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Abstract—The problem of data breaches is increasingly 

widespread, online service providers often miss out, resulting in 

data service users being exposed. Online services can also be 

referred to as a cloud system called semi-trusted-cloud-source, 

homomorphic encryption is considered as one of the answers to 

provide solutions for exposed data as well as practicality in 

carrying out operations on the data. Various architectures of cloud 

systems can be implemented homomorphically, one of which is 

Multi-Party Computation (MPC) combined with homomorphic 

encryption that can provide internal data security for semi-trusted 

source services (various architectural models have their 

advantages and disadvantages). Seeing how big the impact of 

homomorphic implementation on hardware is also taken into 

account because it is related to costs in providing service 

providers, this study draws several conclusions about how much 

the additional cost is, which briefly requires one additional piece 

of hardware as a service worker for the needs of one cycle 

homomorphic computation. This paper also mentions how big the 

impact on storage requirements as one of the MPC-based modules. 

In the end, the implementation test can still provide an MPC 

system that runs well which involves computational 

homomorphism for its use with the scenario of storing transaction 

and balance data encrypted in the case study "online store". 

(Abstract) 
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I.  INTRODUCTION  

The adoption of cloud computing which has massive growth 
is not without reason, convenience and flexibility are the reasons 
for using cloud computing services instead of using traditional 
dedicated servers, which generally users do not need to perform 
maintenance on the related server because this has been done by 
service providers only need to configure on the usage and 
computing needs he wants (Sangeeta, 2012). Cloud service 
providers also generally provide convenience in managing the 
resources needed so that the system can serve users well. The 
flexibility of the use of cloud services is also a matter of concern 
because the implementation of the architecture in the program 
that the user is trying to install is not necessarily safe, so this is 
a problem in itself because the user trusts the data.  

User data itself has the greatest risk during the idle stage or 
when user data is stored on cloud computing service resources 

(Vijay, 2014). This is an event called data-breach, i.e. a stolen 
database event that exposes millions of user data (Hicham, 
2019). The use of a different architecture such as blockchain 
requires high-cost technical investments, massive changes to the 
way centralized systems generally work. The easiest and 
cheapest way from technical costs but still provides more 
benefits to data security is to implement a layer or encryption 
layer on the data stored in the hexagon and stored (Shivani, 
2021). The method of applying encryption to data is as important 
as data security because if it is not appropriate, it will cause 
swelling of computing resources and reduce the effectiveness of 
cloud computing services.  

Homomorphic encryption with the initial idea of using it is 
intended to be able to privatize data on external or external 
resources in a cooperative environment in commercial cloud 
computing services, user data such as health records, addresses, 
credit information or other personal information can still 
maintain its confidential condition even if a data breach occurs. 
and system errors. For this reason, optimizing the use of 
encryption algorithms in programs running on cloud computing 
services is one step to make the cloud computing system more 
secure because it can overcome the occurrence of data theft 
scenarios (Raymond, 2015).  

One of the technical schemes that are currently known, one 
that offers good speed and is claimed to be usable is the CKKS 
scheme (Cheon-Kim-Kim-Song), this scheme offers arithmetic 
operations that approximate numbers that can be used on the 
original numbers which makes it an advantage. To see how far 
the use of CKKS on hardware in this paper is tested on a 
medium-scale traffic to see the response of a system that uses 
CKKS where the use of this algorithm promises to be one of the 
appropriate solutions for Multi-Party Computation (MPC).  

To start, in this paper we present the implementation of 
Multi-Party Computation on the "Online Store Scenario" with a 
series of tests on hardware to see the impact of using CKKS 
homomorphic encryption on the system. 

II. CKKS ALGORITHM 

 The CKKS algorithm is one of the newest homomorphic 

algorithms adapted from the SEAL library which is fully-

homomorphic-encryption (FHE), along with BFV. CKKS and 

BFV are available in the Golang language which is available in 



a library called latigo which is a conversion from SEAL which 

is a library written in C++. Writing on Golang brings new 

possibilities regarding homomorphic implementations to the 

web services. The benchmarks on the official service show very 

similar performance between these two languages. CKKS 

allows operations up to complex numbers, while BFV only 

allows operations on integers. The advantages of using CKKS 

can be adopted in more cases in web services as exemplified in 

the development of this paper solution. 

