
Performance Analysis on Multi-Party Computation

"Online-Store" with Homomorphic CKKS encryption

Mohamad Falah Sutawindaya

School of Electrical Engineering and Informatics Bandung

Institute of Technology

Bandung, Indonesia

falahsuta@gmail.com

Rinaldi Munir

School of Electrical Engineering and Informatics Bandung

Institute of Technology

Bandung, Indonesia

rinaldi@informatika.org

Abstract—The problem of data breaches is increasingly

widespread, online service providers often miss out, resulting in

data service users being exposed. Online services can also be

referred to as a cloud system called semi-trusted-cloud-source,

homomorphic encryption is considered as one of the answers to

provide solutions for exposed data as well as practicality in

carrying out operations on the data. Various architectures of cloud

systems can be implemented homomorphically, one of which is

Multi-Party Computation (MPC) combined with homomorphic

encryption that can provide internal data security for semi-trusted

source services (various architectural models have their

advantages and disadvantages). Seeing how big the impact of

homomorphic implementation on hardware is also taken into

account because it is related to costs in providing service

providers, this study draws several conclusions about how much

the additional cost is, which briefly requires one additional piece

of hardware as a service worker for the needs of one cycle

homomorphic computation. This paper also mentions how big the

impact on storage requirements as one of the MPC-based modules.

In the end, the implementation test can still provide an MPC

system that runs well which involves computational

homomorphism for its use with the scenario of storing transaction

and balance data encrypted in the case study "online store".

(Abstract)

Keywords—Multi-Party Computation, Homomorphic, Web

Service, Exposed Data, Data-Breach, Cloud-System, Semi-trusted-

source, spike-testing, hardware-monitoring, Cryptography.

I. INTRODUCTION

The adoption of cloud computing which has massive growth
is not without reason, convenience and flexibility are the reasons
for using cloud computing services instead of using traditional
dedicated servers, which generally users do not need to perform
maintenance on the related server because this has been done by
service providers only need to configure on the usage and
computing needs he wants (Sangeeta, 2012). Cloud service
providers also generally provide convenience in managing the
resources needed so that the system can serve users well. The
flexibility of the use of cloud services is also a matter of concern
because the implementation of the architecture in the program
that the user is trying to install is not necessarily safe, so this is
a problem in itself because the user trusts the data.

User data itself has the greatest risk during the idle stage or
when user data is stored on cloud computing service resources

(Vijay, 2014). This is an event called data-breach, i.e. a stolen
database event that exposes millions of user data (Hicham,
2019). The use of a different architecture such as blockchain
requires high-cost technical investments, massive changes to the
way centralized systems generally work. The easiest and
cheapest way from technical costs but still provides more
benefits to data security is to implement a layer or encryption
layer on the data stored in the hexagon and stored (Shivani,
2021). The method of applying encryption to data is as important
as data security because if it is not appropriate, it will cause
swelling of computing resources and reduce the effectiveness of
cloud computing services.

Homomorphic encryption with the initial idea of using it is
intended to be able to privatize data on external or external
resources in a cooperative environment in commercial cloud
computing services, user data such as health records, addresses,
credit information or other personal information can still
maintain its confidential condition even if a data breach occurs.
and system errors. For this reason, optimizing the use of
encryption algorithms in programs running on cloud computing
services is one step to make the cloud computing system more
secure because it can overcome the occurrence of data theft
scenarios (Raymond, 2015).

One of the technical schemes that are currently known, one
that offers good speed and is claimed to be usable is the CKKS
scheme (Cheon-Kim-Kim-Song), this scheme offers arithmetic
operations that approximate numbers that can be used on the
original numbers which makes it an advantage. To see how far
the use of CKKS on hardware in this paper is tested on a
medium-scale traffic to see the response of a system that uses
CKKS where the use of this algorithm promises to be one of the
appropriate solutions for Multi-Party Computation (MPC).

To start, in this paper we present the implementation of
Multi-Party Computation on the "Online Store Scenario" with a
series of tests on hardware to see the impact of using CKKS
homomorphic encryption on the system.

