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ABSTRACT  

Social distancing is a feasible solution to break the chain of the spread of COVID-19. However, 

human crowds are the main problem for close contact between humans who are close to each other. 

A crowd detection model is needed that can estimate the distance between two or more to prevent 

social distancing violations with a safe limit of less than 1.5 meters. The CNN model training was 

conducted using 9,600 images of humans, cyclists, and motorcyclists. The pre-trained model used 

for the experiment of transfer learning method is of Single Shot Detector (SSD) type with 

MobileNet, ResNet50, and ResNet101 architectures. In addition, the measurement of the estimated 

social distance uses the Euclidian distance with the average Indonesian human as a reference, which 

is 1.6 meters. Social distance calibration is also conducted using the principle of projection from 

different angles of view of the UAV camera while flying. Based on the analysis of test results, 

MobileNet V2 was chosen as a crowd detection model with a lightweight size, which is only 19 

Megabytes and the average detection runtime for a single image is only 0.606 seconds, in 

accordance with the load for the UAV companion computer. MobileNet V2 is also able to detect 

crowds of people well, as evidenced by the precision value reaching 84.9% (IoU=0.50:0.95) and 

the sensitivity (recall) value reaching 87.8% (MaxDets=100). In addition, a program has been 

successfully developed to count violations using social distance estimation. 
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INTRODUCTION 

The COVID-19 pandemic has swept across the world and changed the way people live in general. 

The spread of this virus is extremely fast and massive, especially in environments that are crowded with 

people. The World Health Organization (WHO) has suggested that steps to anticipate the spread of the 

virus, including close contact and crowds, should be minimized by implementing social distancing 

(Qian & Jiang, 2020). Several studies have proven that implementing social distancing has lowered the 

risk of spreading the virus and reduced mortality rates that may arise (Cowling et al., 2020; Greenstone 

& Nigam, 2020; IHME, 2020; Lee & Choe, 2021). Crowd is a condition that occurs when two or more 

people caught on camera are close together at less than 1.5 meters (Kemenkes RI, 2020). Crowd 

detection is a research topic regarding the observation of a large collection of people who violating 

social distance in a certain area.  

In crowd detection, a sensor is needed that can capture data to be translated into other forms into 

information on the state of the crowd. The information can be received in various forms, such as the 

result of human enumeration in a crowd (Xu et al., 2022), geographical location in a density map (Ozcan 

et al., 2015), and estimation of social distance between humans and each other (Al-Sa’d et al., 2022). 

Computer Vision is a specific branch of science that extracts a digital image, then produces information 

that can be processed into several methods, such as counting methods, measuring distances, or 

navigation (Krishna, 2017). On the other hand, Convolutional Neural Network (CNN) is a type of neural 

network that forwards signals into a stack of convolutional layers. The output of the last layer will be 

spread into a stack called the fully-connected layer (Venkatesan & Li, 2017). Currently, crowd detection 

using CNN and computer vision is the best solution to anticipate close contact between people in a 

crowd.  

Research on crowd detection in relation to social distancing monitoring has been conducted with 

different results and conditions. Papaioannidis (Papaioannidis et al., 2021) have created an image 

segmentation model that can detect crowds to determine the safe flying altitude of UAV’s with accuracy 
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rate ranging from 85% to 98%. However, the image segmentation results cannot be used to estimate 

social distance. Rezaee et al. (2021) have also trained an image segmentation model for each case of 

contact between humans using UAVs. The accuracy of detection reaches 97.5% of the 100% scale, but 

the social distancing violation model is displayed in the same detection box and the detection is not able 

to estimate the distance between people. Another approach to crowd detection was designed by Shao et 

al. (2021), which detects pedestrians using UAVs and transforming human head images. The detection 

accuracy reaches 88.5% for video processing with 75 FPS (frames per second). However, there is no 

indication of the specific location where a violation occurred, either in the form of contact lines between 

people or the entire human image. 

The objective of this paper is to create a CNN model that can detect crowds of people from the 

point of view of the UAV camera. The main goal is to build a lightweight model so that the 

computational process is below the memory capacity of the companion computer in the UAV with high 

precision and recall values. Next, the new CNN model will measure the estimated distance between 

humans who are close to each other, with the help of computer vision. From the results of the estimated 

social distance measurement, a program will be developed to display the counting of social distancing 

violations between two or more humans who are close together.  

This paper is divided into four parts, starting with an introductory chapter that explains the 

background of this research and related works that explain the crowd detection research that was 

previously researched. Then, the results and discussion chapter will discuss the human crowd detection 

model testing output and its analysis. Finally, there are conclusions and future works for the further 

development of this research. 

