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Development of an M-Health Application with
Seven-Segment Digit Recognition Feature for

Reading Values on Digital Sphygmomanometer
Hansel Valentino Tanoto, Rinaldi Munir, and Nur Ahmadi , Member, IEEE

Abstract—Blood pressure is a crucial metric in health assess-
ments as it reflects an individual’s general health status and
could help the diagnosis of cardiovascular diseases, which are the
leading cause of death worldwide. Currently, blood pressure data
recording is still performed manually, making it prone to human
error and inefficiency. Therefore, there is a need for a solution
that enables accurate, fast, and practical reading and recording
of blood pressure measurement data. This paper proposes the
development of a mobile health (m-health) application prototype
equipped with 4 features: blood pressure measurement reading
using deep learning, data visualization, user management, and
authentication. The model was trained using 3,649 images of
sphygmomanometer with objective to recognize seven-segment
digits representing 3 blood pressure metrics. Various YOLOv8
model variants—small, medium, and large—were utilized in
the training. Each variant also underwent model compression
techniques such as quantization and pruning. The evaluation
result indicated that the small variant of the YOLOv8 model,
that quantized to INT8, proved to be the most suitable model.
This is attributed to its compact size (11 MB) and short inference
time (641.4 ms). The model has achieved a seven-segment digit
detection accuracy of 99.28% and an f1-score of 96.48%. The
model was successfully deployed in the m-health application,
with a slight increase in average inference time to 1867.6 ms.
Furthermore, direct testing of the model on 40 images within
the m-health application yielded a seven-segment digit grouping
accuracy of 96.67% and an overall image reading accuracy of
95%.

Index Terms—Seven-segment digit, m-health, YOLOv8, blood
pressure, digital blood pressure monitor.

I. INTRODUCTION

HEALTH is one of the most important aspects of human
life. Poor health conditions can indeed disturb and

impede an individual’s daily activities. It’s important to note
that, health encompasses not only curative treatment but also
preventive measures aimed at sustaining bodily well-being.
An example of preventive action involves conducting regular
health checkups. These activities play a role in the early
detection of health problems that may go unnoticed.

One of the most commonly used health metrics is blood
pressure, which measures the pressure exerted on the walls of
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TABLE I
GENERAL BLOOD PRESSURE CLASSIFICATION [4]

Category Systolic Diastolic

Optimal < 120 and < 80
Normal 120− 129 and/or 80− 84
High Normal 130− 139 and/or 85− 89
Class I Hypertension 140− 159 and/or 90− 99
Class I Hypertension 160− 179 and/or 100− 109
Class I Hypertension ≥ 180 and/or ≥ 110
Isolated Systolic Hypertension ≥ 140 and < 90

blood vessels due to the heart’s pumping activity [1]. Blood
pressure is composed of two values: systolic and diastolic
pressure. Systolic pressure is the blood pressure value when
the heart is contracting, while diastolic pressure is the blood
pressure value when the heart is relaxing. These two values
are critical for understanding cardiovascular health conditions.
Moreover, they are relatively easy to obtain and can provide
a general overview of an individual’s vital signs and fitness,
making them frequently used by doctors as a basis for diag-
nosing patients [2], [3].

Regular and consistent blood pressure measurements can
help in the early detection of cardiovascular issues such as
hypertension, heart attacks, or strokes. Elevated blood pressure
is often dubbed a ”silent killer” because it frequently shows no
early symptoms yet has the potential to cause cardiovascular
organ damage or failure [1]. This is why cardiovascular dis-
eases rank at the top as the leading cause of death worldwide
[5]. Therefore, for individuals with cardiovascular diseases,
regular blood pressure measurement is essential for monitoring
their health condition to prevent the emergence of more
severe illnesses or complications. The blood pressure general
classification is shown in Table I

The rapid advancement of technology has caused disruptive
effects in various aspects of life, including healthcare. One sig-
nificant development is the growing use of telecommunication
technology, particularly mobile devices, for health monitoring
services known as m-health (mobile health). The existence
of m-health enables individuals to manage their health data
and/or connect with medical professionals without having to
meet in person [6]. The seamless integration of technology
into healthcare not only enhances access to crucial health
insights but also encourages proactive health management.
Ultimately, this contributes to improved well-being and fitness
levels by empowering users to monitor their health condition
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and implement preventive measures based on their medical
data.

