
Development of Digital Certificate Management
System on iOS Devices to Address Certificate Agility

Costs in Certificate Pinning Mechanism

Daru Bagus Dananjaya
School of Electrical Engineering and Informatics

Institut Teknologi Bandung
Bandung, Indonesia

darubagus@gmail.com

Abstract—In this research, a digital certificate management
system has been developed on iOS devices to address certificate
agility costs in certificate pinning. Certificate pinning is a
mechanism that matches digital certificates in software with
digital certificates on a remote server, allowing communication to
occur only between trusted parties to prevent man-in-the-middle
attacks. However, the certificate pinning mechanism has a
drawback known as certificate agility costs, which is a process that
developers must regularly perform to update digital certificates in
the application bundle to remain synchronized with the versions
on the remote server. The management of digital certificates on
local devices is accomplished by utilizing a different remote server
to dynamically store fingerprints of the managed certificates. By
employing this approach, the application can periodically update
to stay up-to-date with the list of fingerprints on the remote server.
In the final development phase, functionality testing of the system
and usage testing on native software on the iOS platform were
conducted. Based on the testing results, the system can address
certificate agility costs in certificate pinning, although there are
still administrative tasks that developers need to perform
periodically to keep the list of fingerprints on the remote server
up-to-date. This solution can eliminate the risk of adverse user
experiences when users do not update during certificate rotation,
thus preventing the application from becoming unusable.
Additionally, it protects software from man-in-the-middle attacks
conducted through SSL Proxying with the Charles Proxy tool.

Keywords—Digital Certificate Management System, iOS,
Certificate Pinning, Certificate Agility Costs, Man-in-the-middle
Attack

I. INTRODUCTION
With the advancement of smartphone hardware, more and

more people are becoming aware of the presence of crucial and
sensitive data within these devices. Smartphone users are
increasingly concerned about how their data is managed and
transmitted. With the utilization of open networks to access
various services and as a mechanism for communication
between devices, threats aimed at exploiting smartphones have
emerged. Some of these threats include denial of service, man-
in-the-middle attacks, privacy breaches, among others [1].

Almost all software installed on devices requires network
calls to obtain or store information on servers. When software
attempts to establish a connection to a server, it is unaware of
which digital certificates can be trusted and which cannot.
Therefore, the software relies on digital certificates present in
the iOS Trust Store or the prebuilt Android CA on the hardware.
The problem arises when a third party can generate self-signed
digital certificates and inject them into the Trust Store. This can
create security vulnerabilities, enabling third parties to conduct
man-in-the-middle attacks and intercept data transmitted to and
from the software.

To mitigate existing threats, an additional security
mechanism at the application layer is needed to ensure that all
data transmitted between the server and the client remains
private and intact. In this context, the technique of certificate
pinning, a process to match a host with its digital certificate or
public key, can be implemented to provide additional security at
the application layer. This ensures that the software only trusts
predetermined digital certificates or public keys. While
certificate pinning is considered effective in thwarting MiTM
attacks, it also has limitations.

Certificate pinning can pose challenges related to digital
certificate management—a process that developers must
undertake to update copies of digital certificates within the
application bundle and potentially result in a poor user
experience. Additionally, certificate pinning has security
vulnerabilities as it can be bypassed through jailbreaking, a
modification to a device made to remove file system access
restrictions imposed by the device manufacturer.

In this research, we will discuss how the weaknesses of the
Certificate Pinning mechanism on the iOS platform can be
eliminated while still protecting users from MiTM attacks. A
case study will be conducted on devices with the iOS operating
system. iOS was chosen due to a poll conducted, where out of
14,000 respondents, approximately 23.11% stated that they do
not enable the auto-update feature for applications and wish to
have full control over application updates on their devices [2].

II. RELATED STUDY

A. Open Web Application Security Project (OWASP)
The Open Web Application Security Project (OWASP) is a

community-based nonprofit organization aimed at creating
standards related to security in web-based applications [3].
OWASP has a methodology called the Top 10, which identifies
the most common vulnerabilities in web applications. The
organization develops a Top 10 list of security threats for web,
mobile, and IoT devices [4]. Based on the available list, this
research will focus on the Top 10 mobile applications. Table 1
shows the top ten security threats in the mobile platform based
on the latest update as of December 2016.

Table 1 OWASP Top 10 Mobile

Category Issue

M1 Improper Platform Usage

M2 Insecure Data Storage

M3 Insecure Communication

M4 Insecure Authentication

M5 Insufficient Cryptography

M6 Insecure Authorization

M7 Client Code Quality

M8 Code Tampering

M9 Reverse Engineering

M10 Extraneous Functionality

Data in Table 1 indicates that improper platform usage
occupies the top rank in OWASP security threats. This category
encompasses security controls that are part of the operating
system [5]. However, at the third rank, there is a threat related to
insecure communication, making it a topic worth discussing.
This category encompasses Certificate Pinning implementation.

