
Parallel Computing Scheme for the Encryption Process of DNSCrypt Protocol using CUDA

Parallel Computing Scheme for the Encryption Process of

DNSCrypt Protocol using CUDA

Fairuz Astra Pratama1, Dr. Ir. Rinaldi Munir, MT. 2, Drs. Judhi Santoso, M.Sc. 3

School of Electrical Engineering and Informatics,

Bandung Institute of Technology
Jl. Ganesha No.10, Lb. Siliwangi, Coblong, Bandung, Jawa Barat 40132, Indonesia

Email: pratamafairuz@gmail.com
1
, rinaldi@informatika.org

2
, judhi@informatika.org

3

 Abstract – DNSCrypt is a protocol that can be used to secure

the communication in the DNS system. The usage of this protocol

will add an additional processing in both client and server to

encrypt and decrypt the message, negatively impacting system

performance. CUDA can be used to reduce this negative effect by

processing the encryption in the GPU, where each message block

can be processed simultaneously in separate threads. This paper

aims to explore the potential of using CUDA in DNSCrypt to

improve performance by implementing several DNSCrypt system

with different encryption algorithm using or not using CUDA,

measuring the performance of each system, and analyzing it.

Keywords — DNSCrypt, parallel processing, encryption,

CUDA, performance

I. INTRODUCTION

 DNS is one of the component of the internet that provides

a naming service. One of the most common usage of the DNS

system is mapping a website URL to the IP address of the server

that serve it. Every message that is sent in the DNS system are

as a plaintext without any encryption. This makes the system

vulnerable to eavesdropping and man-in-the-middle attack,

where a third party can listen to every DNS message sent from

a user to figure out the user’s internet usage pattern.

 One of the method that can be used to solve this problem is

by using the DNSCrypt protocol. DNSCrypt secure the DNS

communication protocol in a way similar to how TLS secure

the HTTP protocol; by encrypting and validating every

communication that occurs between a DNS client and a DNS

resolver. This way, an attacker will not be able to find out what

website a user is trying to access since every message sent

between the user and the resolver will be encrypted.

 Even though the size of each message is relatively small,

the amount of DNS lookup in a network can be very high. A

large DNS resolver may process up to 800000 DNS query every

second. The usage of DNSCrypt protocol may result in a

negative performance impact since every message that is sent

and received need an additional processing in both end.

 To help reduce the performance impact of using the

DNSCrypt protocol, parallel processing can be used to

accelerate the encryption and decryption process. This paper

will propose a method of using CUDA to process the encryption

process of the DNSCrypt protocol. Furthermore, this paper will

also analyze the performance of a DNSCrypt system with

various configuration (processing method and encryption

algorithm) and compare it to a regular DNS system.

II. LITERATURES STUDY

A. DNSCrypt Protocol

 DNSCrypt is a security extension to the commonly used

DNS protocol. It works by encrypting and validating every

DNS query and response sent between a client’s DNS stub and

the DNS resolver. Similar with TLS, this security protocol is

designed to support many encryption scheme, and can use both

TCP and UDP as a transport method. The way DNSCrypt works

can be seen in Figure 1.

Figure 1 How DNSCrypt Protocol Works (Mitra, 2016)

 The “certificate” that is referred to in Figure 1 is a digital

document that contains information that is relevant for the client

to be able to encrypt and validate DNS query and DNS response

to and from the DNS resolver. At minimum the certificate will

contain the protocol version and the resolver’s public key that

will be used to encrypt and decrypt messages for the current

session. Since a resolver will be able to publish several

certificates at once, every certificate will also have a “magic

number” that the user will append to every message sent to the

resolver. This way, the resolver know which certificate that

each client is using to communicate.