Typically, when conducting health checkups at healthcare
facilities, medical personnel still manually collect and record
patients’ blood pressure data. This recording is usually done on
paper and then manually entered into a system or database [7].
The same applies to self-recording of blood pressure through
m-health applications by individuals, which is also generally
typed manually. This activity is not practical, tends to be slow,
and requires additional effort. Additionally, this process is
prone to errors, whether due to data entry mistakes (human
error) or the loss of records because the papers are misplaced.

One alternative solution is to utilize wireless communication
technologies such as Bluetooth or Wi-Fi. With this technol-
ogy, blood pressure measurement data can be directly sent
to the m-health application or other data recording system.
However, not all currently available blood pressure monitors
are equipped with this technology. According to data from the
British & Irish Hypertension Society, of the 176 recommended
digital blood pressure monitors, less than 3% use Bluetooth
technology to send measurement data to users’ phones [7].
Implementing a widespread replacement of blood pressure
monitors with models that include wireless communication
technology would be highly challenging and inefficient in
terms of both cost and resources. Therefore, another solution is
needed that can be easily implemented on a large scale without
burdening individuals to buy new blood pressure monitors with
wireless communication technology.

Another viable solution is to use image recognition methods
to detect and extract the values (digits) displayed on measure-
ment devices quickly and accurately. In this approach, what
patients need to do is simply measure their blood pressure and
then photograph the results using their mobile phones. The m-
health application will then use image recognition algorithms
to process (detect) and save the blood pressure data. The image
recognition model will be designed to identify seven-segment
digits, given their widespread use in various medical devices,
including digital blood pressure monitors, for displaying mea-
surement outcomes. The extensive adoption of seven-segment
displays is due to their ability to present numerical data in
a simple, economical, and energy-efficient manner, ensuring
clarity and precision. Their straightforward design, consisting
of seven individual segments that can be illuminated in various
combinations, makes them highly reliable and easy to read,
even in low-light conditions. Furthermore, their widespread
adoption across various medical devices ensures consistency
and familiarity for healthcare professionals and patients alike,
facilitating ease of use and reducing the likelihood of misin-
terpretation.

The paper is organized as follows. Section II presents the
related works, research gap, and summary of our contribution
to the present work. Section III describes the proposed solution
design and analysis. Section IV details the implementation
process of the proposed solution including dataset preparation,
model training, model compression, and application develop-
ment. The evaluation of the resulting model and m-health
application are presented and discussed in Section V. Finally,
conclusions are drawn in Section VI.

II. RELATED WORKS

The intersection of technology and healthcare has seen
remarkable advancements, particularly in the realm of health
monitoring systems. Extensive research has explored vari-
ous methods for accurately detecting and interpreting seven-
segment digits, which are widely used in medical devices for
displaying numerical data. Finnegan et al. conducted research
on seven-segment digits detection and reading in blood pres-
sure monitors and blood glucose meters using conventional
image processing techniques [7]. Their algorithm achieved an
overall accuracy of 93% in recognizing these digits, with a
digit localization F1-score of 80% and classification accuracy
exceeding 89%. However, the algorithm’s blob extraction
component showed occasional misclassifications, particularly
between digits 0 and 8, and digits 1 and 7. Additionally, this
study’s scope was solely dedicated to model development, with
no involvement in the creation of a mobile health (m-health)
application. Such an application is useful for integrating the
model into user-friendly platforms that facilitate real-time
health monitoring and data management.

Shenoy and Aalami, in their research, implemented a
smartphone-based seven-segment digit detection system (mo-
bile application) to read numeric values on medical devices
such as blood pressure monitors, blood glucose meters, and
weight scales [8]. The study used computer vision to extract
features (digits) and then applied a random forest algorithm
to interpret the readings. The resulting mobile application
can identify seven-segment digits with an overall accuracy of
98.2%. However, similar to the previous study conducted by
Finnegan et al., there remains an issue of misclassification
between digits 0 and 8 due to an insufficient volume of training
data. Additionally, the model exhibits limited performance
in recognizing digits in images that are blurry. Furthermore,
the model has yet to be directly integrated into the mobile
application but remains hosted on a server. Consequently, the
application necessitates internet connectivity and experiences
added delay in the detection process due to internet latency.

Another study, conducted by Wannachai et al. focused on
developing a system for recognizing seven-segment digits
using CNN (Convolutional Neural Network) algorithms [9].
Their research aimed to create a system capable of reading
numerical statuses on manufacturing machine monitors in
factories, eliminating the need for manual data collection by
operators. The resulting model was deployed on a server
and integrated with cameras placed at various points in the
factory as edge devices. Based on the experiment results,
the developed system achieved an accuracy rate of 91.1%.
However, the weakness of the model is that it was not designed
to be deployed directly on devices with limited computational
capabilities (edge devices). That results in the model having
to be deployed on a server, which leads to additional latency
during the detection process.