RELATED WORKS 

There are two object detection approaches, which are one-stage object detection and two-stage 

object detection. The one-stage object detection approach was chosen because high detection inference 

speed was prioritize (Lohia et al., 2021). Models that belong to the one-stage object detection approach 

are SSD (Single Shot Detection), RetinaNet, EfficientDet, and others. SSD architecture is based on a 
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feed-forward convolution network approach. A collection of bounding boxes with a fixed size along 

with their values will be generated to predict the existence of the object class in the box, followed by a 

non-maximum suppression step to generate predictions at the final detection stage. (Liu et al., 2016). 

The main difference between SSD architecture training methods and other detection architectures is 

that there is no need for a region proposal on the SSD, only a small convolution filter is needed. This 

filter will be run after the feature mapping layer in the convolution stage to get the class prediction 

results. Therefore, detection processing can be conducted quickly, and the resulting detection box will 

be more accurate. 

Human crowd detection models have been generated in the study of Papaioannidis et al. (2021) to 

be used as a sensor for determining the safe flight altitude of a UAV. The method used to perform the 

detection is a training model based on image segmentation on a convoluted neural network. The 

experiment was conducted by inserting the model into the embedded system. This model has a high 

detection accuracy, which is at a confidence value of 85% to 98% depending on the size of the image 

to be processed. The disadvantage of this study is that it can only detect crowds at general locations and 

is only intended as a UAV flight altitude determination device. Unfortunately, this model is not suitable 

for detecting humans at close range and cannot capture detailed images of human objects.  

Another crowd model training was conducted by Rezaee et al. (2021) using ShuffleNet, an image 

segmentation model to capture human objects and create a detection box for humans who are caught in 

close proximity to each other. Humans will be detected using the Kalman filter method to track human 

movements from above the UAV. The accuracy obtained is quite high, which is around 97.5% with an 

average processing time of about 84 milliseconds for each video frame. However, the model cannot 

calculate the distance between two or more captured human objects. This is because in image 

segmentation, the coordinate center of one human object cannot be determined from another human 

object. In addition, the resulting FPS is also quite low, it can only process videos with a size of 11 FPS. 

The optimization is needed to improve the performance of the related human detection model. 

Another approach to detecting crowds of people from above the UAV is to detect human head 

images and perform transformations so that they are like the representation of location coordinates on 
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a two-dimensional matrix (Shao et al., 2021). This model is trained using PeleeNet with a high level of 

precision, which is about 88.22% in video processing at 76 FPS. In experiments using UAV, the level 

of precision obtained is about 88.5% in video processing of 75 FPS. This model can also be applied to 

the human object counting system for those who violate social distancing rules. Unfortunately, the 

model cannot capture the entire human body image. As a result, the results of image extraction will 

only get human heads and make identification of violators difficult. In addition, there are no markers 

where the social distancing violations occurred, such as lines or other signs. Therefore, a complete 

human detection is needed and can display the location of the violation in the image set to be processed. 

PROPOSED METHOD 

Proposed Workflow 

In the data gathering process (as shown in Figure 1), the video containing human detection will be 

extracted into a single image set, each of which will be labeled. Next, a model training and evaluation 

process will be conducted to produce a model that can adapt to the human crowd image captured from 

the UAV camera. After that, the model that could detect human objects precisely with the fastest 

inference time will be selected. Then, the program will be developed to process the model's detection 

results into a detection box that can be displayed to the screen using Computer Vision. The process of 

counting camera-captured social distancing violators and storing captured images of social distancing 

violations will be managed by an algorithm developed in Python. Both the enumeration results and the 

captured images will be stored in a log in a specific folder that can also be accessed by the user. Finally, 

an overall program test will be conducted to ensure that the detection program runs well. 

Figure 1 

Proposed Workflow for Crowd Detection System 
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System Architecture Design 

When developing a whole crowd detection program, there is a system that helps few processes (as 

shown in Figure 2). In the initial stage, the video obtained in real-time from the camera on the UAV 

will be adjusted to FPS at certain frame intervals. After obtaining the image capture in a frame, the 

human object detection process will then be conducted. The detection model that will be used has 

previously been stored in the Internal Storage embedded in the UAV’s companion computer to make 

processing the detection results easier. The next step is to get all the detection boxes contained in the 

captured image of the detection results, the detection box to be processed is the classification of objects 

that indicate the "human" class. By estimating the distance between all detection boxes, a human object 

that has violated social distance will be obtained in the form of specific coordinates of the detection box 

and the estimated number of social distance violations for each detection box. The data will be processed 

to produce a capture of human objects, detection boxes, and social distance violation lines. 

