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Abstract—To attain higher security level, public key 
cryptography, like RSA uses bigger key size. However, elliptic 
curve cryptography, like Elliptic Curve ElGamal, uses much 
smaller key size compared to RSA. However, the key size remains 
big, which makes encrypting and decrypting messages takes more 
time. A way to increase the speed of an algorithm is parallelization. 
The solutions in this paper are implemented in three variations. 
They are distributed-memory parallel program, shared-memory 
parallel program, or hybrid parallel program. Each program will 
output its encryption and decryption duration in seconds. These 
times will be used to calculate throughput, the number of 
characters processed each second. Throughput is further used for 
calculating speedup. The experiment determines whether the 
solution is successful in increasing speed. From the result, it was 
found that all solutions are capable of increasing algorithm speed, 
with shared-memory parallel program being the best, followed by 
distributed-memory parallel program and hybrid parallel 
program. 

Keywords—cryptography; distributed-memory; shared-memory; 
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I.  INTRODUCTION 
Cryptography is a method to secure a message. An example 

of cryptography is the encryption and decryption of messages. 
Based on the key used, cryptography can be classified into 
symmetric key cryptography and asymmetric key cryptography. 
Asymmetric key cryptography has more complex computations 
which makes it more secure than symmetric key cryptography. 
However, the complexity backfired, making its performance, 
especially speed, worse than symmetric key cryptography. 

To attain higher security level, asymmetric key cryptography 
needs to be using big numbers as keys. To solve this issue, 
elliptic curve cryptography is invented. Using elliptic curve as 
its base, elliptic curve cryptography significantly reduces the 
size of the key used in the algorithm. According to [1], 256-bit 
elliptic curve cryptography is equivalent to 1620-bit RSA. Both 
key sizes are big integers. 

From 1986 to 2002, processor performance increased by 
50% in average every year. However, as of 2002, the increase in 
performance decreased to just 20% in average every year. 
Performance can be increased by using processors with higher 
speed, in other words, upgrading to faster processors. However, 

the performance gain is insignificant compared to the price of 
the processor. This was the case in using only one processor [2]. 

However, processor trend began to shift in 2005. The 
manufacturers developed and integrated multiple processors in 
a single integrated circuit [2], called CPU. This gives more 
variations of approaches in increasing speed. Instead of 
upgrading processors, people can now use more processors to 
increase speed by running multiple instances of a program at one 
time. 

Requirements for program to be able to utilize multiple 
processors are emerging. This is due to serial programs being 
unaffected. Serial programs are unaffected because they use 
only one processor. Running the program multiple times will 
just run multiple instances of the same program, with the same 
instructions and data. Parallel program is defined as a group of 
subprograms that collaborate with each other and running 
simultaneously, where it can utilize multiprocessors. 

The speed of Elliptic Curve ElGamal (ECEG), an 
asymmetric key cryptography algorithm, can be potentially 
increased by running it in parallel. There are some researches 
specializing in elliptic curve, ElGamal, and parallel programs. 

[3] focuses on reducing the number of operations in elliptic 
curve scalar multiplication. It does not parallelize the encryption 
and decryption phase of the algorithm, where both are essential 
in ECEG. There are some limitations and conditions for using 
the algorithm the paper proposed. 

[4] has the same focus as [3]. In fact, it adds another 
alternative to the latter by changing coordinate system from one 
to another and vice versa. However, it retains properties from 
[3], with the addition of complexity from changing coordinate 
systems. 

[5] was very similar to this paper. It parallelized ElGamal 
algorithm using CUDA, a platform for GPU programming. It 
utilizes the fact that GPU has higher computational capabilities 
than a CPU. However, CUDA is very limited as it is only 
available on GPUs developed by Nvidia.  



II. LITERATURE STUDY 

A. Elliptic Curve ElGamal 
Elliptic Curve ElGamal is a public key cryptography 

algorithm. It consists of a private key and public key. The private 
key in Elliptic Curve ElGamal is an integer g. The public key 
consists of three components Ep, α, and β. Ep is an elliptic curve 
on ℤp. α is a point on Ep, and β is the result of scalar 
multiplication between g and α. Integer p is a prime number [6] 
[7]. 

Private key is used to decrypt a message, while public key is 
used to encrypt a message. Encrypting is a process of 
transforming readable message to an unreadable message, called 
ciphertext. Decrypting is the opposite, it transforms an 
unreadable message to readable message, called plaintext [6] 
[7]. 