A. Key Generation 

 To see the equivalent of the sequence of mathematical 

operations with writing programs, let's look at the following 

steps: 
To create a secret key and a public key, let's look at the 

following equation 

sk = s     

pk = (a, b = -a . s + e), 

where a,s,e  Rq, Rq cycle polynomial ring, and sk  Rq, 

while pk  Rq
2 is a vector polynomial with two dimensions 

(public-key). 

B. Encoding and Decoding 

 The encoding process converts plaintext (in the form of 

complex vectors or float data types for example) into members 

of a polynomial ring, which is defined as follows, for example 

z ∈ Cn/2 is a composition vector with slots or a complex number 

space, and is a scale on the plaintext associated with precision. 

The encoding algorithm process is: 

  

 μ  Ecd(∆, z) 

  

 With μ ∈ R = (x) /  xn + 1, or a plaintext that belongs to a 

polynomial ring. For the decoding process that will change the 
plaintext that is not a member of the polynomial ring, the 

decoding algorithm process is as follows: 

 z′ ←Dcd(∆, μ) 

 

where z′ ∈ Cn/2 is a complex vector or float data type of 

dimension n/2, provided that z′≈z. 

C. Encryption and Decryption 

 For the encryption process is the process before the 

operation is carried out on the ciphertext results, by looking at 

the following equation is the mathematical process of 

performing encryption. Given a plaintext, namely which has the 

property μ ∈ R, and pk = (−a·s+e, a) ∈ Rq
2. The encryption 

algorithm is as follows: 

 

 c  ← Enc(pk, μ), c= (μ−a·s+e, a) = (c0, c1) ∈ Rq
2        

 

where c is the ciphertext which is c ∈ Rq
2 which means that each 

component is a polynomial ring. While the reverse process is 

decryption, the way the algorithm works is as follows:       

    
μ′←Dec(s, c), μ′=c0+c1·s   

μ′ = μ−a·s+e+a·s = μ+e ≈ μ 

 

With the same properties c ∈ Rq
2, and sk = s, and also μ ∈ R 

which is the plaintext form. 

D. Ciphertext-Plaintext Addition  

 With μ ∈ R for the plaintext and c = (c0, c1) ∈ Rq
2 for the 

ciphertext, the addition of ciphertext c and plaintext , follows 

the following calculation: 

 

 cadd = c + μ = (c0+μ, c1) 

 
 with sk = s ∈ R and the decryption process μ′←Dec(sk, c) 
which is the decryption of ciphertext c, it can be verified that cadd 

is a close approximation to μ′+μ which is a mathematical form 
of equation with the addition of each ciphertext and the plaintext 
is expressed by the following equation: 

 Dec(sk, cadd) = cadd,0+cadd,1·s = c0+μ+c1·s = μ+μ′−a·s+a·s+e 
 ≈ μ+μ′. 

E. Ciphertext-Plaintext Multiplication  

 Meanwhile, in the process of multiplication with initiation, 
with μ ∈ R for the plaintext and c = (c0, c1) ∈ Rq

2 for the 
ciphertext, the multiplication of ciphertext c and plaintext μ, 
follows the following calculation: 

 cmult= (μ′·c0, μ′·c1) 

then it can be verified that cmult is a close approximation to +μ 
which is a mathematical form of an equation with the product of 
each ciphertext and plaintext expressed in the following 
equation: 

 Dec(sk, cmult) = μ′·c0+μ′·c1·s = μ′·(c0+c1·s) 
 =μ′·(μ−a·s+e+a·s) =μ′·μ+μ′·e ≈ μ′·μ 

F. Ciphertext-Ciphertext Addition 

 Meanwhile, in the process of adding ciphertext c with 

ciphertext c', for example c = (c0, c1), c′= (c′0, c′1) ∈ Rq
2 for two 

ciphertexts to be added, the addition is defined as follows: 

 

 cadd = c + c′ = (c0+c′0, c1+c′1)  

 
With sk = s ∈ R and μ←Dec(sk, c), μ′←Dec(sk, c′) being the 
decryption of c, c' it can be verified that cadd is a close 
approximation to +μ which is of the form Mathematically the 
equation with the addition of two ciphertexts is stated by the 
following equation:  