II. CKKS ALGORITHM

 The CKKS algorithm is one of the newest homomorphic

algorithms adapted from the SEAL library which is fully-

homomorphic-encryption (FHE), along with BFV. CKKS and

BFV are available in the Golang language which is available in

a library called latigo which is a conversion from SEAL which

is a library written in C++. Writing on Golang brings new

possibilities regarding homomorphic implementations to the

web services. The benchmarks on the official service show very

similar performance between these two languages. CKKS

allows operations up to complex numbers, while BFV only

allows operations on integers. The advantages of using CKKS

can be adopted in more cases in web services as exemplified in

the development of this paper solution.

A. Key Generation

 To see the equivalent of the sequence of mathematical

operations with writing programs, let's look at the following

steps:
To create a secret key and a public key, let's look at the

following equation

sk = s

pk = (a, b = -a . s + e),

where a,s,e Rq, Rq cycle polynomial ring, and sk Rq,

while pk Rq
2 is a vector polynomial with two dimensions

(public-key).

B. Encoding and Decoding

 The encoding process converts plaintext (in the form of

complex vectors or float data types for example) into members

of a polynomial ring, which is defined as follows, for example

z ∈ Cn/2 is a composition vector with slots or a complex number

space, and is a scale on the plaintext associated with precision.

The encoding algorithm process is:

 μ Ecd(∆, z)

 With μ ∈ R = (x) / xn + 1, or a plaintext that belongs to a

polynomial ring. For the decoding process that will change the
plaintext that is not a member of the polynomial ring, the

decoding algorithm process is as follows:

 z′ ←Dcd(∆, μ)

where z′ ∈ Cn/2 is a complex vector or float data type of

dimension n/2, provided that z′≈z.

C. Encryption and Decryption

 For the encryption process is the process before the

operation is carried out on the ciphertext results, by looking at

the following equation is the mathematical process of

performing encryption. Given a plaintext, namely which has the

property μ ∈ R, and pk = (−a·s+e, a) ∈ Rq
2. The encryption

algorithm is as follows:

 c ← Enc(pk, μ), c= (μ−a·s+e, a) = (c0, c1) ∈ Rq
2

where c is the ciphertext which is c ∈ Rq
2 which means that each

component is a polynomial ring. While the reverse process is

decryption, the way the algorithm works is as follows:

μ′←Dec(s, c), μ′=c0+c1·s

μ′ = μ−a·s+e+a·s = μ+e ≈ μ

With the same properties c ∈ Rq
2, and sk = s, and also μ ∈ R

which is the plaintext form.

D. Ciphertext-Plaintext Addition

 With μ ∈ R for the plaintext and c = (c0, c1) ∈ Rq
2 for the

ciphertext, the addition of ciphertext c and plaintext , follows

the following calculation:

 cadd = c + μ = (c0+μ, c1)

 with sk = s ∈ R and the decryption process μ′←Dec(sk, c)
which is the decryption of ciphertext c, it can be verified that cadd

is a close approximation to μ′+μ which is a mathematical form
of equation with the addition of each ciphertext and the plaintext
is expressed by the following equation:

 Dec(sk, cadd) = cadd,0+cadd,1·s = c0+μ+c1·s = μ+μ′−a·s+a·s+e
 ≈ μ+μ′.

E. Ciphertext-Plaintext Multiplication

 Meanwhile, in the process of multiplication with initiation,
with μ ∈ R for the plaintext and c = (c0, c1) ∈ Rq

2 for the
ciphertext, the multiplication of ciphertext c and plaintext μ,
follows the following calculation:

 cmult= (μ′·c0, μ′·c1)

then it can be verified that cmult is a close approximation to +μ
which is a mathematical form of an equation with the product of
each ciphertext and plaintext expressed in the following
equation:

 Dec(sk, cmult) = μ′·c0+μ′·c1·s = μ′·(c0+c1·s)
 =μ′·(μ−a·s+e+a·s) =μ′·μ+μ′·e ≈ μ′·μ

F. Ciphertext-Ciphertext Addition

 Meanwhile, in the process of adding ciphertext c with

ciphertext c', for example c = (c0, c1), c′= (c′0, c′1) ∈ Rq
2 for two

ciphertexts to be added, the addition is defined as follows:

 cadd = c + c′ = (c0+c′0, c1+c′1)

With sk = s ∈ R and μ←Dec(sk, c), μ′←Dec(sk, c′) being the
decryption of c, c' it can be verified that cadd is a close
approximation to +μ which is of the form Mathematically the
equation with the addition of two ciphertexts is stated by the
following equation:

 Dec(sk, cadd) = cadd,0 + cadd,1·s = c0 + c′0 + (c1+c′1)·s =

 μ+μ′+2e ≈ μ+μ′

G. Ciphertext-Ciphertext Multiplication

 Meanwhile, in the process of multiplying ciphertext c with

ciphertext c', for example c = (c0, c1), c′ = (c′0, c′1) ∈ Rq
2 for two

ciphertexts to be added, the multiplication is defined as follows

 cmult= (c0·c′0, c0·c′1+c′0·c1, c1·c′1) = (d0, d1, d2)

With sk = s ∈ R, it can be verified that cmult is a close
approximation to the decryption process of the multiplication of
two ciphertexts stated as follows:

 Dec(sk,c)·Dec(sk,c′) = (c0+c1·s)·(c′0+c′1·s) =

 c0·c′0+(c0·c′1+c′0+c1)·s+(c1+c′1)·s2=d0+d1·s+d2·s2

As the added multiplying process, it's best to include
linearization primitive to reduce the size.

III. MULTY-PARTY HOMOMORPHIC ENCRYPTION

PROGRAMS

To be able to show the performance of CKKS on medium-
scale traffic, we created several inspired by case studies of an
online store, we created several scenarios that will take
advantage of the MPC scenario that uses the arithmetic
operation feature that utilizes the CKKS feature, namely
multiplication on discounts, and adding balances. users, and
privatize purchase transaction data. Full program
implementation source code will be added in the conclusion for
the GitHub link.

A. Activate Balance (Balance Module)

Here is an "Activate Balance" module flow architecture
design which is used to activate a user's balance if the user has
never activated a balance before. The following is the
architectural design.

Fig. 1. Application Module (Balance)

B. Adding/Subtract Balance (Balance Module)

here is a "Top up Balance " module flow architecture design
that is used to fill the user's balance when the user has activated
the previous balance. The following is the architectural design.

Fig. 2. Application Module (Balance)

C. Check Balance (Balance Module)

There is an architectural design for the "Check Balance"
module flow that is used to decrypt the user balance ciphertext
for display. The following is the architectural design.

Fig. 3. Application Module (Balance)

D. Discounts on Item Purchase (Transacts Module)

Here is a flow architecture design for the "Create Transact"
module which is used to perform product transactions using the
user's balance if the user has previously activated the balance.
The following is the architectural design.

Fig. 4. Application Module (Transacts)

E. Private purchase Transaction data (Transacts Module)

Here is a "Get Private Transact" module flow architecture
design that is used to get product transactions that have been
done before. The following is the architectural design.

Fig. 5. Application Module (Transacts)

IV. PERFORMANCE TESTING

To see how this CKKS encryption affects the hardware, the
following series of tests are carried out. The test starts from the
lowest scale, which is to only test the speed of the program, then
see the impact on programs that perform many operations at
once and at the same time see the impact on hardware with
monitoring tools.

A. Program Execution Overhead Testing

To be able to measure how much homomorphic computing
penalizes the system (how much hardware resources are used)
to see how fast or slow the execution of this homomorphic-based
program takes up a portion of resources can answer the question
of when this program takes a long enough pause to executed and
overloaded the system.

With the system built, it is found that the required execution
speed along with each degree value for the library parameters
used and the scenario of calculating the price after the final
discount (involves adding and multiplying the homomorphic
ciphertext for the operation).

TABLE I. STANDARD CKKS OPERATION BENCHMARK

Operation d = 24 d = 25 d = 26 d = 27 d = 28

Encode 19 17 30 44 90

Encrypt 51 76 137 249 914

Multiplication 10 8 10 12 21

Add 6 6 6 7 9

Decrypt 2 7 5 12 27

Decode 36 35 42 44 85

Overhead per

Operation (in μs)

124 149 230 368 1146

The first test regarding the amount of delay that appears
when adding computational homomorphic, the assumption of
this test is obtained with a margin of error of +-20, in units of
microseconds. This calculation or test assumption is based on
the time required to execute homomorphic calculations or
execution with external factors other than the program, for
example delays or pings from connections to retrieve data from
a network (e.g. storage database connections or service access
connections). The last column describes the overhead, i.e. the
time required to execute a full set of computational
homomorphic whose value is obtained by adding up the values
in the previous column. Other implications of using a higher
degree apart from increased execution delays arise from demand
storage or required storage.