In this paper, an m-health application prototype is developed
with the capability to detect and identify blood pressure
measurement values represented in seven-segment digits using
image recognition. The model utilizes deep learning, specif-
ically YOLOv8, for image recognition. It also incorporates
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data augmentation techniques to enhance model robustness,
improve performance in handling variations in digit represen-
tation, and mitigate misclassification issues in digit recogni-
tion. Furthermore, the model is designed to be deployed on
edge devices, specifically smartphones, by leveraging model
compression techniques to ensure efficient usage of resources
and optimal performance. This approach not only enhances
the accessibility of blood pressure monitoring but also ad-
dresses the challenges of limited computational power and
storage capacity typically encountered in edge computing
environments. By harnessing the capabilities of YOLOv8 and
employing model compression strategies, the proposed m-
health application aims to provide accurate and real-time
blood pressure measurements conveniently and effectively for
improved healthcare management.

III. SOLUTION DESIGN & ANALYSIS

As mentioned earlier, this paper aims to develop an image
recognition system to read the measurement results of a digital
blood pressure monitor (sphygmomanometer) using a smart-
phone’s camera. The system will detect and identify seven-
segment digit objects representing systolic pressure, diastolic
pressure, and heart rate per minute displayed on the sphygmo-
manometer. Based on literature studies and related research,
there are several common alternatives for reading seven-
segment digit values, namely Optical Character Recognition
(OCR) and object detection. Research by Hjelm and Anders-
son (2022) indicates that object detection methods outperform
OCR for detecting seven-segment digits on odometers, espe-
cially in images with poor quality due to noise, blur, lighting,
viewing angles, etc [10]. This finding is particularly relevant
as both odometers and sphygmomanometers utilize seven-
segment digits for displaying their measurements. Therefore,
object detection is selected as an image recognition method
for the m-health application.

In general, object detection can be performed using either
image processing techniques or deep learning techniques. This
paper chooses to use deep learning due to its typically superior
accuracy. Additionally, the deep learning technique does not
require manual feature extraction; it can automatically extract
relevant features from data and improve the accuracy over time
with training. This capability allows deep learning techniques
to be more adaptable in managing data variability, such as
blur, perspective, rotation, and lighting factors. A deep learning
model trained with a sufficiently large dataset will have good
generalization capabilities, enabling it to recognize objects,
specifically seven-segment digits in this context, in unseen
situations during training [11]. Achieving large and diverse
dataset can be done through data augmentation techniques,
which expand the dataset by creating variations in existing
data, such as rotating, cropping, or adding blur, noise, and
other visual effects to the images.

The deep learning architecture chosen for this paper is
the YOLOv8 neural network. YOLO was selected due to
its typically superior performance in AP (Average Precision)
and inference time compared to other object detection models
[13]. YOLO, known as ”You Only Look Once,” has been

developed since 2015 as an open-source algorithm, thereby
providing accessibility to researchers and developers globally.
Its popularity has made it gain a large community, resulting in
thorough documentation and facilitating easier troubleshooting
as well as knowledge sharing among users [12]. The frequent
updates to the YOLO architecture, with nearly annual new
versions, demonstrate its ongoing enhancement and ability
to address new challenges in object detection. YOLOv8,
introduced as the eighth version of the YOLO architecture,
represented the most recent version in the series at the start of
this study. As stated in its official repository, YOLOv8 exhibits
enhancements in mAP over its predecessor [14]. Given its
recent release in January 2023, YOLOv8 is still relatively new
and not widely adopted, prompting this study to explore its
implementation.

Meanwhile, the prototype of the m-health application will
be developed on the Android platform. The main reason is that
Android dominates the market share of smartphone operating
systems, especially in Indonesia. According to data published
by Statcounter, Android holds approximately 88.33% of the
market share in Indonesia as of January 2024. The reason
for this is primarily because most smartphone brands that
utilize the Android operating system provide lower prices in
comparison to other brands like the iPhone with its iOS. This
high popularity of Android provides significant potential for
the m-health application to reach more users and enhance the
accessibility of digital health services.

IV. IMPLEMENTATION

The implementation flow of the m-health application in-
volves two primary stages: model implementation and appli-
cation development. Model implementation includes dataset
preparation, model training & evaluation, and model compres-
sion processes. The details of each process will be explained
later in the following subsections. Before that, here are the
specifications of the working environment used in this work.