 Version one of the DNSCrypt protocol is built using the

X25519-XSalsa20Poly1305 encryption scheme. X25519 is an

implementation of Elliptic-curve Diffie–Hellman, XSalsa20 is

a stream cipher algorithm, and Poly1305 is MAC generation /

validation algorithm. In this version, both client and server will

have an X25519 key pair, where each participant will generate

an identical secret key using their own secret key and the

partner public key. After that, both parties can easily send and

receive encrypted messages to and from each other using the

XSalsa20 algorithm (every message sent will also be

Parallel Computing Scheme for the Encryption Process of DNSCrypt Protocol using CUDA

accompanied by the nonce used to encrypt it). Additionally,

Poly1305 will also be used to generate MAC that will be

appended to the encrypted message, where upon receiving the

message, the recipient will validate the MAC to make sure that

the message originated from the correct host and has not been

tampered by a third party.

B. CUDA Parallel Programming

Figure 2 GPU Accelerated Computing (NVIDIA, 2007)

 CUDA is a programming platform developed by NVIDIA

that allows general-purpose program to be processed on

NVIDIA’s GPU. This concept is often called as “GPU-

Accelerated Computing”, where the majority of the code is still

being processed in the CPU, but a small portion is processed in

parallel using the GPU as can be seen in Figure 2. The main

advantage of using the GPU instead of CPU, is that the GPU

has a lot more processing core, making it more suitable for

compute-intensive function or codes. The CUDA programming

model is based on the C language and consist of several

important concepts such as:

1. Kernel Function. A kernel function is a C function where

the code within it will be executed N times in N separate

CUDA thread. This function is declared using the

__global__ declaration, and every parameter supplied

must be a pointer to the GPU’s global memory.

2. Thread Hierarchies. CUDA Threads is organized into a

block of threads that is organized into a grid. Every thread

will be able to access its thread id in its block, as well as

its block id in its grid. When calling a kernel function, the

code must also specify the number, structure and the

dimension of both the thread blocks and the grid.

3. Memory Hierarchies. There are several different

memory space in CUDA: Global and constant memory

that can be accessed by the CPU and every CUDA threads,

Shared memory that can accessed by every thread in the

same block, as well as Local memory that can only be

accessed by the owners thread.

4. Heterogenic Programming. In a CUDA program, the

CPU will use the GPU using the following method:

a. CPU will allocate the necessary GPUs global

memory space for the parameter and output

b. CPU will copy the parameter form the RAM to the

GPUs global memory

c. CPU call the kernel function and wait for it to finish

d. Finally, the CPU will copy the processing result from

the GPUs global memory to the RAM

III. PROPOSED SOLUTION

 GPU processing had been proved to be effective at

reducing the processing time of the encryption and decryption

process of both AES (Li, Zhong, Zhao, Mei, & Chu, 2012) and

Salsa20 (Khalid, Paul, & Chattopadhyay, 2013). This means

that by altering the encryption and decryption processing

scheme used at the DNSCrypt protocol implementation, the

performance of the system may be improved. This section will

propose a method of using CUDA to process the encryption and

decryption in DNSCrypt protocol, as well as proposing the

usage of a different encryption algorithm altogether.

A. Parallelizing the XSalsa20 Algorithm

Figure 3 Mapping of a Sequential Encryption Algorithm to its

Parallel Version

 XSalsa20 that is used in the DNSCrypt protocol version

one is an extension of the Salsa20 algorithm, and it function by

combining the 256 bit XSalsa20 encryption key with the first

128 bit out of the 192 bit nonce into a 256 bit Salsa20

Parallel Computing Scheme for the Encryption Process of DNSCrypt Protocol using CUDA

encryption key using a hash function. This key, as well as the

64 bit nonce that is not used is then used by the Salsa20

algorithm to perform the actual encryption/decryption process.

 Salsa20 is a symmetric stream cipher that will first generate

a keystream from the secret key and nonce. After that, both the

encryption and decryption is done by XOR-ing the plaintext /

ciphertext with the keystream. The keystream itself is generated

in a 64 byte chunk using some sort of hash function using the

encryption key, nonce, as well as the chunk id, this means that

every chunk can be generated independently. This also means

that the data being processed (both encryption and decryption)

can also be separated into 64 byte chunk/block, where each

ciphertext / plaintext block can be mapped to its plaintext /

ciphertext block independently.

 In the sequential algorithm the mapping of each 64 byte

input block is done sequentially. Using CUDA, the mapping of

each block can be done in parallel, as can be seen in Figure 3.

