
1

Development of M-Health Application with
Seven-Segment Display Reading Feature from

Glucose meter
Daffa Romyz Aufa, Rinaldi Munir, Nur Ahmadi , Member, IEEE

Abstract—M-Health application is useful for monitoring blood
glucose conditions for diabetics. The entry of blood glucose values
from a glucose meter into the application is generally done
manually. This process is time-consuming and prone to error.
Therefore, developing a prototype m-health application that uses
a model to read blood glucose measurement results can be a
solution. This paper proposes the development of an m-health
(mobile health) application that has 4 features: taking a picture of
the glucose meter with a phone camera, reading the glucose value
with a model, storing the reading results in a database, and data
visualization. The model was trained using 3764 images of blood
glucose measurement results from glucose meters. The model
ultilized is YOLO11 with small, medium, and large variations.
In order to be used in the application, the trained model is
converted into TensorFlow Lite format (.tflite). The TensorFlow
Lite model is then quantized to 16-bit float precision (FP16) and
8-bit integer (INT8) to reduce inference time and model size.
Based on the test results, the model chosen to be implemented
in the application is the small model with INT8 precision. The
model was chosen because it has a small inference time and file
size while having an accuracy that are not too far from other
model variants. The model has an accuracy of 94.14%, an f1-
score of 97.03%, an inference time of 330.7 ms, and a file size of
11.4 MB. Model is tested on the m-health application with 156
images from the test data set resulted in an accuracy of 97.77%,
an f1-score of 98.34%, and an average inference time of 1918.15
ms.

Index Terms—Seven-segment display, mobile health, glucose
meter, YOLO11, blood glucose, diabetes.

I. INTRODUCTION

THE treatment given to people with diabetes is to control
their blood sugar so that it has normal levels [1]. To keep

blood sugar at a normal level, diabetics are asked to monitor
their blood sugar with frequent blood sugar tests. Depending
on the treatment provided, patients may be asked to test their
blood sugar up to four times a day. The results of these blood
glucose measurements should be recorded to ensure that blood
glucose levels are within the target range and to determine the
patient’s blood glucose trend.

The m-health application is able to help diabetics by storing
blood sugar measurement results and visualizing the data in

Daffa Romyz Aufa is with the School of Electrical Engineering and
Informatics, Bandung Institute of Technology, 40132, Indonesia (e-mail:
13520162@std.stei.itb.ac.id).

Rinaldi Munir is with the School of Electrical Engineering and Informat-
ics, Bandung Institute of Technology, 40132, Indonesia (e-mail: rinaldi@
staff.itb.ac.id).

Nur Ahmadi is with the Center for Artificial Intelligence (U-CoE AI-
VLB), School of Electrical Engineering and Informatics, Bandung Institute
of Technology, Bandung, 40132, Indonesia (e-mail: nahmadi@itb.ac.id).

the form of graphs. For this reason, the results of blood sugar
measurements must be entered into the m-health application.
Currently, there are glucose meter that use Bluetooth tech-
nology to send data to m-health application. However, only
1.4% of glucose meter recommended for personal use have
Bluetooth features to send data to the application [2].

In general, the results of measuring blood sugar levels are
still entered into the m-health application manually. This pro-
cess is time-consuming and there is a possibility of entering the
wrong blood glucose measurement results. Glucose meter with
Bluetooth features generally have higher prices. Therefore,
replacing a glucose meter by buying a new device that has a
Bluetooth feature is inefficient. Therefore, solution is needed
to automatically enter the blood glucose measurement results
into the m-health application so that there is no need to replace
the glucose meter.

Mobile phone camera can be used to capture the image of
the blood glucose measurement results from the seven-segment
display of the glucose meter. The image of the blood glucose
measurement results can be read with an image recognition
model. Thus, a model is needed that can read the blood glucose
level measurement results from the image captured with a
mobile phone camera. The model will be integrated with an
m-health application that is able to capture images as input
for the model and record the reading results.

The solution is suitable because diabetics who already use
the m-health application also have a smartphone and glucose
meter. Diabetics who have not used the m-health application
can also use it immediately. This is because around 60% of the
population in Indonesia has a smartphone [3]. This application
also allows diabetics who already have a smartphone to buy a
glucose meter that does not have Bluetooth technology because
the price tends to be more expensive.

The paper is organized as follows. Section II presents the
related works, research gap, and summary of our contribution
in the present work. Section III describes alternative solutions
that can be applied to solve the problem, the selection of
alternative solutions and its justifications. Section IV details
the implementation process of the proposed solution including
model and application development. The result of model and
application testing are presented and discussed in Section V.
Finally, conclusions are drawn in Section VI.