B. Digital Certificate
A digital certificate is a combination of a statement and a

digital signature of the related statement. In a network
connection, users of a public key need to have confidence that
the associated private key is owned by the correct subject. This
confidence can be obtained through a public key certificate,
which is a data structure that links a public key value to a remote
subject [6]. This relationship is authenticated by using a
certificate authority (CA) to sign the existing digital certificate.
The CA can establish certificate ownership through a challenge-
response protocol. A digital certificate has a limited lifespan, and
this information is contained within the signed data of the digital
certificate. Because the digital signature and timeliness of a
digital certificate can be verified by user entities, digital
certificates can be shared over an insecure communication
network. The "X.509 public key digital certificate" is a
commonly used type of digital certificate [7].

To perform a digital signature, the data to be signed must be
encoded using the ASN.1 distinguished encoding rules (DER)
format. ASN.1 DER is a tag, length, and value encoding system
for each element in the digital certificate [6].

C. Transport Layer Security
Secure Socket Layer (SSL) is a cryptographic security

protocol developed by Netscape around 1990. It is widely used
to provide confidentiality, authentication, and message integrity
in communication [8]. SSL offers three main security services:
confidentiality through data encryption, message integrity
through a message authentication code (MAC), and
authentication through digital signatures (Hickman, 1995). The
SSL protocol was succeeded by Transport Layer Security (TLS)
as the standard protocol for securing internet connections.

The use of TLS enables authentication between two parties:
an authenticated server and an anonymously unauthenticated
client. Authentication can occur between the client and server
through digital signatures. Currently, most implementations of
digital signatures use certificates (e.g., X.509 standard) or shared
keys. In the case of certificates, a Certificate Authority (CA) is
needed to ensure proper signing. In contrast, shared key
authentication can be performed using cryptographic algorithms
like Diffie-Hellman, starting from SSLv3.00, TLSv1.00, and
newer versions [9].

Figure 1 TLS Handsake [10]

The SSL/TLS protocol uses a handshake process consisting
of: (1) The client sends a ClientHello message to the server,
containing a list of compatible cipher suites and a client_random
value; (2) The server responds with a ServerHello message,
containing the server's chosen cipher suite and a server_random
value. Additionally, the server sends a session ID, serving as a
reference for future sessions; (3) The server proves its identity
by sending its digital certificate, and the client verifies this
identity using the public key of the CA that issued the certificate;
(4) Once verified, the server sends a ServerHelloDone message;
(5) The client sends a second random number called
pre_master_secret, encrypted with the server's public key. The
client_random, server_random, and pre_master_secret are input
into a function to generate the master_key. The master_key,
client_random, and server_random are used to derive the secret
key and MAC key. On the server side, data received from the
client is decrypted, and the server generates the same secret key
and MAC key as on the client side; (6) The client sends a

ChangeCipherSpecification message, indicating that encryption
of messages after this point will be performed using the
generated secret key; (7) The client sends a HandshakeFinished
message, signaling readiness to enter the data transfer phase; (8
& 9) The server sends ChangeCipherSpecification and
HandshakeFinished messages for the same purpose as (6) and
(7). This process is illustrated in Figure 1.

D. Certificate Pinning and Public Key Pinning
Pinning technique, commonly known as HTTP Public Key

Pinning (HPKP), has emerged as an effort to strengthen software
security against MiTM (Man-in-the-Middle) attacks[11]. SSL
pinning has been widely used to enhance the security of
SSL/TLS communication in non-web mobile software[12].
Pinning ensures that the software only communicates with
predefined servers [13].

SSL pinning, typically divided into two phases, in the first
phase, the client initiates communication with the server through
a client hello. After receiving the client's message, the server
responds with its status through a server hello. Then, the client
requests the server's digital certificate, and the server responds
with information from the digital certificate and its public key.
In the second phase, the client verifies the previously received
digital certificate from the server. When the client receives a
message from the server, it checks its authenticity using the
server's public key stored on the client. If the public key matches,
the client negotiates or sends a packet signed with the public key.
If the verification process fails, communication is halted, and no
packets are sent to the server.

In general, an application will include a list of received
digital certificates or the content of those certificates, including
subject distinguished names, fingerprints, serial numbers, and
their public keys. If the application explicitly defines a list of
accepted CA (Certificate Authority) digital certificates, periodic
updates are required when CA certificates change or expire.
Despite offering protection against MiTM attacks, SSL pinning
practices have been debated due to the overhead they introduce,
known as certificate agility costs. Additionally, HPKP
implementation has been deprecated.

Pinning has proven to be a good preventive measure against
MiTM attacks [14][15]. The use of SSL pinning is becoming
common to enhance the security of native SSL/TLS
implementations, thus guarding against MiTM attacks.
However, SSL pinning still has security vulnerabilities, which
can be bypassed, although most bypasses are possible only on
jailbroken iOS devices or rooted Android devices.