This way, the encryption will be processed in several CUDA

processing cores, instead of one CPU core. Using this base

design, there are still several issues that needs addressing,

namely the memory allocation and the kernel function itself.

1. Memory Allocation and Parameter Copying

To make sure that every CUDA thread will be able to

access the function parameter, CPU needs to allocate and copy

the parameters before every kernel function invocation. The

allocated memory will also need to be freed after the kernel

function is done, and this whole process can take even longer

than the kernel function itself. To remedy this, the program can

allocate the input and output memory space in the GPUs global

memory when the program first start. This way, every function

invocation will only need to copy the parameters and result

from the allocated memory space, drastically reducing the

processing time.

2. Kernel Function Design

The kernel function design can be seen in Figure 4. In

general, once the kernel function invoked, the first few thread

in each thread block will copy the key and nonce parameter

from the global memory to the shared memory. After that, each

thread will calculate its absolute id in the whole grid by

calculating “thread id in grid + (number of thread in a block *

block id in grid)” After knowing which block id it needs to

process, the thread will then check if its block id is bigger than

the number of block that needs to be processed, and stop if it

is. Otherwise, the thread will read the input block from the

global memory, calculate the keystream block using the key

and nonce from the shared memory, XOR both of those value,

and store the result in the global memory.

The reason that each block thread will copy the nonce and

key from the global memory to the shared memory is that

reading value from the shared memory is a lot faster than

reading from the global memory and every thread in each

block will need to access both those value regardless of which

input block it will process. By making a couple of threads

collaboratively copy part of the nonce and key from the global

memory, the number of global memory access will be reduced

significantly, improving overall performance.

Figure 4 Activity Diagram of XSalsa20 Parallel Computing

Scheme using CUDA

B. Using AES as an Alternative to XSalsa20

 AES is a standard symmetric block cipher that had been

used in several security protocol in the internet, including the

TLS. Since the Poly1305 validation algorithm does not depend

on the encryption algorithm used, and since AES can still use

the 256 bit key that is generated by the X25519 algorithm, AES

can easily be used as an alternative to XSalsa20 in the

DNSCrypt protocol. Furthermore, since DNSCrypt can support

multiple encryption scheme at the same time using the

certificate method, a new encryption scheme of X25519-

AESPoly1305 can be easily added to the system without

changing much of the underlying system.

 AES is a block cipher that will encrypt a 16 byte block of

data using a 256 bit key. To be able to process data larger than

16 byte, an appropriate operation mode must be chosen. In this

paper, the CTR mode will be used, since it function in a similar

way to XSalsa20 and also can be easily processed in parallel.

AES-CTR will encrypt and decrypt data by producing a

keystream from a 256 bit secret key and a 64 bit nonce, and

XOR-ing said keystream with the data to encrypt and/or decrypt

it. Similar to XSalsa20, the keystream is generated in a 16 byte

chunk, and each part can be calculated independently.

This means that AES-CTR parallel computing scheme is

similar to XSalsa20s that can be seen on Figure 3. The memory

allocation, parameter copying, and the kernel function itself

will be similar in general. The only differences between the

two—besides the different keystream generator method—is

that AES has a block size of 16 bytes, and a lookup-table that

needs to be accessible to all threads during processing.

To make sure that each thread can read the AES look-table

properly, a method similar to the memory allocation method for

Parallel Computing Scheme for the Encryption Process of DNSCrypt Protocol using CUDA

the parameter can be used. When the program start and allocate

the global memory for the AES parameter, it will also allocate

and copy the AES lookup-table to the GPUs constant memory.

Furthermore, when the kernel function is invoked, each thread

in a block will collaborate to copy this lookup-table to the block

shared memory alongside the encryption key and the nonce.

This is done since the AES algorithm will frequently access this

table in a random manner, and the shared memory is more

suitable for this than the constant memory (Iwai, Nishikawa, &

Kurokawa, 2012).