Figure 2 

System Architecture Design for Crowd Detection 

 

For the social distancing violation capture image, an image containing two human object violators 

and one social distancing violation line will be produced. The more detailed image processing results 

will be stored in the internal storage. On the other hand, the social distancing violation line data will be 

collected and then the number of lines generated will be enumerated. The number of lines represents 

the social distancing violations that occur in one image capture at a given time. The results of this 

enumeration will be written into a file containing a log of the number of social distancing violation 

events along with the specific time of the event. This log will be stored in the internal storage dedicated 
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to the number of social distancing violations. The entire process previously described will run 

continuously until the UAV stops operating. The stop condition is occurred when the state of the UAV 

after getting the landing command and returning to Home. 

Datasets 

Images that represent human objects will be collected to conduct model training. Image data retrieval 

process uses a video extraction process for each frame to be saved in PNG format. PNG format was 

chosen is because the compression type in this format is lossless. This format can improve the accuracy 

of object detection at the representation of small pixels (Rahman & Hamada, 2021). Video recording of 

the crowd is generated by the UAV camera in flight, at an altitude of about 5 to 10 meters from the 

ground. Positive dataset (can be seen in Figure 3 part a) contains human objects when standing or 

walking and is categorized as a "human" class. On the other hand, negative dataset (can be seen in 

Figure 3 part b) contains objects such as cyclists or motorcyclists which are categorized as "non_human" 

class. Therefore, the amount of positive data with negative data is balanced so that there is no 

oversampling in certain classes. 

Figure 3 

Example of Positive Dataset (a) and Negative Dataset (b)  

  
(a) (b) 

Videos containing crowds were recorded in the morning to evening timeframe so that the camera 

could capture images with bright and clear conditions. After validating the objects contained in the 

image, 10000 images from video extraction in sizes of 640 × 480 pixels have been collected. Datasets 

that have been collected will be labeled according to their respective class categories using the labelImg 
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tool (Tzutalin, 2015). The output of the image data labeling process is in XML format following the 

PASCAL VOC convention (Everingham et al., 2010). Furthermore, the image datasets that have been 

assigned class category labels will be divided into three folders, more details can be seen in Table 1. 

Table 1 

Dataset Splitting 

Folder Positive Images Negative Images Total Images 

train 4800 (48%) 4800 (48%) 9600 (96%) 

dev 100 (1%) 100 (1%) 200 (2%) 

test 100 (1%) 100 (1%) 200 (2%) 

Total 5000 (50%) 5000 (50%) 10000 (100%) 

Transfer Learning from Pre-trained Model 

For the selection phase of the pre-trained model, considerations are made from the side of the most 

optimal speed with high enough precision (Table 2, which have bold font). SSD MobileNet V2 FPNLite 

is selected because the model provides a high detection speed and a better level of precision than other 

MobileNet models. With the addition of this FPNlite feature, objects with small sizes will be able to be 

detected better than the standard MobileNet V2 model (Li et al., 2019). Moreover, the SSD ResNet50 

and the SSD ResNet101 were chosen with a layer size of 640×640 compared to 1024×1024 because 

they fit the needs of model training and testing. The SSD ResNet152 was not selected due to the 

excessive number of layers and the final model memory being inefficient for the case of crowd detection 

using the UAV companion computer.  

Table 2 

Single Shot Detection Pre-trained Model in TensorFlow Model Zoo (TensorFlow, 2022) 

Model Name Speed (ms) COCO mAP Output 

SSD MobileNet v2 320×320 19 20.2 Boxes 

SSD MobileNet V1 FPN 640×640 48 29.1 Boxes 

SSD MobileNet V2 FPNLite 320×320 22 22.2 Boxes 

SSD MobileNet V2 FPNLite 640×640 39 28.2 Boxes 

SSD ResNet50 V1 FPN 640×640 (RetinaNet50) 46 34.3 Boxes 

SSD ResNet50 V1 FPN 1024×1024 (RetinaNet50) 87 38.3 Boxes 

SSD ResNet101 V1 FPN 640×640 (RetinaNet101) 57 35.6 Boxes 

SSD ResNet101 V1 FPN 1024×1024 (RetinaNet101) 104 39.5 Boxes 

SSD ResNet152 V1 FPN 640×640 (RetinaNet152) 80 35.4 Boxes 
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Figure 4 

Layer of SSD MobileNet V2 FPNLite 320×320 

 

In the MobileNet Architecture (as shown in Figure 4), the very first layer will receive inputs with 

dimensions of 320 × 320. After that, there is an additional convolution which is the base layer of the 

SSD architecture. Furthermore, the output of the additional convolution layer will enter 16 blocks which 

are useful for depthwise separable process along with batch normalization process. This normalization 

is useful for scaling the output of each previous layer so that the input to the convolutional layer 

afterwards becomes more adaptive. Finally, depthwise and pointwise feature processing will be 

performed. For depthwise, the process is performed at a kernel size of 3 × 3, while at pointwise, the 

kernel size used is simply 1 × 1 dimension. 