SSL pinning mechanisms can be considered relatively
straightforward: they associate a host that the application will
connect to with a certificate or public key that meets IETF X.509
cryptography standards. When the association between the host
and certificate is successful, a secure connection is established,
and the digital certificate is pinned to the host. A secure
connection is established when API calls are made to instances
with certificates listed in the pinned certificate list.

Typically, received or pinned digital certificates are
embedded in the application bundle during software
implementation. Adding pinning mechanisms adds an extra

layer of security by making it difficult for third parties to disable
the pinning system. However, there is an alternative, which is
pinning during the initial connection establishment—a process
known as key continuity. But using key continuity in this
manner can potentially increase the risk of attacks during the
host-client connection establishment [16].

There are two SSL pinning options available: (1) certificate;
or (2) public key [16]. If pinning is done with the public key,
there are two additional options: (a) subjectPublicKeyInfo; or
(b) pin one of the more concrete parameters like RSAPublicKey
or DSAPublicKey. In option (1), the digital server certificate is
embedded in the application bundle, and during runtime, the
software compares the remote certificate with the embedded
digital certificate. For option (2), the public key from the
certificate is hardcoded into the codebase as a string, and during
runtime, the software compares the public key in the remote
certificate with the pre-hardcoded public key value.

E. TLS vs. Domain Name System Security Extensions
(DNSSEC)
There is a debate about what is better, using Transport Layer

Security (TLS) or DNS Security Extensions (DNSSEC). Ideally,
both should be used because they address different issues, using
different methods, and operate on different data [17]. SSL/TLS
encrypts data and authenticates websites, while DNSSEC
validates digital signatures obtained from DNS servers.

In this context, SSL/TLS is a system used to encrypt data and
authenticate the sender – in this case, the accessed website. To
facilitate this encryption, the entity running the website must
obtain an SSL Certificate. This digital certificate is used to
validate the identity of the communicating parties, thus
establishing a secure channel. Through the established session,
all data passing between the website and the browser is
encrypted – to anyone intercepting network traffic and looking
at message packets, it appears scrambled.

DNS Security Extensions (DNSSEC) does not interact with
websites at all – everything happens behind the scenes before
any web activity occurs [17]. When a computer uses DNSSEC
to look up a website's address, it not only performs a regular
DNS lookup but also validates the signatures returned from DNS
servers. This activity occurs at all levels, from the "root server,"
through high-level domains (such as .org or .info), to the specific
requested address (such as www.example.org). If all signatures
can be validated, a valid response is sent to the browser to
connect to the website, which may use SSL to do so. Both
technologies play a crucial role in protecting online information
and data integrity, but they focus on different aspects. Table 2
shows a comparison of SSL and DNSSEC from various
perspectives and how they can be used together to enhance
overall online security.

Table 2 SSL/TLS and DNSSEC Comparison

Criteria SSL/TLS DNSSEC

Purpose
Encrypts data and
authenticates
websites.

Ensures the
integrity of DNS

http://www.example.org/

Criteria SSL/TLS DNSSEC

data by validating
signatures.

Authentication
Uses SSL
certificates issued
by Certificate
Authorities (CAs).

Authenticates DNS
data by verifying
digital signatures.

Data Encryption
Encrypts data
transmitted between
the browser and the
website.

Does not encrypt
data; only validates
DNS data
authenticity.

Protection
Protects against
eavesdropping and
data interception.

Protects against
DNS data
manipulation and
spoofing.

Trustworthiness of
CAs

Vulnerable to CAs
issuing certificates
without verification.

Relies on the chain
of trust from root
DNS servers to
validate.

Self-signed
Certificate

Some websites can
use self-signed
certificates,
potentially making
phishing easier.

Not applicable, as it
doesn't deal with
website certificates.

Limitations
Doesn't provide
comprehensive
protection against
network snooping.

Limited to DNS
data validation;
doesn't secure web
interactions.

Overall Security
Benefit

Enhanced security
when used together
with DNSSEC for
complete protection.

Provides security
for DNS data but
needs SSL for
broader web
protection.

F. Man-in-the-middle Attack
A Man-in-the-Middle (MiTM) attack is a type of computer

security attack where an attacker inserts themselves between two
parties communicating directly. In this attack, the attacker gains
control over the supposedly secure communication flow
between the two entities, enabling them to eavesdrop, modify,
or inject data being transmitted between them[18]. Typically, the
primary objective of a Man-in-the-Middle attack is to steal
personal information from one party, such as login tokens and
credit card numbers [18]. Figure 2 illustrates the scheme of a
Man-in-the-Middle attack, showing that the intruder can
intercept, send, and receive data intended for others without the
knowledge of both parties [19].