IV. IMPLEMENTATION

 Implementation of the designed solution in the previous

section are done using an existing open source implementation

of the DNSCrypt protocol as a base project. For the client, the

dnscrypt-proxy project (https://github.com/opendns/DNSCrypt

-proxy) will be used while dnscrypt-wrapper (https://github.

com/cofyc/DNSCrypt-wrapper) will be used for the server

implementation. Both of the initial implementation used are a

proxy application, where the client proxy application is

connected to regular DNS client and the server proxy

application that is also connected to a regular DNS resolver.

Figure 5 Full DNSCrypt System Architecture

 The architecture for the full system using both of these

proxy application can be seen in Figure 5 below. The libsodium

(https://github.com/jedisct1/libsodium) and libssl

(https://github.com/openssl/openssl) cryptography library will

also be used as reference for adding the XSalsa20-CUDA and

AES encryption scheme to the initial implementation.

Furthermore, the GPU used in this implementation and the

following experiment is the GeForce GTX 950M, which is an

NVIDIA GPU that has a total of 640 processing core.

V. EXPERIMENTS RESULTS AND ANALYSIS

 The experiment discussed in this section is done to

measure, compare, and analyze the performance of the

DNSCrypt system seen in Figure 5 that uses various encryption

scheme. To achieve this, testing will be done in two separate

scenario. The first step is to compare the performance of all the

encryption function made, which is both the encrypt and

decrypt function of the X25519-XSalsa20Poly1305 and

X25519-AESPoly1305; each of which has a version where the

encryption / decryption is processed in CPU and GPU (a total

of eight different function). The second step is to compare the

performance of the several DNSCrypt system implementation

variants that uses a different encryption (XSalsa20 or AES) and

processing (CPU or GPU) scheme.

A. Encryption Function Performance

Figure 6 Processing Time of Different Encryption Function

Figure 7 CPU Time of Different Encryption Function

 The performance measured in this experiment is the

average processing and CPU time that is needed by the

encryption function to process data with varying size. The

processing and CPU time measuring in this experiment is done

using the clock_gettime function that is available in the C

standard library. After carrying out this experiment, the

processing time comparison of the different encryption function

can be seen in Figure 6, while the CPU time difference can be

seen in Figure 7 (both shows the average of the encrypt and

decrypt version for each scheme). There are several pattern that

stands out and needs further analyzing:

1. CPU Usage Analysis

From the experiment result the CPU processing time for all

possible encryption function is more or less similar to the total

processing time. While this is expected for the CPU version,

the usage of GPU is expected to “share” the processing load

with the CPU, making the CPU usage time lower than the total

processing time. After further research it is known that this

happened due to the method of how the CPU wait for the kernel

function to complete. There are two main ways to do this:

https://github/

Parallel Computing Scheme for the Encryption Process of DNSCrypt Protocol using CUDA

“Polling” where the CPU is constantly checking the GPU

status similar to the busy-waiting method, and “Blocking”

where the CPU process thread is turned off until the kernel

function is complete. Since the default mode used is “Polling”,

this resulted in the CPU remaining busy while the GPU process

the kernel function, making the CPU usage time similar to the

total processing time. To find out the effect of using the

“Blocking” method, the experiment will be re-run after

changing the GPU configuration. The result of this experiment

can be seen in the Figure 8 below.

Figure 8 Comparison of “Polling” and “Blocking” Method

 From the comparison result, it is seen that while the CPU

usage time of the “Blocking” method is less than its total

processing time, it is still more than the total processing time

(and the CPU usage time) of the “Polling” method. This means

that the “Blocking” method has a higher overhead cost than

“Polling”, and are unsuitable if the kernel function only take a

short amount of processing time. Since the data that needs to be

processed in a DNSCrypt system is usually relatively small, it

can be concluded that the “Polling” method is more suitable

when using CUDA in the DNSCrypt protocol.

2. Processing Time and GPU Core Usage Analysis

From the experiment result the CUDA version of each

algorithm can be seen as having a better performance than the

CPU version when processing a bigger data. This can be better

seen after computing the speed-up of the algorithm as can be

seen in Table 1. For small data, the GPU version is slower than

the CPU version. This happens because the CUDA usage

overhead (such as parameter copying) is larger than the time it

took to process the encryption / decryption in the CPU. On the

other hand, as the data size grow, the processing time for all

function version also rise. But, the rate of which the GPU

version increase is generally lower than the CPU version. This

happens due to the increase in GPU core usage.