Figure 5 

Layer of SSD ResNet50 V1 FPN 640×640 (RetinaNet50) 

 

In the ResNet50 Architecture, the input layer dimension size is 640×640, and will be processed in 

conv_1 as the base layer of the SSD Architecture. Furthermore, the output of conv_1 will enter conv_2. 

In the conv_2 section, there are 3 main blocks, and each block has 3 layers. In the first block, there is a 

Layer_0 that will directly send the results to the temporary output in the same block (can be seen in 

Figure 5 in the yellow layer). This is in accordance with the residual learning principle on operations 
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within a particular block. For other blocks, the process runs sequentially like any other process. After 

all blocks have been processed, the output of the convolution will be input to the next convolution 

process. While the ResNet convolution process has been completed, the final feature extraction and 

normalization process will be conducted to determine the class classification along with the location of 

the detection box. The result of this process will be forwarded to the output layer. 

Figure 6 

Layer of SSD ResNet101 V1 FPN 640×640 (RetinaNet101) 

 

The layer architecture in ResNet101 is quite like ResNet50. First, the input data is received with 

dimensions of 640×640 and will be processed in conv_1 as the base layer of SSD Architecture. Next, 

the residual learning system will be applied to block_1 in layer 0 whose output will be stored while 

waiting for other block processing. The number of blocks in the convolution layer is more than the 

ResNet50 model. As seen in Figure 6, the number of blocks in conv_4 is 23 units, more than the 

ResNet50 model (only 6 blocks). After the convolution process is complete, the feature extraction and 

final normalization process is conducted to determine the class classification and the location of the 

detection box. 

Hyperparameter Tuning 

For all pre-trained models, hyperparameter adjustments will be made to fit the training process on 

a larger dataset. For tuning phase, development dataset (about 200 images) will be used to support the 

best-fit method armed with experience from numbers obtained in related research (Makirin et al., 2021; 

Wastupranata & Munir, 2021). There are several hyperparameters that need to be tuned, such as 

Learning Rate Base, Cosine Decay Step (Huang et al., 2017; Loshchilov & Hutter, 2017; Smith, 2018), 

Exponential Decay Step (López, 2020), Warmup Learning Rate (Gotmare et al., 2019; Goyal et al., 
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2017), and Warmup Step (Phong et al., 2022). The best combination of hyperparameters is expected to 

increase the speed of the training process on a larger amount of data without worrying about the 

precision and sensitivity of the model (Lyon, 2017; Ruder, 2016). Hyperparameter tuning is using GPU 

computing environment with a total epoch of 100000 steps. The hyperparameter combination in each 

model is selected based on the lowest total loss value, the highest precision value, and the highest 

sensitivity (recall) value, as can be seen in Table 3 with bold font.  