Man-in-the-Middle attacks can be categorized into four
types[19]. First, there are spoofing-based attacks, where a third
party intercepts network traffic using spoofing tools to control
transmitted data without the host's knowledge. Further,
spoofing-based attacks can be divided into two subtypes: DNS
spoofing, where a third party spoofs devices between endpoints,
and ARP spoofing, where a third party directly spoofs endpoints
or devices used by the victim. Second, there are attacks on
SSL/TLS, where a third party positions themselves on the

communication network between endpoints or victims. In
SSL/TLS attacks, the third party establishes two separate SSL
connections with the victim and relays data, as shown in Figure
II.6. Third, there are attacks on the Border Gateway Protocol
(BGP), where a third party redirects data packets to the desired
destination. Finally, there are false base station attacks, where a
third party creates a fake transceiver node and uses it to
manipulate victim traffic.

Figure 2 Man-in-the-middle Attack Scheme[10]

G. Security in iOS
Every iOS user must agree to the End-User License

Agreement (EULA) when first running an application. The
Apple operating system does not provide external security
analysts with access to analyze the security of the source code
but rather employs a "security through obscurity" model that
prevents others from reverse engineering. However, this
approach is considered unsuitable for large-scale applications
[20].

In software development within the iOS ecosystem,
developers are encouraged to use available frameworks at higher
levels because higher-level abstractions are object-oriented.
Nonetheless, developers still have access to features such as
sockets and threads [20]. From a security perspective, Apple
asserts that with a highly integrated configuration between
software and hardware, activity validation can be performed at
all layers within the device's architecture [20].

H. URLSession in iOS
When accessing a URL via an HTTPS connection using

URLSession, what happens behind the scenes is that the
connection occurs over HTTP on top of TLS (Transport Layer
Security). Therefore, when accessing the same server for the
second time and subsequent times, the client will not receive a
challenge like the first connection because it will use the session
that has already been established.

The initiation process of a TLS session is computationally
expensive as it involves a number of calculations with large
numbers. Consequently, TLS has mechanisms to avoid this
work for every connection. A TLS connection can either
establish a new session or attempt to use an existing session.
Therefore, TLS clients generally improve their performance by
utilizing a cache of existing sessions.

iOS and macOS devices utilize TLS cache for all
connections made to remote servers [21]. TLS cache keeps

connections alive for a certain period to enhance the response
time of HTTPS requests. However, developers do not have
direct access to the process of caching these connections, for
example, developers cannot override or close connections that
have already been established [21].

III. PROPOSED SOLUTION
The data exchange process in native mobile applications

with a backend server is typically carried out through an HTTP
secure transfer protocol. With the use of open networks to access
various information, there are parties with the intention to
exploit devices and data. An API call over the HTTP secure
transfer protocol can be susceptible to Man-in-the-Middle
(MiTM) attacks performed with tools like Charles Proxy.
Therefore, a security mechanism is needed to protect the
communication between the client and the backend server, and
one way to implement this is through certificate pinning.

Based on the background explanation, there is currently a
mechanism called SSL pinning, more commonly known as
certificate pinning. Certificate pinning ensures that the Mobile
SDK checks the digital certificate of the server it is connecting
to against a list of digital certificates recognized by the device.
This mechanism prevents the application from third parties
attempting to use fake digital certificates to compromise trust
between the user, developer, and the application.

While certificate pinning can enhance application security, it
has sparked debate among developers due to the additional effort
required for certificate management. To address this issue, a
certificate management mechanism is needed to implement
certificate pinning with minimal maintenance. This approach
involves utilizing a different remote server to store fingerprints
of dynamically managed certificates. By doing so, the
application can periodically update digital certificate data to stay
current with the fingerprint list from certificates on the remote
server.

A. General Solution
Based on the analysis of the solutions, a comprehensive

solution has been designed, which includes a digital certificate
management system and certificate pinning. This decision to
implement certificate pinning instead of DNSSEC in the
application is based on an evaluation of security objectives and
specific challenges faced by the mobile application. Certificate
pinning was chosen due to its ability to address specific security
issues, as most applications prioritize data integrity and
confidentiality during communication between the mobile
application and the backend server.

By predefining trusted server certificates within the
application, certificate pinning effectively prevents Man-in-the-
Middle (MiTM) attacks by ensuring that the server's certificate
matches its identity. This validation process makes it extremely
difficult for attackers to intercept or manipulate data during
transmission, thereby enhancing the overall security of the
application.

Furthermore, certificate pinning provides immediate
security benefits as it does not rely on DNS resolution, allowing
the application to establish secure connections quickly. This

rapid response is highly advantageous for applications requiring
fast and secure data transfers.

The approach used for implementing certificate pinning will
leverage a different remote server from the backend server to
store a list of fingerprints. This remote server will store the list
of fingerprints, which will then be downloaded. The following
are the functional requirements of the system created:

1. Manage the list of fingerprints downloaded from the
remote server, including scheduling updates and
filtering invalid fingerprints.