To encrypt a message x, a point in Ep, the ciphertext tuple 
(y1, y2) is calculated using (1) and (2). The ciphertext can be 
decrypted into plaintext by using (3) [6] [7]. 

 y1 = kα (1) 

 y2 = x + kβ (2) 

 x = y2 – gy1 (3) 

 

B. Parallel Programming 
In a parallel system, a parallel program is defined as a group 

of subprograms that collaborate closely with each other and 
running simultaneously to solve a problem. An important aspect 
in parallel programming is load balancing, synchronization, and 
communication [2].  

Load balancing involves dividing the work among instances 
in a way that minimizes the amount of communication between 
instances and every instance gets roughly the same amount of 
work. Tasks and data must be divided evenly into each program 
instance. This is done to minimize idle time of processors, as a 
parallel program is meant to utilize multiple processors at the 
same time [2]. 

Synchronization involves making all processors start the 
next instruction together because each processor works at its 
own pace. In distributed-memory programs, synchronization is 
implicitly conducted by communication. In contrast, in shared-
memory programs, communication is done by synchronizing 
threads [2]. 

There are many models in writing parallel programs. They 
are the data-parallel model, task graph model, work pool model, 
master-slave model, pipeline model, producer-comsumer 
model, and hybrid model. Hybrid model combines multiple 
models [8].  

Some metrics have been defined to measure speed for 
parallel programs. Some of these metrics are execution time and 
speedup. Execution time denotes the time that elapses from the 
start of a parallel computation until the last processed element. 
Speedup represents the speed gain achieved by parallelizing a 
program [8]. 

C. Distributed-Memory Parallel Programming 
Distributed-memory programming is one way to parallelize 

a serial program. Distributed-memory parallel program splits 
either tasks or data to processes. Each process is isolated from 
another process, so they cannot access each other’s memory 
stacks. To communicate with each other, message-passing 
interface (MPI) is used [2] [8]. 

In MPI, if the number of processes is p, each process is 
ranked from 0 to p – 1. The rank of each process corresponds to 
its number. A process can communicate by sending and 
receiving messages. Other than sending and receiving messages, 
processes can also communicate by broadcasting messages to all 
processes [2] [8]. 

An implementation of MPI is OpenMPI, a library for C and 
Fortran programming language. In OpenMPI, sending and 
receiving messages are done by calling MPI_Send and 
MPI_Recv function respectively. Other than calling MPI_Send 
and MPI_Recv to individually send and receive messages, 
MPI_Broadcast and MPI_Gather can also be used. [2] [8]. 

D. Shared-Memory Parallel Programming 
Shared-Memory programming is a way to parallelize a serial 

program. Shared-memory parallel program splits tasks or data to 
threads, often called a mini-process. Each threads share 
memory, thus able to access each other’s memory. In shared-
memory parallel programs, threads communicate by reading 
values from and writing values to memory addresses [2]. 

Each thread, like process, is numbered from 0 to p – 1 if there 
are p threads. Each thread can read and write values to a memory 
address. It means that a memory address could be written by 
multiple processes at the same time. This memory address is 
called critical section. Critical sections must be handled very 
carefully by programmers to avoid race condition. Race 
condition can cause an undesired behavior in a parallel program 
[2]. Proposed Method 

The method proposed by [3] and [4] to parallelize an elliptic 
curve scalar multiplication has limitations on the points that can 
be used. Moreover, there is also a need to transform one 
coordinate system to another. The most important reason is that 
it is not used for cryptographic process. 

Solution proposed by [5] parallelize ElGamal Algorithm in 
GPU using CUDA. Although similar, Elliptic Curve ElGamal 
has different domain than normal ElGamal Algorithm. Not only 
that, CUDA is limited to GPUs developed by Nvidia. Which 
means that it is limited to some devices. 

 

 



III. PROPOSED SOLUTION 
 

To parallelize Elliptic Curve ElGamal in CPU, three 
solutions are proposed, distributed-memory parallel program, 
shared-memory parallel program, and hybrid parallel program. 
The solutions will be called Parallel One, Parallel Two, and 
Parallel Three respectively. Each solution is implemented in 
C++ programming language. 