Table 3  

Hyperparameter Testing 

Optimizer Batch 

Size 

Learning 

Rate 

Base 

Cosine 

Decay 

Step 

Exp 

Decay 

Step 

Warmup 

Learning 

Rate 

Warmup 

Step 

Total 

Loss 

Precision 

IoU= 

0,50:0,95 

Recall 

AR@100 

SSD MobileNet V2 FPNLite 320×320 Configuration 

Momentum 12 0.040 100000 - 0.013 5000 0.074 0.821 0.858 

Momentum 12 0.080 100000 - 0.027 5000 0.047 0.832 0.866 

Momentum 12 0.040 100000 - 0.040 0 0.071 0.823 0.862 

Momentum 12 0.040 100000 - 0.027 5000 0.068 0.814 0.850 

RMS_Prop 12 0.004 - 5000 - - 1.959 0.000 0.036 

RMS_Prop 12 0.040 - 500 - - 0.879 0.389 0.577 

SSD ResNet50 V1 FPN 640×640 (RetinaNet50) Configuration 

Momentum 12 0.040 100000 - 0.013 5000 0.046 0.821 0.854 

Momentum 12 0.080 100000 - 0.027 5000 0.043 0.793 0.828 

Momentum 12 0.040 100000 - 0.040 0 0.050 0.780 0.813 

Momentum 12 0.040 100000 - 0.027 5000 0.039 0.807 0.835 

RMS_Prop 12 0.004 - 5000 - - 0.578 0.569 0.662 

RMS_Prop 12 0.040 - 500 - - 0.981 0.258 0.547 

SSD ResNet101 V1 FPN 640×640 (RetinaNet101) Configuration 

Momentum 8 0.040 100000 - 0.013 5000 0.062 0.801 0.835 

Momentum 8 0.080 100000 - 0.027 5000 0.066 0.803 0.831 

Momentum 8 0.040 100000 - 0.040 0 0.061 0.794 0.829 

Momentum 8 0.040 100000 - 0.027 5000 0.053 0.786 0.826 

RMS_Prop 8 0.004 - 5000 - - 0.608 0.599 0.678 

RMS_Prop 8 0.040 - 500 - - 0.726 0.579 0.700 

Ratio of Social Distance to Human Height 

A digital image consists of constituent elements in the form of pixels with a limited size and has a 

defined value for each pixel. Digital image representation is two-dimensional matrix with the elements 

represented by pixel values at each location (Sonka et al., 2014). To measure the distance between two 

defined pixels, the Euclidian distance formula can be used as shown in Equation 1.  

𝐷𝐸((𝑖, 𝑗), (ℎ, 𝑘)) = √(𝑖 − ℎ)2 + (𝑗 − 𝑘)2 (1) 

where, 
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(𝑖, 𝑗) = pixels at the starting point, 

(ℎ, 𝑘) = pixels at the target point 

To estimate the social distance between two or more people, the human height will be used as a 

basis for measurement. Distance measurement using the human height reference value should be 

considered further from the point of view of a particular UAV camera. Social distance reference 

according to human height caught by UAV camera can be seen in Figure 6. 

Figure 7 

Illustration of Human Height Captured as a Reference for Estimating Social Distance 

 

By using the ratio of height 𝑦 to get 𝑑, the value of 𝑑 will be generated as shown in Equation 2. 

𝑑 =
Δ𝑝𝑖𝑥𝑒𝑙𝑑
Δ𝑝𝑖𝑥𝑒𝑙y

× 𝑦 (2) 

𝑦 =
𝑦√2

√2
 =  

1.6 𝑚

√2
≈ 1.13 𝑚 (3) 

where, 

𝑑 = social distance estimation (meters), 

Δ𝑝𝑖𝑥𝑒𝑙𝑑 = the number of pixels between two humans that are 𝑑 apart (pixels), 

Δ𝑝𝑖𝑥𝑒𝑙𝑦= the number of pixels that represents the human height from the UAV camera (pixels), 

𝑦 = human height projection (meters) 

Thus, the human height captured by the camera will be approximated as high as 1.13 meters to the 

projection of the camera angle on the UAV by 45° (as shown in Equation 3). The value of 𝑦 will be 

substituted into Equation 2 to estimate the social distance. 



13 

 

Calibration of Human Coordinate Components Parallel to UAV Camera Viewpoint 

The vertical angle of view of the camera determines the human height reference due to the 

projection on the object that will appear on the detection screen. The flying height of the UAV will be 

used as a basis in determining the projection to determine the distance of humans who are close to each 

other from the parallel side of the UAV camera's point of view. Therefore, it is necessary to calibrate 

the component of human coordinates that are parallel to the point of view of the UAV camera and then 

substitutes into the Euclidian distance formula in Equation 1. Illustration of adjusting the projection of 

human object coordinates parallel to the UAV camera's point of view can be seen in Figure 8. 

Figure 8 

Illustration of Adjusting Human Object Coordinate Projection with UAV Camera Parallel View Angle 

 

The calculation to get the human coordinates projection that is parallel to the camera's point of view 

is in the letter FE to the AE line. The AE line is 1.5 meters long (social distancing requirement) so that 

the AD Line and DE Line have a length of 0.75 meters to the center of the camera axis. Since the camera 

angle has a 45° angle to the UAV's maneuverability, the HDE angle also has a 45° angle. Since the 

projection is always perpendicular to the plane on which it is projected, the angles at point H are all 

90°. Next, the Euclidean equation will be used to determine the social distance for the angle of view 

that is parallel to the UAV camera while flying, as shown in Equation 5. 
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𝑑𝐹𝐸̅̅ ̅̅ = √(
9

4(8ℎ + 3)
−
3

4
)
2

+ (
6ℎ

8ℎ +  3
)
2

(5) 

where, 

𝑑𝐹𝐸̅̅ ̅̅  = distance projection estimation (meters), 

ℎ = UAV altitude 

It is necessary to calibrate and adjust the value of the y-axis to the flying height of the UAV (ℎ 

variable) in the coordinates of the estimated social distance. Therefore, the calculation of the new 

Euclidian formula previously seen in Equation 1, can be seen in Equation 6. 