Fig. 6. Storage CKKS Encryption Requirement

Shows the various degrees of measurement and their effect
on the size of the ciphertext, this is related to the calculation of
the storage requirements of the system being built. It can be seen

that from the table before, the size is magnified twice to a
magnification of one degree, the graph of the relationship is
linear even though it looks like an exponential because it uses a
scale of 0.5 on the degree.

B. Testing on Many Service Users

System testing is also carried out with varying loads, which
is not just a single-execution program to test how the system
reacts at larger load scales. To see the performance penalty that
occurs, the test is carried out on 2 different variables,
computational homomorphic and computational without
cryptography. The test scenario will use the “k6 load tester”
library and to be able to see the stress-test the test will use the
configuration that will be shown below with the output of the
completed computational quantities. The scenario is tested on an
API endpoint utilizing a full circuit homomorphic
computationally (when using).

TABLE 2. SPIKE TESTING

Operation Finished Operation

(3s)

Average Request Per

Second (RPS)

Without Homomorphic 2759 920

Homomorphic, d = 24 1157 385

Homomorphic, d = 25 839 280

Homomorphic, d = 26 592 197

Homomorphic, d = 27 325 108

Homomorphic, d = 28 164 54

Testing in Table 2 aims to see how the system reacts to
computing for a larger load scale, the test scenario is carried out
with a computational time cutoff (3s), after the computational
limit will no longer accept computational requests. Testing is
done by spawning as many requests as can be completed within
the cutoff period. The test compares the system without
homomorphic computations and with homomorphic
computations to see the performance penalty given, it appears
that the completed computations are reduced by 50%-75% with
the lowest degree value for the same time.

C. Hardware Performance Metrics in Graphs

The scenario being tested is the scenario same as before,
namely spike-testing by multiplying as many operations as
possible that can be completed in 3 seconds. The following is a
display of the impact that occurs on the hardware during the
spike-testing.

Fig. 7. CPU Utilization Comparison By Modulus Degree

For CPU utilization, it can be seen that for each increase in
degree, it increases by 25-40% for an increase in utilization. As
a graphic explanation, the degree of modulus with a value of 0
is computational without homomorphism. The trend of
increasing CPU utilization is due to the increasing weight or
number of ciphertexts that must be computed homomorphically.

Fig. 8. Read/Write Rates Comparison By Modulus Degree

 Figure 8 is linear with the Table 2, which decreases with

increasing degrees of modulus, this is because fewer operations

are completed so that data written or read on disk experiences a

downward trend.

Fig. 9. Memory (RAM) Usage Comparison By Modulus Degree

 Meanwhile, RAM usage tends to have no significant

changes or spikes in resource usage, consistent with Figure IV-

32, this can happen because the running program has a fixed-

allocation so that memory usage remains constant despite the

difference in load due to spike-testing. For this series of tests, it

can be concluded at a glance that the program is CPU-bound,

which means that homomorphic usage is dominated by more

dominant CPU usage. Analysis and mitigation that can be used

for system adoption is explained further in subsection IV.9,

namely the analysis opinion regarding the test results.

V. CONCLUSION

 In this paper we have tried to build a solution for an MPC

"online store" application with CKKS using Golang as the

server and JavaScript as the client, and a series of tests are

shown to show the hardware specifications required. We found

that the CPU usage increased by 60% for the lowest degree, and

the encrypted data storage requirement required at least about

400-500% of the normal requirement at the lowest degree, as a

comparison normal database column required about 20 bytes -

400 bytes with the lowest degree usage required at least more

than 2 kilo bytes, regarding CPU usage we recommend adding

at least one worker service to provide the computational needs

for homomorphic computational overhead as it easier to add

more vertical scaling solution than changing program structure

for specific hardware requirements.

REFERENCES

[1] A. Carey, “On the Explanation and Implementation of
Three Open-Source Fully Homomorphic Encryption Libraries,”
pp. 7-9, 2020.

[2] J. Vacca, Cloud Computing Security Foundations and
Challenges, CRC Press, 2020.

[3] Hicham, “Digging Deeper into Data Breaches: An
Exploratory Data Analysis of Hacking Breaches Over Time,”
Science Direct, pp. 2-4, 2019.

