
Increasing Speed of Elliptic Curve ElGamal using
Parallelization

Hokki Suwanda
School of Electrical Engineering and Informatics

Bandung Institute of Technology
Bandung

hokkyss2@gmail.com

Rinaldi Munir
School of Electrical Engineering and Informatics

Bandung Institute of Technology
Bandung

rinaldi@staff.stei.itb.ac.id

Abstract—To attain higher security level, public key
cryptography, like RSA uses bigger key size. However, elliptic
curve cryptography, like Elliptic Curve ElGamal, uses much
smaller key size compared to RSA. However, the key size remains
big, which makes encrypting and decrypting messages takes more
time. A way to increase the speed of an algorithm is parallelization.
The solutions in this paper are implemented in three variations.
They are distributed-memory parallel program, shared-memory
parallel program, or hybrid parallel program. Each program will
output its encryption and decryption duration in seconds. These
times will be used to calculate throughput, the number of
characters processed each second. Throughput is further used for
calculating speedup. The experiment determines whether the
solution is successful in increasing speed. From the result, it was
found that all solutions are capable of increasing algorithm speed,
with shared-memory parallel program being the best, followed by
distributed-memory parallel program and hybrid parallel
program.

Keywords—cryptography; distributed-memory; shared-memory;
hybrid; speed

I. INTRODUCTION
Cryptography is a method to secure a message. An example

of cryptography is the encryption and decryption of messages.
Based on the key used, cryptography can be classified into
symmetric key cryptography and asymmetric key cryptography.
Asymmetric key cryptography has more complex computations
which makes it more secure than symmetric key cryptography.
However, the complexity backfired, making its performance,
especially speed, worse than symmetric key cryptography.

To attain higher security level, asymmetric key cryptography
needs to be using big numbers as keys. To solve this issue,
elliptic curve cryptography is invented. Using elliptic curve as
its base, elliptic curve cryptography significantly reduces the
size of the key used in the algorithm. According to [1], 256-bit
elliptic curve cryptography is equivalent to 1620-bit RSA. Both
key sizes are big integers.

From 1986 to 2002, processor performance increased by
50% in average every year. However, as of 2002, the increase in
performance decreased to just 20% in average every year.
Performance can be increased by using processors with higher
speed, in other words, upgrading to faster processors. However,

the performance gain is insignificant compared to the price of
the processor. This was the case in using only one processor [2].

However, processor trend began to shift in 2005. The
manufacturers developed and integrated multiple processors in
a single integrated circuit [2], called CPU. This gives more
variations of approaches in increasing speed. Instead of
upgrading processors, people can now use more processors to
increase speed by running multiple instances of a program at one
time.

Requirements for program to be able to utilize multiple
processors are emerging. This is due to serial programs being
unaffected. Serial programs are unaffected because they use
only one processor. Running the program multiple times will
just run multiple instances of the same program, with the same
instructions and data. Parallel program is defined as a group of
subprograms that collaborate with each other and running
simultaneously, where it can utilize multiprocessors.

The speed of Elliptic Curve ElGamal (ECEG), an
asymmetric key cryptography algorithm, can be potentially
increased by running it in parallel. There are some researches
specializing in elliptic curve, ElGamal, and parallel programs.

[3] focuses on reducing the number of operations in elliptic
curve scalar multiplication. It does not parallelize the encryption
and decryption phase of the algorithm, where both are essential
in ECEG. There are some limitations and conditions for using
the algorithm the paper proposed.

[4] has the same focus as [3]. In fact, it adds another
alternative to the latter by changing coordinate system from one
to another and vice versa. However, it retains properties from
[3], with the addition of complexity from changing coordinate
systems.

[5] was very similar to this paper. It parallelized ElGamal
algorithm using CUDA, a platform for GPU programming. It
utilizes the fact that GPU has higher computational capabilities
than a CPU. However, CUDA is very limited as it is only
available on GPUs developed by Nvidia.

II. LITERATURE STUDY

A. Elliptic Curve ElGamal
Elliptic Curve ElGamal is a public key cryptography

algorithm. It consists of a private key and public key. The private
key in Elliptic Curve ElGamal is an integer g. The public key
consists of three components Ep, α, and β. Ep is an elliptic curve
on ℤp. α is a point on Ep, and β is the result of scalar
multiplication between g and α. Integer p is a prime number [6]
[7].

Private key is used to decrypt a message, while public key is
used to encrypt a message. Encrypting is a process of
transforming readable message to an unreadable message, called
ciphertext. Decrypting is the opposite, it transforms an
unreadable message to readable message, called plaintext [6]
[7].