𝑑ℎ =

√
  
  
  
  
  
  
  

(𝑥1 − 𝑥2)
2 +

(

 
 
 
 √(

9
4(8ℎ + 3)

−
3
4
)
2

+ (
6ℎ

8ℎ +  3
)
2

3
2

(𝑦1 − 𝑦2)

)

 
 
 
 

2

(6) 

where, 

𝑑ℎ = social distance estimation from UAV altitude of ℎ (pixels), 

𝑥1, 𝑥2 = pixel of 𝑥 in starting point and target point (pixels), 

𝑦1, 𝑦2 = pixel of 𝑦 in starting point and target point (pixels) 

Euclidian distance in Equation 6 depends on the value of ℎ variable, so the calibration of the 𝑦 

variable will be different for any given height. The UAV flight test is conducted at a constant altitude, 

so that changes in the value of ℎ will not occur during the program compilation process. To get the 

original social distance in meters, substitute again in Equation 2 as Δ𝑝𝑖𝑥𝑒𝑙𝑑. 

Experimental Setup 

The object detection test will be conducted with the Test dataset which has a different image set 

from the Train and Development dataset. Then, runtime detection test will be conducted on a single 

image for different resolutions. One of the best models will be selected which will then be implemented 

in the program to display the results of human object detection with the approximate distance between 

the human objects. The pilot will turn on the UAV along with the remote control which is the main 

component in the crowd detection system. The Mobile Phone will be connected to the remote control 
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as a tool in handling video matters. The pilot will maneuver the UAV and search for crowd points via 

video transmitted from the UAV camera via the Wi-Fi Direct system. The input video is not processed 

directly on the UAV but is done on a local computer in real time. This processing method is to overcome 

the UAV specifications that are not able to embed a companion computer (microprocessor). 

Furthermore, evaluating the entire human detection system can be seen in Figure 9. 

Figure 9 

Architecture diagram of crowd detection system testing  

 

The UAV must be in a radius of less than 50 meters from the remote-control location to avoid loss 

of contact. After the UAV has successfully flown at a certain altitude, the mobile phone will send raw 

video to a local computer that contains a program to calculate the number of social distancing violations. 

The result of the violation will be displayed on the Pilot and first stored on local storage. The testing 

process will keep looping until the UAV has landed perfectly and program execution has been stopped. 

To minimize detection delays, a detection will be performed for each specific frame interval. For every 

N frame, one detection will be performed, including the measurement of the distance between humans, 

and other operations. This interval setting is also useful for getting objects with other positions that may 

be caught on camera, so time does not run out just to detect at the same position. In addition, the memory 

used to store the image of the violator will also be less, so the memory can be used for other purposes. 
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Hardware and Resources 

The UAV which is used for crowd video recording is the TXD 8S(L) Drone Wi-Fi HD Camera. 

For training phase, Google Colab provides a single 12GB NVIDIA Tesla K80 GPU that can be used up 

to 6 hours continuously. The program development and testing phase are using a Computer with Intel® 

Core™ i7-9750H CPU @ 2.60GHz, with 8.192 MB RAM.  

RESULTS AND DISCUSSION 

Crowd Detection Model Test Results 

There are three test metrics conducted at the final evaluation stage of the model, depicted by a bar 

graph as can be seen in Figure 10.  

Figure 10 

Graph of Final Evaluation Results of Model Training 

 

The IoU metric represents how big the wedge area is between the detection box on ground truth 

and the detection box formed from the prediction data. The equation of the IoU metric can be seen in 

Equation 6.  

𝐼𝑜𝑈(𝑝, 𝑎) =
(𝐵𝑜𝑥𝑇 ∩ 𝐵𝑜𝑥𝑃)

(𝐵𝑜𝑥𝑇 ∪ 𝐵𝑜𝑥𝑃)
 (6) 

where, 

𝐼𝑜𝑈(𝑝, 𝑎) = Introduction over Union [0..1], 

𝐵𝑜𝑥𝑇 = pixel of 𝑥 in starting point and target point (pixels), 

𝐵𝑜𝑥𝑃  = pixel of 𝑦 in starting point and target point (pixels) 
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All human crowd detection models yield more than 80% precision and recall values. In addition, 

all human detection models also have a low loss value, which is below the 0.2 scale. Precision metric 

is used to determine the ratio between the correct prediction data detection boxes compared to the 

overall detection results as shown in Equation 7. In addition, the recall metric is used to determine the 

ratio between the correct prediction data detection boxes compared to the overall label data that should 

be formed (ground truth) as shown in Equation 8. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (8) 

where, 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = positive class detection results are in accordance with the basic truth,  