In the parallel computing scheme used in this experiment,

each message block will be processed in a CUDA thread which

is processed in a CUDA processing core. This means that for a

small data, the amount of thread made and the number of

CUDA core used is relatively low. On the other hand, the bigger

the data being processed, the more core is able to be used to

process it, increasing the efficiency. This, combined with the

GPU usage overhead, explains why the algorithm speedup is

lower than one for small data, and gradually gets better the

bigger the data is. This also explain why AES-GPU has a better

performance than XSalsa20 even if the algorithm itself is

inherently slower. The smaller block size makes AES able to be

processed in a bigger number of core than XSalsa20, increasing

its performance.

Table 1 Processing Parallelization Speed-Up

Data Size
(Bytes)

XSalsa20 GPU
vs

XSalsa20 CPU

AES GPU
vs

AES CPU

AES GPU
vs

 XSalsa20
CPU

100 0,029 0,064 0,036

200 0,040 0,098 0,050

400 0,061 0,169 0,080

800 0,103 0,299 0,142

1000 0,127 0,372 0,175

2000 0,222 0,704 0,316

4000 0,408 1,134 0,496

8000 0,844 2,209 1,111

10000 1,106 2,570 1,541

20000 1,640 4,041 2,470

40000 2,283 5,474 2,935

60000 2,304 7,919 2,504

80000 3,291 7,601 3,330

100000 2,980 7,793 3,303

From this experiment, it can be concluded that the parallel

version of the encryption algorithm only suitable for large

enough data. Since the DNS query is consistently small (only

contains the requested record name and type), it is unsuitable to

process its encryption in parallel. On the other hand, a DNS

response can reach up to 64KB size, and can be processed in

parallel effectively.

B. DNSCrypt System Performance

Figure 9 DNS Query Processing Time in Varying System

The performance measured in this experiment is the

average processing time of a DNS query with varying response

size. To measure this, after the DNSCrypt system had been set

up, a bash script will be executed to fetch a specific DNS record

with a known response size using the ‘dig’ command. The script

will send several DNS request at the same time, and measure

the time required by the system to answer all the queries using

the ‘date’ command. To get a baseline this method will also be

used to measure a regular DNS system performance. After

carrying out this experiment, the query processing time of the

each systems can be seen in Figure 9.

Parallel Computing Scheme for the Encryption Process of DNSCrypt Protocol using CUDA

In a regular DNS system, the query processing time tends

to remain constant even with a bigger response size. The usage

of DNSCrypt will require each response to be encrypted and

decrypted, and this process will take longer the bigger the data

being processed. By comparing each DNSCrypt system to the

regular DNS system, performance impact due to the usage of

each DNSCrypt encryption and processing scheme can be

calculated, and can be seen in Table 2 below.

Table 2 DNSCrypt vs DNS Performance Impact
Response

Size
(Bytes)

XSalsa20
CPU

XSalsa20
GPU

AES CPU AES GPU

100 15,4 % 22,1 % 17,9 % 21,4 %

200 16,4 % 22,3 % 18,1 % 22,7 %

400 15,0 % 19,8 % 16,1 % 22,4 %

800 15,8 % 22,6 % 18,5 % 25,0 %

1000 17,6 % 23,5 % 20,1 % 23,6 %

2000 16,5 % 23,4 % 20,4 % 23,2 %

4000 15,0 % 20,5 % 19,3 % 22,5 %

8000 20,6 % 24,2 % 25,9 % 26,3 %

10000 17,9 % 21,8 % 28,0 % 25,7 %

20000 23,4 % 23,1 % 34,0 % 25,5 %

40000 30,0 % 26,7 % 48,3 % 27,4 %

60000 33,3 % 28,5 % 57,3 % 25,9 %

The result received from this experiment is consistent with

the previous one. If the average response size in a system is

relatively low, the CPU version will perform better than the

GPU version. As the average response size grow, the GPU

version will start outperforming the CPU ones. Besides that, the

table also show that DNSCrypt AES-GPU scheme has a worse

performance than the XSalsa20-GPU, even if the previous

experiment prove otherwise. This happen because even though

AES-GPU is more efficient than XSalsa20-GPU, AES-CPU is

a lot slower than XSalsa20-CPU. Since DNS query encrypting

and decrypting is processed in the CPU for all of configuration,

the overall performance of DNSCrypt AES-GPU will be lower

than XSalsa20-GPU in most cases.