To encrypt a message x, a point in Ep, the ciphertext tuple
(y1, y2) is calculated using (1) and (2). The ciphertext can be
decrypted into plaintext by using (3) [6] [7].

 y1 = kα (1)

 y2 = x + kβ (2)

 x = y2 – gy1 (3)

B. Parallel Programming
In a parallel system, a parallel program is defined as a group

of subprograms that collaborate closely with each other and
running simultaneously to solve a problem. An important aspect
in parallel programming is load balancing, synchronization, and
communication [2].

Load balancing involves dividing the work among instances
in a way that minimizes the amount of communication between
instances and every instance gets roughly the same amount of
work. Tasks and data must be divided evenly into each program
instance. This is done to minimize idle time of processors, as a
parallel program is meant to utilize multiple processors at the
same time [2].

Synchronization involves making all processors start the
next instruction together because each processor works at its
own pace. In distributed-memory programs, synchronization is
implicitly conducted by communication. In contrast, in shared-
memory programs, communication is done by synchronizing
threads [2].

There are many models in writing parallel programs. They
are the data-parallel model, task graph model, work pool model,
master-slave model, pipeline model, producer-comsumer
model, and hybrid model. Hybrid model combines multiple
models [8].

Some metrics have been defined to measure speed for
parallel programs. Some of these metrics are execution time and
speedup. Execution time denotes the time that elapses from the
start of a parallel computation until the last processed element.
Speedup represents the speed gain achieved by parallelizing a
program [8].

C. Distributed-Memory Parallel Programming
Distributed-memory programming is one way to parallelize

a serial program. Distributed-memory parallel program splits
either tasks or data to processes. Each process is isolated from
another process, so they cannot access each other’s memory
stacks. To communicate with each other, message-passing
interface (MPI) is used [2] [8].

In MPI, if the number of processes is p, each process is
ranked from 0 to p – 1. The rank of each process corresponds to
its number. A process can communicate by sending and
receiving messages. Other than sending and receiving messages,
processes can also communicate by broadcasting messages to all
processes [2] [8].

An implementation of MPI is OpenMPI, a library for C and
Fortran programming language. In OpenMPI, sending and
receiving messages are done by calling MPI_Send and
MPI_Recv function respectively. Other than calling MPI_Send
and MPI_Recv to individually send and receive messages,
MPI_Broadcast and MPI_Gather can also be used. [2] [8].

D. Shared-Memory Parallel Programming
Shared-Memory programming is a way to parallelize a serial

program. Shared-memory parallel program splits tasks or data to
threads, often called a mini-process. Each threads share
memory, thus able to access each other’s memory. In shared-
memory parallel programs, threads communicate by reading
values from and writing values to memory addresses [2].

Each thread, like process, is numbered from 0 to p – 1 if there
are p threads. Each thread can read and write values to a memory
address. It means that a memory address could be written by
multiple processes at the same time. This memory address is
called critical section. Critical sections must be handled very
carefully by programmers to avoid race condition. Race
condition can cause an undesired behavior in a parallel program
[2]. Proposed Method

The method proposed by [3] and [4] to parallelize an elliptic
curve scalar multiplication has limitations on the points that can
be used. Moreover, there is also a need to transform one
coordinate system to another. The most important reason is that
it is not used for cryptographic process.

Solution proposed by [5] parallelize ElGamal Algorithm in
GPU using CUDA. Although similar, Elliptic Curve ElGamal
has different domain than normal ElGamal Algorithm. Not only
that, CUDA is limited to GPUs developed by Nvidia. Which
means that it is limited to some devices.

III. PROPOSED SOLUTION

To parallelize Elliptic Curve ElGamal in CPU, three
solutions are proposed, distributed-memory parallel program,
shared-memory parallel program, and hybrid parallel program.
The solutions will be called Parallel One, Parallel Two, and
Parallel Three respectively. Each solution is implemented in
C++ programming language.

A. Parallel One
This alternative uses distributed-memory programming, thus

uses OpenMPI. In this alternative, processes interact by calling
MPI_Send and MPI_Recv, two functions provided in
OpenMPI. Step by step of this alternative is, as follows:

1. Process 0 receives input of message, public key, and
private key.

2. Process 0 balances the load of every process by dividing
messages to each process equally.

3. Each process, for each character they received, encodes
the character, encrypts the character, decrypts the
ciphertext, decodes the plaintext, and asserts the
equality of the plaintext and the processed character.

4. Each process calculates execution time encryption and
decryption, encoding and decoding characters included.

5. Every process except process 0 sends their execution
time to process 0.

6. Process 0 will output the maximum execution time of
all processes for encryption and decryption.

B. Parallel Two
This alternative uses shared-memory programming and

OpenMP, a directive-based shared-memory Application
Programming Interface (API). Step by step of this alternative is
as follows:

1. The main program receives a message, public key,
private key, and the number of threads as input.
Message, public key, and private key will be shared to
all threads.