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = detection result is a positive class, but the basic truth should be a negative class,  

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = detection result is a negative class, but the ground truth should be a positive class 

Precision value exceeding 80% indicates that the number of True Positives is four times greater 

than the number of False Positives (Equation 7). That is, the number of images detected as "human" 

corresponds to the ground truth of the category which is also "human". Only less than 20% of “human” 

images were incorrectly detected as “non_human”. Furthermore, if the recall value exceeds 80%, the 

number of True Positives is four times greater than the number of False Negatives (Equation 8). This 

indicates that the number of images detected are of the "human" class and identical. with the basic truth 

which is also “human” category. Less than one-fifth of the image is detected as “non_human” even 

though it has the basic truth of “human”. In determining True Positive and False Negative, IoU will be 

involved for certain value limits. If the IoU between the predictive data detection box and the ground 

truth is higher than 0.5, the area can be defined as 𝑇𝑃. Otherwise, it will be 𝐹𝑃 (Shen et al., 2020). 

Regarding the loss value which has a scale of less than 0.2, there are two variables that have an 

impact on the total loss calculation. This loss function impacted by the classification loss value and the 

localization loss value.  
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𝐿(𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝛼𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)) (9) 

where, 

𝑁 = number of detection boxes in a detection,  

𝑥 = image to be detected, 

𝑐 = the predictive value of the predictive confidence,  

𝑙 = the detection box formed from the results of object detection, 

𝑔 = label data detection box for ground truth, 

As seen in Equation 9, the error caused in the category classification phase is ridiculously small. 

The low value of classification loss can also be caused by a high detection confidence level. On the 

other hand, the low value of localization loss is supported by the appearance of a detection box that 

matches the ground truth coordinates that have been defined in the image data set in XML format. The 

best precision and sensitivity values were obtained by the ResNet50 model, with a precision value 

reaching 87.6% and a sensitivity (recall) value reaching 89.6%. However, the lowest loss value among 

all crowd detection models is obtained from the MobileNet V2 metric model, which is 0.113. However, 

MobileNet is a crowd detection model with the smallest size compared to the other two models, only 

having a size of 27 Megabytes (Figure 11). 

Figure 11 

Human Crowd Detection Model Size Chart 

 

Furthermore, the testing of the human crowd detection model was conducted by entering two 

images, namely the first image containing humans and the second image containing motorcycle riders. 

The results of the runtime testing of each model can be seen in Table 4. 
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Table 4  

Human Detection Runtime Test Results 

Model Resolution Load Time 

(s) 

Image #1 

Runtime (s) 

Image #2 

Runtime (s) 

Detection Runtime 

Average (s) 

MobileNet 

V2 

480 × 360 7.387 1.044 0.117 0.581 

640 × 480 6.863 1.099 0.119 0.609 

960 × 720 7.471 1.101 0.129 0.615 

1440 × 1080 7.286 1.102 0.141 0.621 

Average 7.252 
  

0.606 

ResNet50 

480 × 360 7.201 1.478 0.389 0.934 

640 × 480 7.515 1.501 0.392 0.947 

960 × 720 9.123 1.685 0.430 1.058 

1440 × 1080 9.438 1.701 0.444 1.073 

Average 8.319 
  

1.003 

ResNet101 

480 × 360 12.472 1.936 0.541 1.239 

640 × 480 13.685 1.972 0.541 1.256 

960 × 720 13.748 2.192 0.615 1.403 

1440 × 1080 15.022 2.207 0.661 1.434 

Average 13.732 
  

1.333 

Model setup time is the time measured during the model initiation phase until the model is ready 

for use. Detection time is the time measured when the human crowd detection module is run until the 

output is the coordinates of the detection box and the number of objects detected (Figure 12). The 

duration of image processing is very dependent on the size of the image resolution received by the 

human crowd detection model. The larger the resolution size of the human crowd image, the greater the 

human detection time. For this reason, it is necessary to pay attention to the size of the input video 

resolution when using the human crowd detection model if it has a time constraint.  

Figure 12 

Example of “human” Detection (a) and “non_human” Detection (b) result 

  
(a) (b) 

Considering the results of precision values, sensitivity, total loss, and model size, MobileNet V2 

was chosen as the best human crowd detection model. Furthermore, the testing of the social distance 
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estimation module and the program for calculating the number of social distancing violations will use 

the MobileNet V2 model. 

