. 2019

[3] Zuo, Z., Yu, K., Zhou, Q., Wang, X., & Li, T. “Traffic Signs Detection
Based on Faster R-CNN. 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops” (ICDCSW).
doi:10.1109/icdcsw.2017.34, 2017.

[4] Nie, Jiaxi & Cheng, Yuan & Lan, Rui. “Traffic Sign Detection Based on
Faster R-CNN”. Academic Research Paper. University of Illinois,
Urbana-Champaign, IL: Department of Electrical and Computer
Engineering, 2017.

[5] Department of Transport. Know Your Traffic Signs Official Edition.
London, UK: TSO, 2007.

[6] Ren, Shaoqing & He, Kaiming & Girshick, Ross & Sun, Jian. “Faster R-
CNN: Towards Real-Time Object Detection with Region Proposal
Networks”. 1-10, 2016

[7] He, Kaiming & Zhang, Xiangyu & Ren, Shaoqing & Sun, Jian. “Deep
Residual Learning for Image Recognition”. 2015.

[8] Simonyan, Karen & Zisserman, Andrew “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. 2015.

[9] Girshick, Ross. Fast r-cnn. 10.1109/ICCV.2015.169, 2015..