• Google Colab
– CPU: Intel® Xeon® CPU @ 2.20GHz
– GPU: NVIDIA Tesla T4
– System RAM: 12.7 GB
– GPU RAM: 15 GB
– Operating System: Ubuntu 22.04.3 LTS

• Computer (Asus A409JB)
– CPU: Intel® Core™ i5-1035G1 CPU @ 1.00GHz
– RAM: 12 GB
– Operating System: Windows 10

• Smartphone (Samsung A30s)
– CPU: Samsung Exynos 7904
– RAM: 4 GB
– Operating System: Android 11

The Google Colab environment was used for implementing
the model, while the computer was used for developing the
m-health application. The mobile phone, on the other hand,
was used as the platform to deploy and run the m-health
application.
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TABLE II
DATASET SOURCES DISTRIBUTION

Source Amount Percentage

Data Scraping 441 20.5%
Public Dataset 1: AH (2024) [15] 225 10.5%
Public Dataset 2: Ega (2022) [16] 187 8.7%
Public Dataset 2: Finnegan et al. (2018) [7] 1294 60.3%

Total 2147 100%

Fig. 1. Class distribution of the dataset.

A. Dataset Preparation

Generally, the data preparation process consists of data col-
lection, data labeling, dataset splitting, and data augmentation
stages. The data used in this study are images of blood pressure
monitor measurement results that were collected through a
combination of public datasets and image scraping algorithms.
Details about the sources of the datasets used can be found in
Table II. Subsequently, data sorting is performed to eliminate
irrelevant or poor-quality data. Once the data is filtered, the
labeling process begins, which involves applying bounding
boxes to the input data (images) covering a total of 11 classes
that consist of 10 classes for digits (0 to 9) and 1 class for
indicating systolic pressure, diastolic pressure, or heart rate.
Figure 1 displays the class distribution of the whole dataset. In
the dataset, Class 10 has the highest occurrence as each image
typically contains three objects from Class 10, representing the
three blood pressure metrics: systolic, diastolic, and heart rate.
Following Class 10, Class 1 has the second-highest occurrence
because systolic pressure values generally fall in the range of
hundreds. The relatively high frequencies of Class 7 and 8 can
be attributed to diastolic pressure and heart rate values, which
commonly fall within the 70s to 80s range.

The labeled data is then divided into three groups: training
set, validation set, and test set, with percentages of 70%, 20%,
and 10%, respectively. The final stage is data augmentation,
which aims to increase the volume and variety of training
data by twofold. This is intended to improve the model’s
accuracy and flexibility in real-world conditions. The data
augmentation process includes rotations of ±15◦, shearing of
±15◦, brightness adjustments of ±15%, blurring up to 3.5
pixels, and adding noise up to 5% of the total pixels. The
dataset splits before and after the augmentation process can
be seen in Table III.

TABLE III
DATASET SPLIT

Split Amount

Before Augmentation After Augmentation

Train 1502 (70%) 3004 (82%)
Validation 430 (20%) 430 (12%)
Test 215 (10%) 215 (6%)

Total 2147(100%) 3649(100%)

B. Model Training

In this process, training is conducted on several variants of
the YOLOv8 model. YOLOv8 itself has five model variants:
nano, small, medium, large, and extra-large. A comparison
of these five variants can be found in Table III. As the
model size increases, its network complexity and accuracy
also improve, but its inference time will be longer. In this
study, the training process will be conducted only for the small,
medium, and large variants. The nano variant was not selected
due to its relatively lower accuracy compared to other variants.
Meanwhile, the extra-large variant was not chosen because of
its complexity and large size, which is not suitable for use on
smartphones with limited computational capabilities.

The three model variants will be trained using the following
parameters.

• Epochs: 500
• Patience: 50
• Batch Size: 8, 16, and 32
• Image Size: 640
• IoU: 0.5
• Optimizer: auto

The automatic option for optimizer parameters results in the
use of the best optimizer, which is SGD with a learning rate
of 0.01 and momentum of 0.9. Meanwhile, other parameters
that are not mentioned will use the default configuration.
The training results of these three model variants will be
evaluated based on accuracy, precision, recall, f1-score, size,
and inference time metrics.

C. Model Compression

The model compression includes techniques such as model
pruning and quantization. This process aims to enhance
detection speed and reduce the computational load of the
model, considering it will be deployed on a smartphone which
typically has lower computational capabilities compared to
computers. The pruning process is implemented using PyTorch
by selectively removing weight values in convolutional layers
(Conv2d) with a pruning parameter of 0.1. Consequently, the
pruned model will have 10% fewer weight values compared
to the original model. In other words, 10% of these weight
values will be set to 0.