A. Parallel One 
This alternative uses distributed-memory programming, thus 

uses OpenMPI. In this alternative, processes interact by calling 
MPI_Send and MPI_Recv, two functions provided in 
OpenMPI. Step by step of this alternative is, as follows: 

1. Process 0 receives input of message, public key, and 
private key. 

2. Process 0 balances the load of every process by dividing 
messages to each process equally. 

3. Each process, for each character they received, encodes 
the character, encrypts the character, decrypts the 
ciphertext, decodes the plaintext, and asserts the 
equality of the plaintext and the processed character. 

4. Each process calculates execution time encryption and 
decryption, encoding and decoding characters included.  

5. Every process except process 0 sends their execution 
time to process 0. 

6. Process 0 will output the maximum execution time of 
all processes for encryption and decryption. 

B. Parallel Two 
This alternative uses shared-memory programming and 

OpenMP, a directive-based shared-memory Application 
Programming Interface (API). Step by step of this alternative is 
as follows: 

1. The main program receives a message, public key, 
private key, and the number of threads as input. 
Message, public key, and private key will be shared to 
all threads. 

2. The main program will fork several threads. The 
number of forked threads will be taken from the input. 

3. The main program divides the message to all forked 
threads equally. 

4. Each thread, for each character they received, encodes 
the character, encrypts the character, decrypts the 
ciphertext, decodes the plaintext, and asserts the 
equality of the plaintext and the processed character. 

5. Each thread will change the value of maximum and 
minimum execution time, which is a variable shared to 
all threads. 

6. The main program will output the maximum and 
minimum execution time for both encryption and 
decryption. 

C. Hybrid Parallel Program 
This alternative combines the use of distributed-memory 

programming and shared-memory programming. In this 
alternative, distributed-memory programming is first used to 
split the main program into instances of process. Then, shared-
memory programming is used to fork several threads inside each 
process. Simply put, this alternative runs Parallel Two for every 
process. The step by step of this alternative is: 

1. Process 0 receives input of message, public key, private 
key, and number of threads. 

2. Process 0 balances the load of every process by dividing 
messages to each process equally. 

3. Each process forks several threads and further divides 
the message partition they received. 

4. Each thread, for each character they received, encodes 
the character, encrypts the character, decrypts the 
ciphertext, decodes the plaintext, and asserts the 
equality of the plaintext and the processed character. 

5. Each thread will change the value of maximum and 
minimum execution time, which is a variable shared to 
all threads in every process. 

6. Every process except process 0 sends their execution 
time to process 0. 

7. Process 0 will output the maximum execution time of 
all processes for encryption and decryption. 

 

IV. EXPERIMENT 

A. Environment 
Experiment is done on a hardware with hardware 

specification software versions as shown in Table I and Table II. 
OpenMPI is an implementation of message-passing interface 
written for C, C++, and Fortran programming language. 
OpenMP is an API for writing shared-memory parallel programs 
in C and C++. Boost is a library for C++ that wraps and adds to 
C++ standard libraries and data structures, including MPI, 
multiprecision data types, and data serialization. 

B. Metrics 
There are three metrics used for experiments in this paper, 

they are execution time, throughput, and speedup. Execution 
time is the duration in which a program is running, represented 
in seconds. Throughput is the number of characters processed 
every second, represented in characters per second. Speedup is 
the ratio between throughput of parallel program and throughput 
of serial program.  

The output of both serial and parallel programs is execution 
time. Execution time will then be used to calculate throughput 
by using the message length in a test case. For parallel programs, 
speedup will then be calculated by comparing its throughput to 
serial program’s throughput. 

 



TABLE I.  HARDWARE SPECIFICATION 

Processor Intel® Core™ i3-2370M DualCore CPU 
@2.40GHz 

RAM 16 GB 

TABLE II.  SOFTWARE VERSION 

Operating 
System Debian GNU/Linux 11 (bullseye) 

C++ 
Programming 
Language 

14 

GNU g++ 
Compiler (Debian 10.2.1-6) 10.2.1.20210110 

OpenMPI 4.1.0 
OpenMP 4.5 
Boost 1.80.0 
Boost 
Serialization 1.32.0 

Boost MPI 1.35.0 
Boost 
Multiprecision 1.53.0 

 

C. Test Cases 
There are several variables for experiments in this paper. The 

variables are used to determine the effect of the variable to the 
result. There are three different kinds of variables, they are 
message length, number of threads, and key size. There is no 
difference in the number of processes due to the limitation of 
testing environment. 