2. Digitally sign all entries in the fingerprint list with a
private key, then validate them using the public key
during the data fetch process before storing them in
persistent storage.

3. Provide certificate pinning mechanisms through
fingerprint validation to enhance application security
during the TLS handshake.

Based on the analysis, a solution has been designed,
comprising a digital certificate management system and
certificate pinning. Certificate pinning leverages a separate
remote server to store fingerprints, ensuring secure TLS
handshake validation. This approach enhances application
security by managing and validating digital certificates
effectively, addressing existing issues.

B. Functional Requirements
Based on the analysis of the solutions, a solution comprising

a digital certificate management system and certificate pinning
has been designed to address the existing issues. The design
consists of two parts: the design of the digital certificate
management library and the design of certificate pinning
implementation.

Based on the design, additional functional requirements for
the system have been identified. These functional requirements
are the result of the development of the general solution after
designing the modules within the digital certificate management
system

1. The library can accept input such as serviceURL and
public keys from the remote server to be connected.

2. The library is capable of downloading certificate data
from the remote server.

3. The library can perform data storage and loading
utilities to persistent storage.

4. The library can identify cases when the persistent
storage is empty.

5. The library can validate certificates during
communication with the real server.

6. The library can validate digital signatures.

7. The library can schedule certificate updates in
persistent storage.

8. The library can perform data hashing.

 The design process has resulted in additional functional
requirements for the system, including configuration, data
handling, validation, and scheduling capabilities within the
digital certificate management system. These enhancements aim
to improve the overall functionality and security of the system.

C. Remote Server
A separate remote server is required from the main backend

server domain that will be accessed by the application. This is
due to the TLS cache present in URLSession as explained
before. In this research, the storage of digital certificate lists is
demonstrated through a NoSQL JSON database hosted on my-
json-server.typicode.com. In the implementation of this
database, it is assumed that the ECDSA key pair belonging to
the server has been generated. This key pair is used to sign the
existing digital certificates for the present and the future. The
signing process is intended to ensure the integrity and
authenticity of the digital certificates, guaranteeing that they
come from a legitimate source and have not undergone
unauthorized data changes.

Figure 3 Data Extraction Flow from Digital Certificate

The preparation of fingerprint data begins with fetching
digital certificates from the server to be targeted. In this research,
digital certificates are retrieved from "openweathermap.org."
These digital certificates are obtained in a format optimized for
SHA fingerprint creation, specifically in DER format. The data
will be signed using ECDSA; hence, a key pair using
prime256v1 curve is prepared.

The next step involves calculating the SHA-256 fingerprint
of the previously obtained digital certificate, after which the
fingerprint data is encoded into a Base64 string. Attributes of the
digital certificate, namely the common name (CN) and
expiration date, are extracted. The CN attribute is obtained from
the subject field, while the expiration date is acquired from the
validity field and then converted into UNIX timestamp format.

Once all the components are obtained, a signature base string
is constructed by combining the CN attribute, UNIX timestamp,
and fingerprint separated by an "&" sign. Subsequently, a digital
signature is created using the ECDSA private key. The obtained
digital signature is then encoded as a Base64 string.

The final result of the preparation process is a JSON file that
stores fingerprints, expiration dates, common names, and digital
signatures of digital certificates. The JSON format is designed
to accommodate multiple fingerprints to facilitate the storage
and management of digital certificate data. The steps taken to
prepare fingerprint data can be viewed in the flowchart diagram
shown in Figure 3.

D. System Architecture
Based on the analysis conducted, the digital certificate

management module is a key module in the library that serves
as the orchestrator for digital certificate management processes
and provides all services related to SSL certificate pinning. The
overall system design can be viewed in Figure 4. Within this
module, several other modules need to be added, namely: the
crypto provider module, the secure data store module, and the
remote data provider module.

Each of these modules has its own functionality. Here are the
responsibilities of each module:

1. The secure data store module serves as a data storage
service provider for certificate data in persistent
storage. All sensitive data related to digital certificates
used in the library solution will be stored in the
Keychain, an encrypted database provided by Apple.

2. The crypto provider module functions as a
cryptography service provider for the proposed library.
This library uses the P256 curve for digital signatures
and hash functions. The selection of this curve is based
on its popularity for creating digital certificate
fingerprints.

3. The remote data provider module serves as an HTTPS
request service provider for retrieving fingerprint data
from the remote server's database.

Figure 4 Digital Certificate Management System Architecture

The Certificate Store module includes supporting classes,
such as the Certificate Store Configuration class. This class is
created to enhance readability and facilitate library users in
configuring various settings, including scheduling and fallback
data.