Meanwhile, quantization techniques were applied to convert
model weights into 16-bit floating point (FP16) and 8-bit
integer (INT8) precision. The FP16 quantization process was
conducted using the export feature of the Ultralytics YOLOv8
library, by specifying the format parameter to ’tflite’ and also
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enabling the ’optimize’ and ’half’ options. The ’optimize’ pa-
rameter will optimize the model for mobile devices, while the
’half’ parameter implements FP16 half-precision quantization.
In addition to producing models in the FP16 format, the export
results also yielded models in the 32-bit floating point (FP32)
TensorFlow format, which will be used for quantization to
INT8 precision using the TensorFlow library. During INT8
quantization, a calibration process is necessary to estimate the
range of all floating-point values in the model. Constant values
such as weights and biases were easily calibrated. However,
variable values like inputs, activations, and outputs required
cycles of the inference process to be calibrated. Consequently,
a dataset of approximately 100 to 500 samples is needed
for this calibration process. In this Final Project, a validation
dataset consisting of 430 images was used as the calibration
dataset.

D. M-Health Development

As previously outlined, this m-health application will fea-
ture three main functionalities: blood pressure reading using
the camera, recording historical blood pressure data, and
visualizing this data in graphical form. Additionally, there
will be an authentication feature to bind these data to a user
account. The deep learning models developed in the previous
stages will be integrated into the m-health application for the
blood pressure reading feature.

This m-health application will encompass a total of 9 use
cases, as depicted in Figure 2. The first three use cases—login,
register, and logout—are part of the authentication feature.
Subsequently, the blood pressure data visualization feature is
represented as the display measurement history use case. With
this use case, users can see the blood pressure measurement
history in the form of a line chart and a list of measurement
logs. Furthermore, users can record their blood pressure mea-
surement through the use case to add new blood pressure mea-
surement results. Recording blood pressure data can be done
in two ways: by directly capturing measurement results or by
uploading photos of the results from the gallery. Meanwhile,
user management features can be accessed through the last 4
use cases: view profile, add new user, delete user, and edit
user information.

The workflow of the blood pressure reading feature is illus-
trated in Figure 3. Generally, this process is divided into two
main parts: digit detection and digit grouping to derive blood
pressure values. In the digit detection process, a deep learning
model is utilized to detect and classify the digits present in
the photo. Subsequently, in the grouping process, these digits
are grouped and categorized into systolic pressure, diastolic
pressure, and heart rate values. Then, the resulting data is
stored in a database to be used for the visualization feature.
The data storage is implemented using the Cloud Firestore, a
non-relational database owned by Google. This choice ensures
that the data is not only stored locally, allowing users to
access it even if their local data is deleted. Additionally, Cloud
Firestore supports caching, eliminating the need for constant
internet access to perform data reading and writing operations.
Data on the user’s phone is automatically synchronized with

Login

Register

Display
Measurements

History

Add New
Measurement

Result

Display Profile

Edit User 
Information

Delete User

Add New User

Logout

User

M-Health Application

Fig. 2. Use case diagram of the m-health application.
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Fig. 3. Workflow of m-health’s blood pressure measurement reading.

the data stored in the cloud once the phone is connected to
the internet.

The grouping process of the detected digits into meaningful
values is performed by considering the intersection percentage
of a digit’s bounding box (represented by classes ’0’ to ’9’)
with a value’s bounding box (represented by class ’10’). An
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Fig. 4. Illustration of bounding boxes intersection.

illustration of these classes and their corresponding bounding
boxes is depicted in Figure 4. Value classes are displayed
as purple boxes, while digit classes are displayed as boxes
of other colors. A digit class is grouped into a value class
if its bounding box intersects with at least 75% of the area
of the value’s bounding box. The 75% threshold is applied
to handle some special cases like a digit bounding box may
exceed the boundary of a value class bounding box. Once
grouped, the digits within each group are sorted based on
their positions from left to right. Then, concatenating these
digits results in a meaningful value. As a result, three values
representing the three blood pressure metrics are obtained.
Subsequently, categorization into systolic pressure, diastolic
pressure, or heart rate values is determined by sorting the
value’s position in the image from top to bottom.

Overall, this m-health application consists of 5 pages: login
page, register page, home page, camera page, and profile page.
The user interface of the home, camera, and profile page is
displayed in Figure 5. In the implementation, those pages
are divided into 3 activities: main activity, login activity, and
register activity, with the main activity handling 3 fragments:
home, camera, and profile.