 Dec(sk, cadd) = cadd,0 + cadd,1·s = c0 + c′0 + (c1+c′1)·s = 

 μ+μ′+2e ≈ μ+μ′ 

G. Ciphertext-Ciphertext Multiplication 

 Meanwhile, in the process of multiplying ciphertext c with 

ciphertext c', for example c = (c0, c1), c′ = (c′0, c′1) ∈ Rq
2 for two 

ciphertexts to be added, the multiplication is defined as follows 

 



 cmult= (c0·c′0, c0·c′1+c′0·c1, c1·c′1) = (d0, d1, d2) 

 

With sk = s ∈ R, it can be verified that cmult is a close 
approximation to the decryption process of the multiplication of 
two ciphertexts stated as follows: 

 Dec(sk,c)·Dec(sk,c′) = (c0+c1·s)·(c′0+c′1·s) = 

 c0·c′0+(c0·c′1+c′0+c1)·s+(c1+c′1)·s2=d0+d1·s+d2·s2 

As the added multiplying process, it's best to include 
linearization primitive to reduce the size. 

III. MULTY-PARTY HOMOMORPHIC ENCRYPTION 

PROGRAMS 

To be able to show the performance of CKKS on medium-
scale traffic, we created several inspired by case studies of an 
online store, we created several scenarios that will take 
advantage of the MPC scenario that uses the arithmetic 
operation feature that utilizes the CKKS feature, namely 
multiplication on discounts, and adding balances. users, and 
privatize purchase transaction data. Full program 
implementation source code will be added in the conclusion for 
the GitHub link. 

A. Activate Balance (Balance Module) 

Here is an "Activate Balance" module flow architecture 
design which is used to activate a user's balance if the user has 
never activated a balance before. The following is the 
architectural design. 

 

Fig. 1. Application Module (Balance) 

B. Adding/Subtract Balance (Balance Module) 

here is a "Top up Balance " module flow architecture design 
that is used to fill the user's balance when the user has activated 
the previous balance. The following is the architectural design. 

 

Fig. 2. Application Module (Balance) 

 

C. Check Balance (Balance Module) 

There is an architectural design for the "Check Balance" 
module flow that is used to decrypt the user balance ciphertext 
for display. The following is the architectural design. 

 

Fig. 3. Application Module (Balance) 

D. Discounts on Item Purchase (Transacts Module) 

Here is a flow architecture design for the "Create Transact" 
module which is used to perform product transactions using the 
user's balance if the user has previously activated the balance. 
The following is the architectural design. 

 

Fig. 4. Application Module (Transacts) 

E. Private purchase Transaction data (Transacts Module) 

Here is a "Get Private Transact" module flow architecture 
design that is used to get product transactions that have been 
done before. The following is the architectural design. 

 

Fig. 5. Application Module (Transacts) 

IV. PERFORMANCE TESTING 

To see how this CKKS encryption affects the hardware, the 
following series of tests are carried out. The test starts from the 
lowest scale, which is to only test the speed of the program, then 
see the impact on programs that perform many operations at 
once and at the same time see the impact on hardware with 
monitoring tools. 



A. Program Execution Overhead Testing 

To be able to measure how much homomorphic computing 
penalizes the system (how much hardware resources are used) 
to see how fast or slow the execution of this homomorphic-based 
program takes up a portion of resources can answer the question 
of when this program takes a long enough pause to executed and 
overloaded the system. 

With the system built, it is found that the required execution 
speed along with each degree value for the library parameters 
used and the scenario of calculating the price after the final 
discount (involves adding and multiplying the homomorphic 
ciphertext for the operation). 

TABLE I. STANDARD CKKS OPERATION BENCHMARK 

Operation d = 24 d = 25 d = 26 d = 27 d = 28 

Encode 19 17  30 44 90 

Encrypt 51 76 137 249 914 

Multiplication 10 8 10 12 21 

Add 6 6 6 7 9 

Decrypt 2 7 5 12 27 

Decode 36 35 42 44 85 

Overhead per 

Operation (in μs) 

124 149 230 368 1146 

 

The first test regarding the amount of delay that appears 
when adding computational homomorphic, the assumption of 
this test is obtained with a margin of error of +-20, in units of 
microseconds. This calculation or test assumption is based on 
the time required to execute homomorphic calculations or 
execution with external factors other than the program, for 
example delays or pings from connections to retrieve data from 
a network (e.g. storage database connections or service access 
connections). The last column describes the overhead, i.e. the 
time required to execute a full set of computational 
homomorphic whose value is obtained by adding up the values 
in the previous column. Other implications of using a higher 
degree apart from increased execution delays arise from demand 
storage or required storage. 