2. The main program will fork several threads. The
number of forked threads will be taken from the input.

3. The main program divides the message to all forked
threads equally.

4. Each thread, for each character they received, encodes
the character, encrypts the character, decrypts the
ciphertext, decodes the plaintext, and asserts the
equality of the plaintext and the processed character.

5. Each thread will change the value of maximum and
minimum execution time, which is a variable shared to
all threads.

6. The main program will output the maximum and
minimum execution time for both encryption and
decryption.

C. Hybrid Parallel Program
This alternative combines the use of distributed-memory

programming and shared-memory programming. In this
alternative, distributed-memory programming is first used to
split the main program into instances of process. Then, shared-
memory programming is used to fork several threads inside each
process. Simply put, this alternative runs Parallel Two for every
process. The step by step of this alternative is:

1. Process 0 receives input of message, public key, private
key, and number of threads.

2. Process 0 balances the load of every process by dividing
messages to each process equally.

3. Each process forks several threads and further divides
the message partition they received.

4. Each thread, for each character they received, encodes
the character, encrypts the character, decrypts the
ciphertext, decodes the plaintext, and asserts the
equality of the plaintext and the processed character.

5. Each thread will change the value of maximum and
minimum execution time, which is a variable shared to
all threads in every process.

6. Every process except process 0 sends their execution
time to process 0.

7. Process 0 will output the maximum execution time of
all processes for encryption and decryption.

IV. EXPERIMENT

A. Environment
Experiment is done on a hardware with hardware

specification software versions as shown in Table I and Table II.
OpenMPI is an implementation of message-passing interface
written for C, C++, and Fortran programming language.
OpenMP is an API for writing shared-memory parallel programs
in C and C++. Boost is a library for C++ that wraps and adds to
C++ standard libraries and data structures, including MPI,
multiprecision data types, and data serialization.

B. Metrics
There are three metrics used for experiments in this paper,

they are execution time, throughput, and speedup. Execution
time is the duration in which a program is running, represented
in seconds. Throughput is the number of characters processed
every second, represented in characters per second. Speedup is
the ratio between throughput of parallel program and throughput
of serial program.

The output of both serial and parallel programs is execution
time. Execution time will then be used to calculate throughput
by using the message length in a test case. For parallel programs,
speedup will then be calculated by comparing its throughput to
serial program’s throughput.

TABLE I. HARDWARE SPECIFICATION

Processor Intel® Core™ i3-2370M DualCore CPU
@2.40GHz

RAM 16 GB

TABLE II. SOFTWARE VERSION

Operating
System Debian GNU/Linux 11 (bullseye)

C++
Programming
Language

14

GNU g++
Compiler (Debian 10.2.1-6) 10.2.1.20210110

OpenMPI 4.1.0
OpenMP 4.5
Boost 1.80.0
Boost
Serialization 1.32.0

Boost MPI 1.35.0
Boost
Multiprecision 1.53.0

C. Test Cases
There are several variables for experiments in this paper. The

variables are used to determine the effect of the variable to the
result. There are three different kinds of variables, they are
message length, number of threads, and key size. There is no
difference in the number of processes due to the limitation of
testing environment.

There are five different values for message length. The
values are 1024 characters, 4096 characters, 16384 characters,
32768 characters, and 65536 characters. There are also five
possible values for the number of threads. They are 2 threads, 4
threads, 10 threads, 100 threads, and 1000 threads. There are two
key sizes, 64 bits and 256 bits.

For each variation, every solution will be run for 10 times.
Each solution is designed to output its execution time for both
encryption and decryption. So, there will be 10 pairs of
encryption and decryption duration. Average of the 10 will be
used to calculate throughput. The throughput of each solution
will then be compared to the throughput of the serial program to
measure the speed increase, speedup.

D. Result and Analysis
Table II to Table XI show that all speedup is greater than 1. This
proves that the parallelization is successful in increasing
algorithm speed. Increasing the number of threads can increase
and decrease speed, it depends on the size of the data. The
decrease in speed can be seen from Table II and Table XI, after
1000 threads.