VI. CONCLUSIONS

 CUDA can be used in the DNSCrypt protocol to process

the encryption and decryption process in parallel. It does this by

processing each message block in a separate CUDA thread. The

usage of “Polling” method in the GPU will also yield a better

performance than the “Blocking” alternative since the size of

message processed is relatively small and quick to process. The

effect of the usage of DNSCrypt in a DNS system, as well as

the effect of the usage of CUDA in said DNSCrypt protocol can

be seen in Table 2. In general, the usage of CUDA can increase

the DNSCrypt performance, but only if the message size that is

processed is big enough to be able to take advantage of the big

number of the CUDA processing core. Additionally, AES can

also be used as an alternative to XSalsa20 for the encryption

algorithm used in DNSCrypt and still use the X25519 as the key

exchange algorithm and Poly1305 for the message validation.

 For further research, a batch-processing method can be

developed for the DNSCrypt protocol. Since most queries and

responses in a DNS system is relatively small, batch-processing

will allow the use of CUDA more effectively, since the size of

the data to be processed at the same time will increase.

Additionally, the cryptanalysis or security analysis of the usage

of AES as the alternative of XSalsa20, as well as the usage of

GPU in processing message encryption / decryption is also an

interesting research topic.

REFERENCES

[1] K. Iwai, N. Nishikawa and T. Kurokawa, "Acceleration of AES
encryption on CUDA GPU," International Journal of Networking and

Computing, 2012.

[2] Q. Li, C. Zhong, K. Zhao, X. Mei dan X. Chu, “Implementation and
Analysis of AES Encryption on GPU,” 2012.

[3] D. J. Berstein, "Salsa20 Spesification," The University of Illinois,
Chicago, 2005.

[4] P. Mockapetris, “DOMAIN NAMES - CONCEPTS AND

FACILITIES,” November 1987. [Online]. Available:
https://tools.ietf.org/html/rfc1034. [Accessed 17 April 2018].

[5] F. Denis dan Y. Fu, “DNSCRYPT-V2-PROTOCOL,” 17 Februari 2018.

[Online]. Available: https://github.com/DNSCrypt/dnscrypt-
protocol/blob/master/DNSCRYPT-V2-PROTOCOL.txt. [Accessed 17

April 2018].

[6] A. Mitra, "What is DNSCrypt?," 31 Maret 2016. [Online]. Available:
https://computersecuritypgp.blogspot.co.id/2016/03/what-is-

dnscrypt.html. [Accessed 18 April 2018].

[7] “X25519 key exchange,” [Online]. Available:
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/x25519/.

[Accessed 17 April 2018].

[8] NVIDIA, “What’s the Difference Between a CPU and a GPU?,” 16
Desember 2009. [Online]. Available:

https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-

between-a-cpu-and-a-gpu/. [Accessed 17 April 2018].

[9] NVIDIA, “WHAT IS GPU-ACCELERATED COMPUTING?,” 2007.

[Online]. Available: http://www.nvidia.com/object/what-is-gpu-

computing.html. [Accessed 18 Agustus 2017].

[10] NVIDIA, “NVDIA CUDA Developer Zone,” 5 Maret 2018. [Online].

Available: http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html. [Accessed 17 April 2018].

[11] S. Bortzmeyer, “DNS Privacy Considerations,” August 2015. [Online].

Available: https://tools.ietf.org/html/rfc7626. [Accessed 17 April 2018].

[12] A. Khalid, G. Paul dan A. Chattopadhyay, “New Speed Records for
Salsa20 Stream Cipher Using an Autotuning Framework on GPUs,”

RWTH Aachen University, Aachen, 2013.