 

Fig. 6. Storage CKKS Encryption Requirement 

Shows the various degrees of measurement and their effect 
on the size of the ciphertext, this is related to the calculation of 
the storage requirements of the system being built. It can be seen 

that from the table before, the size is magnified twice to a 
magnification of one degree, the graph of the relationship is 
linear even though it looks like an exponential because it uses a 
scale of 0.5 on the degree. 

B. Testing on Many Service Users 

System testing is also carried out with varying loads, which 
is not just a single-execution program to test how the system 
reacts at larger load scales. To see the performance penalty that 
occurs, the test is carried out on 2 different variables, 
computational homomorphic and computational without 
cryptography. The test scenario will use the “k6 load tester” 
library and to be able to see the stress-test the test will use the 
configuration that will be shown below with the output of the 
completed computational quantities. The scenario is tested on an 
API endpoint utilizing a full circuit homomorphic 
computationally (when using). 

TABLE 2. SPIKE TESTING  

Operation Finished Operation 

(3s) 

Average Request Per 

Second (RPS) 

Without Homomorphic 2759 920 

Homomorphic, d = 24 1157 385 

Homomorphic, d = 25 839 280 

Homomorphic, d = 26 592 197 

Homomorphic, d = 27 325 108 

Homomorphic, d = 28 164 54 

 

Testing in Table 2 aims to see how the system reacts to 
computing for a larger load scale, the test scenario is carried out 
with a computational time cutoff (3s), after the computational 
limit will no longer accept computational requests. Testing is 
done by spawning as many requests as can be completed within 
the cutoff period. The test compares the system without 
homomorphic computations and with homomorphic 
computations to see the performance penalty given, it appears 
that the completed computations are reduced by 50%-75% with 
the lowest degree value for the same time. 

C. Hardware Performance Metrics in Graphs 

The scenario being tested is the scenario same as before, 
namely spike-testing by multiplying as many operations as 
possible that can be completed in 3 seconds. The following is a 
display of the impact that occurs on the hardware during the 
spike-testing. 



 

Fig. 7. CPU Utilization Comparison By Modulus Degree 

For CPU utilization, it can be seen that for each increase in 
degree, it increases by 25-40% for an increase in utilization. As 
a graphic explanation, the degree of modulus with a value of 0 
is computational without homomorphism. The trend of 
increasing CPU utilization is due to the increasing weight or 
number of ciphertexts that must be computed homomorphically. 

 

 

Fig. 8. Read/Write Rates Comparison By Modulus Degree 

 

 Figure 8 is linear with the Table 2, which decreases with 

increasing degrees of modulus, this is because fewer operations 

are completed so that data written or read on disk experiences a 

downward trend. 

 

Fig. 9. Memory (RAM) Usage Comparison By Modulus Degree 

 Meanwhile, RAM usage tends to have no significant 

changes or spikes in resource usage, consistent with Figure IV-

32, this can happen because the running program has a fixed-

allocation so that memory usage remains constant despite the 

difference in load due to spike-testing. For this series of tests, it 

can be concluded at a glance that the program is CPU-bound, 

which means that homomorphic usage is dominated by more 

dominant CPU usage. Analysis and mitigation that can be used 

for system adoption is explained further in subsection IV.9, 

namely the analysis opinion regarding the test results. 

 

V. CONCLUSION 

 In this paper we have tried to build a solution for an MPC 

"online store" application with CKKS using Golang as the 

server and JavaScript as the client, and a series of tests are 

shown to show the hardware specifications required. We found 

that the CPU usage increased by 60% for the lowest degree, and 

the encrypted data storage requirement required at least about 

400-500% of the normal requirement at the lowest degree, as a 

comparison normal database column required about 20 bytes - 

400 bytes with the lowest degree usage required at least more 

than 2 kilo bytes, regarding CPU usage we recommend adding 

at least one worker service to provide the computational needs  

for homomorphic computational overhead as it easier to add 

more vertical scaling solution than changing program structure 

for specific hardware requirements. 
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