E. TLS Certificate Validation
The SSL certificate validation or certificate pinning

implemented in this library follows the standard practices of
certificate pinning but with adjustments to work effectively
within this library. The validation process will be implemented
as an extension of the certificate store module. This library

offers several input options for certificate validation to
accommodate different scenarios for library users, including:

1. Validation with input data of common name and
fingerprint.

2. Validation with input data of common name and
digital certificate data in .der format.

3. Validation with input URLAuthenticationChallenge.

Calling the validation method will result in return values as
enumerations, namely trusted, untrusted, and emptyStore. This
library employs a whitelisting approach, where by default, all
connections are considered untrusted. For these three return
values, the connection will only proceed if the return value is
trusted. Otherwise, the TLS handshake in progress will be
canceled. The workflow of the SSL certificate validation
process can be seen in Figure 5.

Figure 5 TLS Certificate Validation Flow

F. Fingerprint Update

In this library, the ideal fingerprint data update process
should occur when the application is launched, before initiating
HTTPS requests to the server and certificate pinning validation.
The certificate update in this library provides two modes:

1. Direct Mode: This mode is chosen when all certificates
on the device have expired or when the application is
first opened (freshly downloaded from the App Store
with no certificate fingerprint list in persistent
storage). In this mode, the application halts all
processes to wait for the fingerprint list download.

2. Silent Mode: In this mode, updates are not executed
immediately but placed in the completion queue. The
certificate store module then handles the update
process in the background. The goal of this update
mode is to avoid blocking the application when opened
while keeping the fingerprint list up-to-date. The
update frequency is determined automatically by the
certificate store.

The retrieval of fingerprint data from the server is
performed by the Remote Data Provider module. The
mechanism for fetching fingerprint data from the remote server

can be seen in Figure 6. When the request to the remote server
is successful, the method that handles the processing of
response data from the server to storage takes place end-to-end.
If the request fails, an error message is issued, terminating the
data update process.

The method for processing data from the remote server
performs decoding of the JSON response obtained.
Subsequently, the cache update is carried out with the newly
received data. This process is performed by iterating through all
the data in the array formed from the response. The certificate
data update consists of several steps, which can be summarized
as follows:

1. Iteration through all entries of the JSON response.

2. Conversion of entry values according to the supported
format.

3. If the entry already exists in the device's persistent
storage, it will be skipped. Entries are considered the
same if the common name, expiration date, and SHA-
256 value of the fingerprint are identical, preventing
duplicate data and potential insertion of false data into
persistent storage.

4. Validation of ECDSA for each entry to ensure that
only valid and trustworthy fingerprint data is stored.

5. If step 4 succeeds, the entry is added to persistent
storage. If step 4 fails, data processing is halted, and
the remote server data update process is cancelled.

Figure 6 Fetching Remote Server Data Flow

If processing all acquired data is successful, the end of the
fingerprint update process includes an additional check on the
overall process status. If the results align, the fingerprint
certificate data is sorted based on name and expiration date.
After processing all fingerprint data, the next update is
scheduled, and the process concludes with the storage of
processed fingerprint data into persistent storage.

IV. RESULTS
At the end of the research, functional testing was conducted

to evaluate the functionality of the developed library based on
the defined functional requirements in Table III.3 using Unit
Tests. Testing was carried out not only at the system level but
also at the module level to ensure that the Certificate Store,
Secure Data Provider, Crypto Provider, and supporting modules

could meet the system's functional requirements and identify
potential issues that might arise at the component level.
Additionally, testing was performed to ensure that the library
could resolve issues that occurred.

Based on the test results, all standard test cases were
successfully met. All test scenarios produced the expected
results. Therefore, all the functional requirements of the system
aimed at managing digital certificates in iOS software have been
fulfilled. Here are the steps taken to address the issues:

1. The issue related to digital certificate agility in
certificate pinning was resolved by adding a digital
certificate management mechanism to retrieve and
store digital certificate data from a remote server,
which is then stored in persistent storage.

2. The issue related to the authenticity of digital
certificates when stored on a remote server and data
transport was ensured through digital signatures with
the server's private key. The validation of these
signatures is performed during the process of fetching
digital certificate data from the remote server using the
server's public key, ensuring that only authentic digital
certificate data is processed.

Furthermore, smoke testing was conducted to test the
functionality of the native software developed to test the digital
certificate management system and certificate pinning from the
previously created library. Testing on the software was
performed to ensure that the library can perform its functions as
required when used in software. Smoke testing was performed
on a simple native iOS software with API call functionality to
"openweathermap.org".

Based on the testing conducted, utilizing the previously
created library, the software was able to prevent MiTM attacks
through SSL Proxying, which in this case was carried out using
the Charles Proxy tool. When sniffing was attempted on a
connection using certificate pinning, the connection was
terminated because pinning did not occur on the digital
certificate as shown in Figure 7. However, when normal
connections were established, communication with the server
was deemed legitimate and continued with data transfer,
allowing the software to receive responses from the backend
server. Therefore, all the system's functional requirements, as
described, were met when the library was used in software.

Based on the test results, the issue of digital certificate
management arising from certificate pinning has been
effectively addressed through the created system. The digital
certificate management mechanism to eliminate certificate
pinning overhead has been successfully implemented and
achieved the goals of the research.