There are five different values for message length. The 
values are 1024 characters, 4096 characters, 16384 characters, 
32768 characters, and 65536 characters. There are also five 
possible values for the number of threads. They are 2 threads, 4 
threads, 10 threads, 100 threads, and 1000 threads. There are two 
key sizes, 64 bits and 256 bits. 

For each variation, every solution will be run for 10 times. 
Each solution is designed to output its execution time for both 
encryption and decryption. So, there will be 10 pairs of 
encryption and decryption duration. Average of the 10 will be 
used to calculate throughput. The throughput of each solution 
will then be compared to the throughput of the serial program to 
measure the speed increase, speedup. 

D. Result and Analysis 
Table II to Table XI  show that all speedup is greater than 1. This 
proves that the parallelization is successful in increasing 
algorithm speed. Increasing the number of threads can increase 
and decrease speed, it depends on the size of the data. The 
decrease in speed can be seen from Table II and Table XI, after 
1000 threads.  

 

 

 

 

TABLE III.  SPEEDUP FOR 64-BIT PARALLEL ONE 

Message length Encryption (2 
processes) 

Decryption (2 
processes) 

1024 1.6752 1.2210 
4096 1.6629 1.4159 
16384 1.7368 1.6341 
32768 1.7011 2.0970 
65536 1.7059 2.2301 

TABLE IV.  SPEEDUP FOR 256-BIT PARALLEL ONE 

Message length Encryption (2 
processes) 

Decryption (2 
processes) 

1024 1.6900  1.5705 
4096 1.6317 1.6301 
16384 1.6638 1.4130 
32768 1.6847 1.3990 
65536 1.6715 1.3990 

TABLE V.  SPEEDUP FOR ENCRYPTING WITH 64-BIT PARALLEL TWO 

Message 
length 

2 
threads 

4 
threads 

10 
threads 

100 
threads 

1000 
threads 

1024  1.6833 2.1095 2.0672 2.1762 2.7749 
4096 1.6963 1.9706 2.0375 2.2560 2.6232 
16384 1.7487 2.0698 2.1872 2.2780 2.4780 
32768 1.7284 1.9855 2.1885 2.2320 2.3463 
65536 1.7215 1.9239 2.1733 2.1990 2.2918 

TABLE VI.  SPEEDUP FOR ENCRYPTING WITH 256-BIT PARALLEL TWO 

Message 
length 

2 
threads 

4 
threads 

10 
threads 

100 
threads 

1000 
threads 

1024  1.6831 1.8006 2.1160 2.1613 2.1320 
4096 1.6378 1.8378 2.1780 2.1672 2.0868 
16384 1.6990 1.9184 2.1799 2.1934 2.1531 
32768 1.7216 1.7465 2.0563 2.1773 2.1695 
65536 1.7042 1.8895 2.1532 2.1586 2.0105 

TABLE VII.  SPEEDUP FOR DECRYPTING WITH 64-BIT PARALLEL TWO 

Message 
length 

2 
threads 

4 
threads 

10 
threads 

100 
threads 

1000 
threads 

1024 1.9306 2.4428 2.6144 6.3157 1.4491 
4096 1.7493 2.0535 2.3924 4.6746 3.8890 
16384 1.7410 2.0971 2.2610 3.5554 12.7803 
32768 2.1844 2.5397 2.7497 4.0328 14.7390 
65536 2.3208 2.6139 3.0090 3.6217 13.0621 

TABLE VIII.  SPEEDUP FOR DECRYPTING WITH 256-BIT PARALLEL TWO 

Message 
length 

2 
threads 

4 
threads 

10 
threads 

100 
threads 

1000 
threads 

1024  1.6256 1.7278 2.1425 3.9573 6.7452 
4096 1.7179 1.9123 2.3577 2.9613 13.9507 
16384 1.6086 1.8246 2.0889 2.3706 5.2421 
32768 1.5940 1.6053 1.9084 2.1396 3.7131 
65536 1.6875 1.8881 2.1600 2.2881 3.2143 

 

 



TABLE IX.  SPEEDUP FOR ENCRYPTING WITH 64-BIT PARALLEL THREE 

Messa
ge 

length 

2 
processe

s/ 2 
threads 

2 
processe

s/ 4 
threads 

2 
processe

s/ 10 
threads 

2 
processe

s/ 100 
threads 

2 
thread
s/ 1000 
thread

s 
1024  1.6450 1.6431 1.6245 1.7301 2.1031 
4096 1.6024 1.5962 1.6126 1.6832 1.9471 
16384 1.6108 1.6234 1.6250 1.6540 1.8801 
32768 1.6045 1.6130 1.6026 1.6341 1.8158 
65536 1.6077 1.6016 1.6101 1.6093 1.6914 