On the login page, users are required to enter their registered
email and password, while on the registration page, users
are asked to provide personal information, including their
name, email, password, weight, height, and date of birth.
The name, email, and password are used for authentication
purposes, while the weight, height, and date of birth are used
to determine the categorization of blood pressure values.

The homepage serves the primary function of visualizing
recorded blood pressure data within the application. On the
homepage, there is a dropdown menu for selecting the user
whose blood pressure data will be displayed. Meanwhile, on
the profile page, users can view and modify their account
details. Additionally, the profile page displays a list of other
user profiles registered under the same account, allowing for
user management operations such as adding, modifying, and
deleting user data.

On the camera page, there is a camera view displaying live
frames captured by the camera. This section also includes
an overlay to draw bounding boxes surrounding the detected
seven-segment digits. The detection results, such as inference
time, systolic pressure, diastolic pressure, heart rate, and blood
pressure category, are displayed below the camera view. After

capturing an image, users can confirm the detection results or
retake the picture. In addition to using the camera, users have
the option to detect images from the gallery by pressing the
gallery button.

V. RESULTS AND DISCUSSION

A. Evaluation of Model Training

The evaluation metrics for the 3 variants of the digit
detection model (YOLOv8) training results can be seen in
Table IV. Based on these results, the training variation with a
batch size of 8 was found to be the optimal configuration for
each model variant. This is evidenced by the highest accuracy,
precision, recall, and F1-score values for this configuration.

Among the three trained YOLOv8 variants, the medium
variant achieved the highest accuracy, recall, and F1-score
even though there is no significant difference in their metrics.
The significant differences are observed only in the model
size and inference time. The size and inference time of the
YOLOv8 small variant is approximately half of the medium
variant and one-fourth of the large variant. This is due to the
simpler network structure of the YOLOv8 small variant com-
pared to the YOLOv8 medium and YOLOv8 large variants.

B. Evaluation of Model Pruning

Table V shows the comparison of evaluation metrics for the
digit detection process among each variant of the YOLOv8
model and their pruned versions. For ease of reference, the
original models will be referred to as ”base models”.

Based on these evaluation metrics, the pruned models did
not experience a significant reduction in inference time, except
for the large variant, which saw a decrease of about 500 ms
(12.7%). However, all pruned models experienced a substantial
decline in F1-score and precision, ranging from 6.7% to 12%
and 11.7% to 20.5%, respectively. Additionally, the model
size increased by up to 2 times (±99%) for each variant. This
increase in size occurred because the base models (YOLOv8),
as PyTorch models, are stored in 16-bit floating point precision
by default. In contrast, the pruned models are stored in 32-bit
floating point precision, resulting in a doubling of the model
size.

Overall, the pruned model of YOLOv8l had the best accu-
racy, precision, recall, and F1-score metrics among the pruned
variants. However, the base model of YOLOv8m still had the
best accuracy, precision, recall, and F1-score when considering
all models. Meanwhile, the small variant remained the model
with the smallest size and inference time as it is the simplest
model compared to other tested variants.

Based on these evaluation metrics, it can be concluded that
pruning is not effective enough in compressing the YOLOv8
model because the pruned models have significantly worse
performance compared to the base models, despite only being
pruned by 10%. Therefore, the decision was made not to
proceed with the pruned models to the next process, which
is quantization. Instead, quantization will be applied directly
to the base models.
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Fig. 5. The UI of the m-health application.

TABLE IV
EVALUATION METRICS FOR TRAINING RESULTS ON THREE YOLOV8 MODEL VARIANTS

Metrics YOLOv8s YOLOv8m YOLOv8l

8 16 32 8 16 32 8 16 32
batch batch batch batch batch batch batch batch batch

Accuracy (%) 99.70 99.64 99.62 99.73 99.66 99.69 99.70 99.71 99.65
Precision (%) 97.77 97.85 97.94 98.14 97.45 97.89 98.19 98.16 97.87

Recall (%) 98.40 98.01 97.84 98.58 98.13 98.40 98.22 98.13 97.98
F1-Score (%) 98.08 97.93 97.89 98.36 97.79 98.14 98.21 98.06 97.83

Size (MB) 21.51 21.50 21.51 49.65 49.65 49.65 83.61 83.61 83.61
Inference (ms) 974.50 1032.80 722.10 1996.60 1762.20 1740.60 4299.50 3408.20 3411.60

C. Evaluation of Model Quantization

The evaluation metrics for the quantization process of the
digit detection model can be seen in Table VI. Based on
the results of 16-bit quantization, there were no significant
changes in accuracy, precision, recall, F1-score, and model
size. In fact, the changes in these five metrics were almost
negligible, approaching 0%. However, there was a significant
reduction in inference time, particularly for the small model
variant, which saw a decrease of 36.6%. The model size

remained relatively unchanged because, as stated before, the
base model is a PyTorch model, so they are already stored in
16-bit floating point precision. Overall, the FP16 version of
the YOLOv8s variant proved to have the smallest size and the
fastest inference speed.