TABLE III. SPEEDUP FOR 64-BIT PARALLEL ONE

Message length Encryption (2
processes)

Decryption (2
processes)

1024 1.6752 1.2210
4096 1.6629 1.4159
16384 1.7368 1.6341
32768 1.7011 2.0970
65536 1.7059 2.2301

TABLE IV. SPEEDUP FOR 256-BIT PARALLEL ONE

Message length Encryption (2
processes)

Decryption (2
processes)

1024 1.6900 1.5705
4096 1.6317 1.6301
16384 1.6638 1.4130
32768 1.6847 1.3990
65536 1.6715 1.3990

TABLE V. SPEEDUP FOR ENCRYPTING WITH 64-BIT PARALLEL TWO

Message
length

2
threads

4
threads

10
threads

100
threads

1000
threads

1024 1.6833 2.1095 2.0672 2.1762 2.7749
4096 1.6963 1.9706 2.0375 2.2560 2.6232
16384 1.7487 2.0698 2.1872 2.2780 2.4780
32768 1.7284 1.9855 2.1885 2.2320 2.3463
65536 1.7215 1.9239 2.1733 2.1990 2.2918

TABLE VI. SPEEDUP FOR ENCRYPTING WITH 256-BIT PARALLEL TWO

Message
length

2
threads

4
threads

10
threads

100
threads

1000
threads

1024 1.6831 1.8006 2.1160 2.1613 2.1320
4096 1.6378 1.8378 2.1780 2.1672 2.0868
16384 1.6990 1.9184 2.1799 2.1934 2.1531
32768 1.7216 1.7465 2.0563 2.1773 2.1695
65536 1.7042 1.8895 2.1532 2.1586 2.0105

TABLE VII. SPEEDUP FOR DECRYPTING WITH 64-BIT PARALLEL TWO

Message
length

2
threads

4
threads

10
threads

100
threads

1000
threads

1024 1.9306 2.4428 2.6144 6.3157 1.4491
4096 1.7493 2.0535 2.3924 4.6746 3.8890
16384 1.7410 2.0971 2.2610 3.5554 12.7803
32768 2.1844 2.5397 2.7497 4.0328 14.7390
65536 2.3208 2.6139 3.0090 3.6217 13.0621

TABLE VIII. SPEEDUP FOR DECRYPTING WITH 256-BIT PARALLEL TWO

Message
length

2
threads

4
threads

10
threads

100
threads

1000
threads

1024 1.6256 1.7278 2.1425 3.9573 6.7452
4096 1.7179 1.9123 2.3577 2.9613 13.9507
16384 1.6086 1.8246 2.0889 2.3706 5.2421
32768 1.5940 1.6053 1.9084 2.1396 3.7131
65536 1.6875 1.8881 2.1600 2.2881 3.2143

TABLE IX. SPEEDUP FOR ENCRYPTING WITH 64-BIT PARALLEL THREE

Messa
ge

length

2
processe

s/ 2
threads

2
processe

s/ 4
threads

2
processe

s/ 10
threads

2
processe

s/ 100
threads

2
thread
s/ 1000
thread

s
1024 1.6450 1.6431 1.6245 1.7301 2.1031
4096 1.6024 1.5962 1.6126 1.6832 1.9471
16384 1.6108 1.6234 1.6250 1.6540 1.8801
32768 1.6045 1.6130 1.6026 1.6341 1.8158
65536 1.6077 1.6016 1.6101 1.6093 1.6914

TABLE X. SPEEDUP FOR ENCRYPTING WITH 256-BIT PARALLEL THREE

Messa
ge

length

2
processe

s/ 2
threads

2
processe

s/ 4
threads

2
processe

s/ 10
threads

2
processe

s/ 100
threads

2
thread
s/ 1000
thread

s
1024 1.5989 1.5923 1.5955 1.5917 1.5048
4096 1.5949 1.5738 1.5902 1.5896 1.5604
16384 1.5992 1.6033 1.6005 1.5837 1.6056
32768 1.5858 1.5804 1.5879 1.5796 1.5700
65536 1.5885 1.6005 1.5955 1.5829 1.5906

TABLE XI. SPEEDUP FOR DECRYPTING WITH 64-BIT PARALLEL THREE

Messa
ge

length

2
processe

s/ 2
threads

2
processe

s/ 4
threads

2
processe

s/ 10
threads

2
processe

s/ 100
threads

2
thread
s/ 1000
thread

s
1024 1.7228 2.1411 2.5355 3.9521 1.5520
4096 1.5183 1.5709 1.7076 4.0299 4.9646
16384 1.2582 1.3676 1.4332 2.5032 12.081
32768 1.5832 1.6242 1.6371 2.7045 18.254
65536 1.6970 1.6880 1.7835 2.1803 14.043