TABLE X.  SPEEDUP FOR ENCRYPTING WITH 256-BIT PARALLEL THREE 

Messa
ge 

length 

2 
processe

s/ 2 
threads 

2 
processe

s/ 4 
threads 

2 
processe

s/ 10 
threads 

2 
processe

s/ 100 
threads 

2 
thread
s/ 1000 
thread

s 
1024  1.5989 1.5923 1.5955 1.5917 1.5048 
4096 1.5949 1.5738 1.5902 1.5896 1.5604 
16384 1.5992 1.6033 1.6005 1.5837 1.6056 
32768 1.5858 1.5804 1.5879 1.5796 1.5700 
65536 1.5885 1.6005 1.5955 1.5829 1.5906 

TABLE XI.  SPEEDUP FOR DECRYPTING WITH 64-BIT PARALLEL THREE 

Messa
ge 

length 

2 
processe

s/ 2 
threads 

2 
processe

s/ 4 
threads 

2 
processe

s/ 10 
threads 

2 
processe

s/ 100 
threads 

2 
thread
s/ 1000 
thread

s 
1024  1.7228 2.1411 2.5355 3.9521 1.5520 
4096 1.5183 1.5709 1.7076 4.0299 4.9646 
16384 1.2582 1.3676 1.4332 2.5032 12.081 
32768 1.5832 1.6242 1.6371 2.7045 18.254 
65536 1.6970 1.6880 1.7835 2.1803 14.043 

TABLE XII.  SPEEDUP FOR ENCRYPTING WITH 256-BIT PARALLEL THREE 

Messa
ge 

length 

2 
processe

s/ 2 
threads 

2 
processe

s/ 4 
threads 

2 
processe

s/ 10 
threads 

2 
processe

s/ 100 
threads 

2 
thread
s/ 1000 
thread

s 
1024 1.6091 1.5480 1.6652 3.3497 5.2059 
4096 1.6442 1.6750 1.6943 2.3876 11.170 
16384 1.4198 1.4667 1.4640 1.7184 4.8313 
32768 1.4590 1.4771 1.4885 1.6360 3.5379 
65536 1.4662 1.4714 1.4808 1.5554 2.4797 

 

The speed decrease happens mostly on smaller data. For smaller 
data, processing the data takes less time. However, with more 
threads or processes, more time will be needed for data 
transmission, which contributes to overhead time. Smaller data 
with a lot of threads or processes will cause the overhead time to 
contribute to execution time. 

Increasing the length of message does not affect speedup. This 
is due to both the serial program and parallel programs having 
unchanged throughput. This, however, only applies to cases 
when messages are divided evenly among the threads or 

processes. Using 1000 threads in 64-bit ECEG Parallel 2 is an 
example, as it is not divided evenly. 

[5] shows higher speedup than this paper. It uses GPU in 
parallelizing an algorithm. GPU has higher computational 
capabilities than CPU. It means that GPU is so much faster than 
CPU.  

V. CONCLUSION AND FUTURE WORKS 

A. Conclusion 
In this paper, three alternatives of parallel Elliptic Curve 

ElGamal algorithm on CPU are proposed to increase the speed 
of the algorithm each named Parallel One, Parallel Two, and 
Parallel Three respectively. Parallel One makes use of 
distributed memory parallel programming using OpenMPI. 
Parallel Two makes use of shared memory parallel 
programming with OpenMP. Parallel Three combines Parallel 
One and Parallel Two, using both OpenMPI and OpenMP. All 
alternatives successfully increased the speed of Elliptic Curve 
ElGamal. However, parallelization does not always increase the 
speed of an algorithm, as it depends on the data being processed 
by the algorithm and the degree of parallelization. 

B. Future Works 
There are some improvements that could be made. 

Parallelization can be done on GPU instead of CPU as it has 
higher computational capabilities than the latter. One goal of 
parallelization is making use of CPU. So, another metric, CPU 
utilization can be used. It can be used to identify whether the 
CPU is used as much as possible when running a parallel 
program. If the CPU utilization is low, then parallelization can 
be deemed a failure. 
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