V. DISCUSSION
The evaluation was conducted by comparing the results of

the proposed solution with the standard certificate pinning
mechanism using URLSessionDelegate. The evaluation results
will serve as input and recommendations for further
development of the digital certificate management solution to
address certificate agility costs in certificate pinning.

Based on the evaluation results comparing the standard
certificate pinning conditions with the proposed solution in
Table 3, it can be concluded that the development of the digital
certificate management system on iOS devices can address
certificate agility costs in certificate pinning. Although there are
still administrative tasks that developers need to perform
periodically to keep the fingerprint list on the remote server up-
to-date, this solution can eliminate the risk of a bad user
experience when users do not update during digital certificate
rotation, thus preventing the application from becoming
inoperative.

Figure 7 API Call with SSL Proxying

From a security perspective, based on testing related to
simulating man-in-the-middle attacks using the Charles Proxy
tool on native iOS software with API call functionality to a
specific remote server, the results show that the implementation
of certificate pinning in the library can prevent man-in-the-
middle attacks. These results demonstrate that the level of
security provided by the library is equivalent to the level of
security provided by the standard certificate pinning mechanism
using URLSessionDelegate. Therefore, it can be concluded that
the man-in-the-middle attack prevention mechanism through
certificate pinning provided by this library has been successful
and fulfills the objectives of this research.

There are several limitations in the implemented results.
First, as previously explained, when developers use URLSession
to make network calls, the fingerprint list should not be stored
on the same domain because developers do not have control over
the TLS cache. In other words, developers cannot forcibly close
established connections. Therefore, if the fingerprint list is
placed on the same domain, the application will reuse
connections that have been established during the process of
downloading the list of digital certificates, rendering the
certificate pinning mechanism ineffective.

Second, connections to the remote server used for
downloading the fingerprint list should not be pinned. The
fingerprint list must always be available and accessible, and
securing it using pinning for the domain storing the fingerprint
list will lead to a deadlock from the certificate store's
perspective. Therefore, the process of downloading the
fingerprint list should always be considered trusted.

Third, the library created assumes that the remote server
storing the fingerprint data can always be trusted, so no
additional security mechanisms, such as authentication-
challenge, have been implemented. For further development,
such mechanisms can be implemented during the process of
retrieving fingerprint data.

Finally, the implementation of the library in this research is
limited to native applications on the iOS operating system.
However, the workings of this system can be applied
universally. Therefore, for future development, the system can
be implemented on the Android operating system by utilizing
the previously explained system's operation.

Table 3 Comparison between Standard Certificate Pinning
Mechanism and Proposed Mechanism

Aspect Standard Mechanism
in Certificate Pinning

Certificate Pinning
with Digital Certificate
Management System

Certificate
Validation

Performed by
comparing the digital
certificate values in the
application bundle to
the digital certificate
obtained from the
server.

Performed by comparing
the certificate obtained
from the server against
the list of certificates
stored in persistent
storage. The checks are
related to the expiration
date of the digital
certificate, the common
name, and the
fingerprint.

Certificate
Rotation

An update is required
in the App Store with
the new bundle of
digital certificates.

Updates are required on
the remote server's
database that stores the
list of digital certificates,
but there is no need to
update the application in
the App Store.

User
Experience

If users do not update
the application when
digital certificate
rotation occurs, the
application will become
unusable due to failed
certificate validation,
resulting in an inability
to communicate with
the server.

User updates are not an
issue because when a
digital certificate change
occurs, the application
will automatically update
the digital certificate data
stored in persistent
storage.

Developer
Experience

With each digital
certificate rotation, the
developer needs to
embed the digital
certificate into the
application bundle and
then upload it to the
App Store.

With each digital
certificate rotation, the
developer needs to add
the replacement digital
certificate data and its
associated fingerprint to
the remote server's
database.

VI. CONCLUSION
A digital certificate management library was successfully

implemented to address digital certificate agility costs in
certificate pinning and prevent man-in-the-middle attacks.

Based on the conducted tests, the mechanism for digital
certificate management to eliminate overhead related to
certificate agility in certificate pinning has been successfully
implemented. All formulated test cases in the functional testing
were met, ensuring that all functional requirements of the digital
certificate management library have been fulfilled.

The certificate pinning mechanism involves comparing
certificates obtained from the server with a list of certificates
stored in persistent storage, conducting verification regarding
the expiration date of digital certificates, common names, and
fingerprints. Thus, the certificate pinning mechanism in the
proposed system in this research can effectively prevent man-in-
the-middle attacks, as demonstrated through simulations using
Charles Proxy.

To further enhance security, an additional layer of security
in the form of a random challenge can be implemented during
the process of fetching fingerprint data from the remote server.
This would make it more difficult for third parties to predict or
replicate responses. Even if third parties intercept the challenge-
response process, they cannot use the response for a different
challenge since each challenge data is unique.