TABLE XII. SPEEDUP FOR ENCRYPTING WITH 256-BIT PARALLEL THREE

Messa
ge

length

2
processe

s/ 2
threads

2
processe

s/ 4
threads

2
processe

s/ 10
threads

2
processe

s/ 100
threads

2
thread
s/ 1000
thread

s
1024 1.6091 1.5480 1.6652 3.3497 5.2059
4096 1.6442 1.6750 1.6943 2.3876 11.170
16384 1.4198 1.4667 1.4640 1.7184 4.8313
32768 1.4590 1.4771 1.4885 1.6360 3.5379
65536 1.4662 1.4714 1.4808 1.5554 2.4797

The speed decrease happens mostly on smaller data. For smaller
data, processing the data takes less time. However, with more
threads or processes, more time will be needed for data
transmission, which contributes to overhead time. Smaller data
with a lot of threads or processes will cause the overhead time to
contribute to execution time.

Increasing the length of message does not affect speedup. This
is due to both the serial program and parallel programs having
unchanged throughput. This, however, only applies to cases
when messages are divided evenly among the threads or

processes. Using 1000 threads in 64-bit ECEG Parallel 2 is an
example, as it is not divided evenly.

[5] shows higher speedup than this paper. It uses GPU in
parallelizing an algorithm. GPU has higher computational
capabilities than CPU. It means that GPU is so much faster than
CPU.

V. CONCLUSION AND FUTURE WORKS

A. Conclusion
In this paper, three alternatives of parallel Elliptic Curve

ElGamal algorithm on CPU are proposed to increase the speed
of the algorithm each named Parallel One, Parallel Two, and
Parallel Three respectively. Parallel One makes use of
distributed memory parallel programming using OpenMPI.
Parallel Two makes use of shared memory parallel
programming with OpenMP. Parallel Three combines Parallel
One and Parallel Two, using both OpenMPI and OpenMP. All
alternatives successfully increased the speed of Elliptic Curve
ElGamal. However, parallelization does not always increase the
speed of an algorithm, as it depends on the data being processed
by the algorithm and the degree of parallelization.

B. Future Works
There are some improvements that could be made.

Parallelization can be done on GPU instead of CPU as it has
higher computational capabilities than the latter. One goal of
parallelization is making use of CPU. So, another metric, CPU
utilization can be used. It can be used to identify whether the
CPU is used as much as possible when running a parallel
program. If the CPU utilization is low, then parallelization can
be deemed a failure.

ACKNOWLEDGEMENTS
The writer would like to thank the God for His blessings while
completing this research. The writer hoped that this research
can help increase the speed of ECEG and help future works
related to this research. While researching, the writer received
help from many people. The writer would like to thank the
writer’s family for motivating the writer. The writer would like
to thank Mr. Dr. Ir. Rinaldi Munir, M.T. for lecturing the writer
regarding cryptography and this research. The writer would like
to thank all the writer’s friends for their help and support while
doing this research.

REFERENCES

[1] S. Burnett and S. Paine, RSA Security's Official Guide to

CRYPTOGRAPHY, Osborne: McGraw-Hill, 2001.

[2] P. Pacheco, An Introduction to Parallel Programming, Burlington:
Elsevier, 2011.

[3] C. Negre and J.-M. Robert, "New Parallel Approaches for Scalar
Multiplication in Elliptic Curve over Fields of Small Characteristics,"
IEEE Transactions on Computers, pp. 2875-2890, 2015.

[4] X. Li, W. Yu and B. Li, "Parallel and Regular Algorithm of Elliptic Curve
Scalar Multiplications over Binary Fields," Security and Communication
Networks, p. 10 pages, 2020.

[5] H. O. Purba, Peningkatan Kinerja Algoritma ElGamal dengan
Pemrograman Paralel pada Platform CUDA, Bandung: Institut Teknologi
Bandung, 2018.

[6] Lembaga Sandi Negara, Jelajah Kriptologi, Jakarta: Lembaga Sandi
Negara Republik Indonesia, 2007.

[7] R. Munir, Kriptografi, Edisi Kedua, Bandung: Penerbit Informatika,
2019.

[8] A. Grama, A. Gupta, G. Karypis and V. Kumar, Introduction to Parallel
Computing, Second Edition, Edinburgh: Addison Wesley, 2003.

	I. Introduction
	II. Literature Study
	A. Elliptic Curve ElGamal
	B. Parallel Programming
	C. Distributed-Memory Parallel Programming
	D. Shared-Memory Parallel Programming

	III. Proposed Solution
	A. Parallel One
	B. Parallel Two
	C. Hybrid Parallel Program

	IV. Experiment
	A. Environment
	B. Metrics
	C. Test Cases
	D. Result and Analysis

	V. Conclusion and Future Works
	A. Conclusion
	B. Future Works
	Acknowledgements

	References