In contrast, with 8-bit quantization, there was a significant
reduction in both model size and inference time. The model
size was successfully compressed to half of the base model.
The INT8 version of the YOLOv8s variant had the smallest
size among others, at only 11 MB. Generally, there was a slight
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TABLE V
EVALUATION METRICS FOR PRUNING RESULTS ON THREE YOLOV8 MODEL VARIANTS

Metrics YOLOv8s YOLOv8m YOLOv8l

Base Pruned Delta Base Pruned Delta Base Pruned Delta
(%) (%) (%)

Accuracy (%) 99.70 96.67 -3.00 99.73 97.43 -2.30 99.70 97.77 -1.90
Precision (%) 97.77 77.71 -20.50 98.14 83.93 -14.50 98.19 86.71 -11.70

Recall (%) 98.40 96.88 -1.60 98.58 96.31 -2.30 98.22 97.20 -1.00
F1-Score (%) 98.08 86.24 -12.00 98.36 89.69 -8.80 98.21 91.65 -6.70

Size (MB) 21.51 42.84 +99.20 49.65 99.10 +99.10 83.61 167.01 +99.80
Inference (ms) 974.50 938.90 -3.70 1996.60 1915.70 -4.00 4299.50 3753.30 -12.70

decrease in precision metrics for models quantized to INT8
precision, ranging from 2.5% to 4%. The YOLOv8 medium
(YOLOv8m) variant became the best-performing INT8 model
in terms of accuracy, precision, and F1-score, although the dif-
ferences compared to other INT8 models were not substantial.

So, based on the results, it can be concluded that quan-
tization is quite effective in compressing the model. This is
demonstrated by the fact that quantization generally reduces
model size and inference time without significant drops in
accuracy, precision, recall, and f1-score. When considering all
quantized variants, the FP16 version of the YOLOv8 medium
(YOLOv8m) variant had the best accuracy, precision, recall,
and f1-score. However, the differences in these four metrics
were not significant compared to other quantized models.
Since the model will be deployed in a mobile (m-health)
application, model size and inference time are the primary
considerations in selecting the final model. Based on the data,
the INT8 version of the YOLOv8 small (YOLOv8s) variant
had the smallest size compared to other quantized models.
Additionally, its inference time was not significantly different
from the FP16 version of the YOLOv8s variant, which had
the fastest inference time. Therefore, considering these factors,
the INT8 quantized version of the YOLOv8 small (YOLOv8s)
variant was selected as the model to be used in the m-health
application.

A comparison of the proposed seven-segment digit detection
model with related studies can be seen in Table VII. Generally,
the developed model has successfully detected seven-segment
digits accurately. The model presented in this Final Project
achieved higher accuracy and F1-score compared to related re-
search. Additionally, it can detect blood pressure measurement
images that include shadow reflections and illumination effects
by leveraging data variability and augmentation techniques.
This demonstrates that the developed model has effectively
addressed challenges faced by Finnegan et al. and Shenoy &
Aalami. Furthermore, the model has been compressed to INT8
precision, resulting in a smaller model size and inference time.
Therefore, this model can run smoothly with low latency on
edge devices such as mobile phones. Consequently, there is no
need to deploy the model on servers like the implementation
by Wannachai et al. in their research.

D. Evaluation of M-Health Application

The outcomes of the model’s detection process include
bounding boxes for each defined class. Hence, further pro-

cessing within the m-health application is required to cat-
egorize and identify the detected digits as blood pressure
values: systolic pressure, diastolic pressure, and heart rate per
minute. Subsequently, an evaluation of these processes is also
necessary to assess their effectiveness and accuracy.

To verify its performance, the model was tested using read-
ings from 40 data samples of blood pressure measurements.
These samples included 30 images from a test dataset and 10
images directly captured from a digital sphygmomanometer.
The inclusion of 10 directly captured images was aimed
to validate that the model did not overfit. Based on the
test results, the accuracy of digit grouping was found to be
96.67%, indicating only 4 out of 120 blood pressure metrics
were incorrectly identified. Overall, the model successfully
interpreted 38 sphygmomanometer images out of 40, achieving
an image reading accuracy of 95%.