[4] Sangeeta, “Exploring the impact of Cloud Computing
adoption on organizational flexibility: A client perspective,”
IEEE, 2012.

[5] Vijay, “A Survey of Cryptographic Approaches to
Securing Big-Data Analytics in the Cloud,” IEEE, pp. 1-6, 2014.

[6] Shivani, “What Is The Standard Cost Of Building A
Blockchain Application?,” 2021. [Online]. Available:
https://www.cisin.com/coffee-break/technology/what-is-the-
standard-cost-of-building-a-blockchain-application.html.

[7] R. K. &. Raymond, The Cloud Security Ecosystem,
Elsevier, 2015.

[8] B. &. Rogaway, Introduction to Modern Cryptography,
UC Davis, 2015.

[9] D. &. Helmut, Introduction to Cryptography, New
York: Springer, 2015.

[10] Encryption Consulting, “What is Cryptography in
security? : Asymmetric, Symmetric, and Hashing,” [Online].
Available: https://www.encryptionconsulting.com/education-
center/what-is-cryptography/.

[11] J. Kun, “Why Theoretical Computer Scientists Aren’t
Worried About Privacy,” 2013. [Online]. Available:
https://jeremykun.com/2013/06/10/why-theoretical-computer-
scientists-arent-worried-about-privacy/.

[12] Bolboceanu, “a Toy Implementation in Python,” 2016.
[Online]. Available: https://bit-
ml.github.io/blog/post/homomorphic-encryption-toy-
implementation-in-python/.

[13] S. Johnston, “Creative Commons,” 2013. [Online].
Available: https://creativecommons.org/licenses/by-sa/3.0.

[14] C. Wong, HTTP Pocket Reference, O'Reilly, 2000.

[15] D. Gourley, “HTTP: The Definitive Guide,” 2021.
[Online]. Available: https://www.oreilly.com/library/view/http-
the-definitive/1565925092/ch04s05.html.

[16] D. Mills, “Mozilla MDN Developer,” 2021. [Online].
Available: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Overview.

[17] D. &. Anjo, “Automatically Securing Linux
Application Containers in Untrusted Clouds,” 2019. [Online].
Available: https://slidetodoc.com/automatically-securing-linux-
application-containers-in-untrusted-clouds/.

[18] I. I. Wuri, “Homomorphic Encryption versus RSA:
Cloud Security Performance Analysis,” pp. 2-5, 2021.

[19] W. F. Infall, “Cloud Security Implementation using
Homomorphic Encryption,” pp. 2-5, 2020.

[20] Ahmed, “A Verifiable Fully Homomorphic Encryption
Scheme for Cloud Computing Security,” MDPI Technologies,
pp. 1-15, 2019.

[21] A. Vázquez, “Study and Applications of Homomorphic
Encryption Algorithms to Privacy Preserving SVM Inference
for a Bank Fraud Detection Context,” Universidade de Vigo, pp.
23-31, 2020.

[22] L. Norris, “Analysis of Partially and Fully
Homomorphic Encryption,” pp. 2-5, 2013.

[23] “HTTP request methods – REST API verbs,” [Online].
Available: https://nlogn.in/http-request-methods-rest-api-
verbs/.

[24] “HTTP request methods,” [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods.

[25] S. Wang, “Big Data Privacy in Biomedical Research,”
IEEE TRANSACTIONS ON BIG DATA, pp. 1-15, 2016.

	I. Introduction
	II. CKKS Algorithm
	A. Key Generation
	B. Encoding and Decoding
	C. Encryption and Decryption
	D. Ciphertext-Plaintext Addition
	E. Ciphertext-Plaintext Multiplication
	F. Ciphertext-Ciphertext Addition
	G. Ciphertext-Ciphertext Multiplication

	III. Multy-Party Homomorphic Encryption Programs
	A. Activate Balance (Balance Module)
	B. Adding/Subtract Balance (Balance Module)
	C. Check Balance (Balance Module)
	D. Discounts on Item Purchase (Transacts Module)
	E. Private purchase Transaction data (Transacts Module)

	IV. Performance Testing
	A. Program Execution Overhead Testing
	B. Testing on Many Service Users
	C. Hardware Performance Metrics in Graphs

	V. Conclusion
	References