Social Distance Estimation and Calibration Test Results 

Furthermore, the test is conducted at different altitude. The flying altitude of the UAV is used as 

one of the factors to determine social distance calibration and has an indirect impact on the sensitivity 

of the human detection model. Social distance estimation is conducted for every two people detected in 

proximity. An example of an image from the estimation of social distance at a height of ±5 meters can 

be seen in Figure 13. The lines of social distancing violations are interconnected with each other. For 

this reason, it is necessary to calculate the number of violators and the number of social distancing 

violations to find out the number of people that participate in the crowd. Calibration will make a 

correction to the difference in the angle of the UAV camera while flying. By calibrating, the excess 

distance caused by the illusion of a viewing angle can be overcome as shown in Equation 6. 

Figure 13 

Example of the Estimation of Social Distance at a Height of ±5 Meters 

 

Evaluating the Program for Calculating the Number of Social Distance Violations 

With the formation of a crowd of people in one place, the potential for social distancing violations 

is extremely high. The program will be evaluated to ensure that the integration between the human 

detection module, the social distance estimation and calibration module, and the social distance 
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enumeration module is not a problem. Human crowd video in MP4 format will be input to the program 

and produce video output in MP4 format, as seen in the architecture of the crowd detection system 

testing system (Figure 9). An example of the calculation results of violators and social distancing 

violations can be seen in Figure 14. 

Figure 14 

Example of Violation Calculation Results (Red Text) and Social Distance Violation (Orange Text) 

 

The program succeeded in calculating the number of violators and social distancing violations. As 

seen in Figure 14, five humans were detected as social distancing violators. In addition, there are also 

5 social distancing violations for every two humans who are close together. Because all human objects 

are within the padding limit, the total human height has been calculated and can be used as a reference 

to calculate social distance. By using the Oxford Town Center Dataset (Benfold & Reid, 2011), this 

paper has advantages compared to previous studies (see Table 5). 

Table 5  

The Comparison Between This Paper and Other Previous Studies on Oxford Town Center Dataset 

Research Backbone Precision Measured Social 

Distance 

Counting Social 

Distancing Violators 

Rezaee et al. (2021) ShuffleNet 88.45% - - 

Elbishlawi et al. (2021) DETR + ResNet50 43.4% - - 

Özbek et al. (2021) Darknet-53 + YOLOv3 55.3% ✓ - 

Madane & Chitre (2021) ResNet50 94.23% - - 

Ahmad et al., (2022) YOLOv3 97% ✓ - 

Wastupranata & Munir 

(Proposed) 

MobileNet V2 82% ✓ ✓ 
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CONCLUSIONS 

Three human detection models were successfully created using the MobileNet, ResNet50, and 

ResNet101 pre-trained models. All models can detect humans, cyclists, and motorcyclists with 

precision and sensitivity values above 80%. All trained models also did not experience overfitting 

during training, as evidenced by the loss function value below the 0.2 scale. MobileNet V2 was chosen 

as the detection model for further implementation in the social distance calculation program. This is 

because the MobileNet V2 model has a file size only 19 Megabytes, so the detection process can be 

conducted smoothly according to the computational load that can be managed by the UAV companion 

computer. The precision value of MobileNet V2 reaches 84.9% (IoU=0.50:0.95), with a sensitivity 

value (recall) reaching 87.8% (MaxDets=100). 

The estimation of social distance was successfully conducted by using the average human height in 

Indonesia as a reference, which is 1.6 meters. The social distance calibration formula for the social 

distance component that is parallel to the UAV camera's point of view has been successfully 

implemented in the program so that the estimated social distance is close to the original distance. 

However, the flying height of the UAV must be determined in advance so that the estimated social 

distance can be properly calibrated. The social distancing violation calculation program has been 

successfully integrated with the crowd detection model and the social distance estimation and 

calibration calculation module.  

FUTURE WORKS 

In the future, an improved architectural model will be conducted that can detect crowds of people 

more quickly. In addition, hyperparameter tuning can be done with other variables to increase the 

accuracy and sensitivity of the resulting model. Furthermore, the number of images for model training 

should be increased, so that the UAV can detect human crowds in a more heterogeneous environment. 

Thus, the program can be further developed to conduct human tracking so that the movements of social 

distance violators can be further traced. The measurement of social distance will be developed using 

proximity sensors that are integrated with the UAV companion computer. The UAV's flight altitude 
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measured from the ground can also be determined using the proximity sensor. It is also possible to 

develop a crowd detection model in darker places, using a thermal sensor. The detection of social 

distancing violators can also be conducted on humans with temperatures higher than the normal 

reference so that it can be seen whether the human being is suspected of being a COVID-19 suspect. 
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