Meanwhile, the average inference time obtained was 1867.6
ms, a threefold increase than the measurement in Google
Colab (CPU). This increase is attributed to differences in
device specifications between Google Colab as the model de-
velopment platform and the mobile phone as the m-health de-
ployment platform. Mobile phones typically have limited com-
putational capabilities compared to the hardware of Google
Colab, thus resulting in longer inference times for model
execution. The hardware specifications of Google Colab and
the mobile phone used are detailed in Section IV. Additionally,
the m-health application’s model is also tested on 5 general
cases, including LCD color variations, sphygmomanometer
value layout variations, distance and angle of image capture, as
well as image disturbances such as blur and light reflections.
A sample of the test results is shown in Figure 6.

Based on the results in the table, the model successfully
detected blood pressure values across these defined cases with
satisfactory performance. For cases 1 and 2, the model accu-
rately recognized blood pressure values across various digital
sphygmomanometer layouts. In cases 4 and 5, the model also
successfully detected images taken from a distance and slightly
blurred, as long as they remained within reasonable limits for
manual readability on normal people. The model only failed
to detect digits in one image from the test case involving an
extreme angle of image capture, where the angle was too steep
for the model to accurately recognize the seven-segment digits.

Overall, the m-health application has proven capable of
accurately reading blood pressure measurement results. How-
ever, during live camera readings, users still need to keep the
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TABLE VI
EVALUATION METRICS FOR QUANTIZATION RESULTS ON THREE YOLOV8 MODEL VARIANTS

Metrics YOLOv8s YOLOv8m YOLOv8l

Base FP16 Delta INT8 Delta Base FP16 Delta INT8 Delta Base FP16 Delta INT8 Delta
(%) (%) (%) (%) (%) (%)

Accuracy (%) 99.70 99.70 0.00 99.28 -0.40 99.73 99.74 +0.01 99.47 -0.30 99.70 99.70 0.00 99.27 -0.40
Precision (%) 97.77 97.77 0.00 94.89 -2.90 98.14 98.21 +0.07 96.69 -1.50 98.19 98.19 0.00 94.31 -4.00

Recall (%) 98.40 98.40 0.00 98.11 -0.30 98.58 98.65 +0.07 98.55 -0.04 98.22 98.22 0.00 98.60 +0.40
F1-Score (%) 98.08 98.09 +0.01 96.48 -1.60 98.36 98.43 +0.07 97.61 -0.80 98.21 98.21 0.00 96.41 -1.80

Size (MB) 21.51 21.40 -0.50 11.00 -48.90 49.65 49.49 -0.30 25.22 -49.20 83.61 83.40 -0.30 42.36 -49.30
Inference (ms) 974.50 617.90 -36.60 661.40 -32.10 1996.60 1866.40 -6.50 1926.50 -3.50 4299.50 3794.40 -11.80 3918.70 -8.90

Fig. 6. Sample of m-health application’s test results.

TABLE VII
MODEL PERFORMANCE COMPARISON WITH RELATED STUDIES

Research Model/Algorithm Accuracy F1-Score
(%) (%)

Finnegan et al. (2019) Image Processing 93.00 80.00
Wannachai et al. (2020) CNN 90.00 -
Shenoy & Aalami (2018) Random Forest 98.20 -
Proposed Model YOLOv8 small INT8 99.28 96.48

camera steady for approximately 1-2 seconds to ensure more
accurate detection results. This is due to the model’s inference
time being slightly longer than the frame capture interval of the
camera, causing a minor bottleneck in the generated frames.

VI. CONCLUSION

In this study, an m-health application equipped with the
capability to automatically acquire blood pressure measure-
ment results from a sphygmomanometer has been successfully
designed, implemented, and tested with good accuracy. This
capability was implemented through a deep learning model
(YOLOv8s with INT8 precision) capable of detecting seven-
segment digits. Overall, the developed m-health application
features include blood pressure value reading via camera,
blood pressure data logging, data visualization, and authen-
tication. The resulting model has achieved a digit detection
accuracy of 98.20%. The inference time for the model was
measured at 661.4 ms on a Google Colab CPU and 1867.6

ms on a mobile phone, with a model size of 11 MB. Mean-
while, through testing with 40 image samples, the m-health
application achieved a digit grouping accuracy of 96.67% and
an image reading accuracy of 95%.
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