The digital certificate management system and certificate
pinning for iOS devices have been successfully implemented to
eliminate certificate agility costs and prevent man-in-the-middle
attacks. For future developments, this mechanism can be
adapted for Android devices using the system's existing
framework created in this research.

REFERENCES
[1] R. Setyawan, A. A. Rahayu, K. F. Nur Annisa, dan A. Amiruddin,

“A brief review of attacks and mitigations on smartphone
infrastructure,” IOP Conf. Ser. Mater. Sci. Eng., vol. 852, no. 1,

2020.

[2] R. Ritchie, “Will you be using auto app updates on iOS 7? [Poll],”
2018. [Daring]. Tersedia pada: https://www.imore.com/will-you-be-

using-auto-updates-ios-7-poll. [Diakses: 01-Sep-2023].

[3] S. Kim, H. Han, D. Shin, I. Jeun, dan H. Jeong, “A study of
international trend analysis on web service vulnerabilities in

OWASP and WASC,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5576

LNCS, hal. 788–796, 2009.

[4] F. J. Ramírez-López, A. J. Vaca-Varela, J. Ropero, dan A. Carrasco,
“Guidelines Towards Secure SSL Pinning in Mobile Applications,”

hal. 238–244, 2019.

[5] OWASP, “M1: Improper Platform Usage,” 2016. [Daring]. Tersedia
pada: https://owasp.org/www-project-mobile-top-10/2016-risks/m1-

improper-platform-usage. [Diakses: 10-Feb-2023].

[6] R. Housley et al., “Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile,” Netw.

Work. Gr., 2002.

[7] L. Harn dan J. Ren, “Generalized digital certificate for user
authentication and key establishment for secure communications,”

IEEE Trans. Wirel. Commun., vol. 10, no. 7, hal. 2372–2379, 2011.

[8] K. E. . Hickman, “The SSL Protocol,” Netscape Communication

Corp, 1995. [Daring]. Tersedia pada:
https://datatracker.ietf.org/doc/html/draft-hickman-netscape-ssl-00.

[9] X. Gu dan X. Gu, “On the detection of fake certificates via attribute
correlation,” Entropy, vol. 17, no. 6, hal. 3806–3837, 2015.

[10] M. Alwazzeh, S. Karaman, dan M. N. Shamma, “Man in The
Middle Attacks Against SSL/TLS: Mitigation and Defeat,” J. Cyber

Secur. Mobil., vol. 9, hal. 449–468, 2020.

[11] C. J. D’Orazio dan K. K. R. Choo, “A technique to circumvent
SSL/TLS validations on iOS devices,” Futur. Gener. Comput. Syst.,

vol. 74, hal. 366–374, 2017.

[12] S. Fahl, M. Harbach, H. Perl, M. Koetter, dan M. Smith,
“Rethinking SSL development in an appified world,” Proc. ACM

Conf. Comput. Commun. Secur., hal. 49–60, 2013.

[13] S. Gunasekera, Android Apps Security. 2020.

[14] V. Moonsamy dan L. Batten, “Mitigating man-in-the-middle attacks
on smartphones - A discussion of SSL pinning and DNSSec,” Proc.

12th Aust. Inf. Secur. Manag. Conf. AISM 2014, hal. 5–13, 2014.

[15] V. Tendulkar dan W. Enck, “An Application Package Configuration
Approach to Mitigating Android SSL Vulnerabilities,” MoST, 2014.

[16] J. Walton, J. Steven, J. Manico, K. Wall, dan R. Iramar, “Certificate

and Public Key Pinning,” Open Worldwide Application Security
Project, 2023. .

[17] H. Eland, “Securing a Domain: SSL vs. DNSSEC,” 2009. [Daring].
Tersedia pada:

https://circleid.com/posts/securing_a_domain_ssl_vs_dnssec.
[Diakses: 03-Sep-2023].

[18] A. Mallik, “Man-in-the-middle-attack: Understanding in simple
words,” Int. J. Data Netw. Sci., vol. 3, no. 2, hal. 77–92, 2019.

[19] B. Bhushan, G. Sahoo, dan A. K. Rai, “Man-in-the-middle attack in
wireless and computer networking - A review,” Proc. - 2017 3rd
Int. Conf. Adv. Comput. Commun. Autom. (Fall), ICACCA 2017,

vol. 2018-Janua, hal. 1–6, 2018.

[20] R. Jasek, “Security Deficiencies in the architecture and overview of
Android and iOS mobile operating systems,” Proc. 10th Int. Conf.

Cyber Warf. Secur. ICCWS 2015, hal. 153–161, 2015.

[21] Apple, “TLS Session Cache,” Apple Developer Forums, 2015.
[Daring]. Tersedia pada:

https://developer.apple.com/library/archive/qa/qa1727/_index.html.
[Diakses: 01-Jun-2023].