II. RELATED WORKS

There has been much research exploring various methods to
read the seven-segment display. Shenoy and Aalami developed

https://orcid.org/0000-0002-9902-9051


2

a smartphone-based application to read seven-segment display
images from health monitors using machine learning [4].
The machine learning used in this study is a random forest
classifier.

This application reads the seven-segment display by captur-
ing the health monitor image and determining the box where
the seven-segment display is located. Next, the application
performs Otsu thresholding on the input image to convert
the color image into a black and white binary image. Then,
the image is segmented to divide the image into individual
digits. Then, each digit will be classified using a random forest
classifier.

The random forest classifier is chosen because it is fast and
accurate. The random forest classifier is a combination of 100
decision tree classifiers that perform voting to determine the
class of the digits so that it is not easy to overfitting. The model
was able to read the digits from the health monitor with 98.2%
accuracy and 97.8% f1-score. This random forest classifier
has a lightweight file size of only 847 kB. The drawback of
this application is that the user must specify the box where
the seven-segment display is located. Blurry images cannot be
read by the application and will ask the user to take a clearer
photo. The image processing time is long because the model
does not reside on the smartphone but on the server so it takes
up to 2 to 3 seconds.

Finnegan et al. developed a model for detecting and reading
seven-segment displays from glucose meter and blood pressure
monitors [2]. The model is divided into two parts, namely
digit location detection and digit classification. Digit loca-
tion detection uses the Maximally Stable Extremal Regions
(MSER) algorithm and looks for connected components in
binary images. Digit classification uses a neural network model
with features in the form of Histogram of Orientated Gradients
(HOG).

Digit location detection is performed by preprocessing the
input image with filtering and histogram equalization. Then,
each digit segment is detected and stored as a blob using
MSER and by searching for connected components in the
binary image. Then, any blobs that are not segments are
discarded by rule-based filtering and logistic classifier. A
clustering algorithm is then used to combine the segments
into one seven-segment digit. Next, each digit is passed to the
digit classification model.

Digit classification is performed using a neural network
using HOG features. The model is trained using binary images
of digits. The model has three layers, namely input layer,
hidden layer and output layer.

This model has an accuracy of 93%, an f1-score of 87%
for the glucose meter, and an f1-score of 80% for the blood
pressure monitor image. This model has the advantage of being
able to detect digits so there is no need to manually determine
the digit bounding box. The models for digit detection and
classification are separate so that each model can be optimized.
The drawback of this model is the lack of accuracy compared
to the random forest classifier and end-to-end CNN. The digit
classification model depends on the digit detection model. If
the digit detection model cannot identify digits properly, the
classification model will not be able to classify them.

Moreira developed an end-to-end model to detect and
read seven-segment displays from medical devices using deep
learning models that can detect objects [5]. The deep learning
models used in this research are EfficientDet and EfficientDet-
lite which have been previously trained with the MS-COCO
dataset. Both models is fine-tunined with images of medical
devices that have seven-segment displays. The images have
bounding boxes and labels for each digit.

The model rescales the input image into a square shape.
The image is not stretched, but pixels with zero value are
added to the sides of the image to make it square. Then, the
pixel values of the image are normalized using the mean and
standard deviation. The normalized image is then used to train
the model.

The model output is the bounding boxes of digit along
with coordinates, classification, confidence score. There are
several digit bounding boxes that could point to the same digit.
Therefore, only the one with the highest confidence score is
kept.

This model has the advantage of having light preprocessing
and postprocessing. The EfficientDet-lite1 model has 100%
precision and 99.7% f1-score in digit detection and has 100%
accuracy in digit classification. The image processing time is
very fast at only 49 milliseconds. The drawback of this model
is its size of 5.8 MB. The size of this model is almost 7 times
larger than the random forest classifier.

All of the above studies did not have a method to determine
the blood glucose unit used by the glucose meter. glucose
meter displays the measurement results in two units: mg/dL
and mmol/L [6]. These two units have different value ranges
so they need to be differentiated in their readings. Storage
of measurement results must also be able to handle unit
differences. Data visualization also needs to have a function
to be able to display graphs in both units.

In this paper, a prototype m-health application is developed
with the capability of reading the results of the blood glucose
level measurement represented in seven-segment display from
the image captured by the cell phone camera. The reading
is done using YOLO11, a convolutional neural network deep
learning model. The model was designed so as to be able
to distinguish between the blood glucose units used. The
difference between the two units is the presence of a comma
in the mmol/L unit. Therefore, the reading model is able to
detect the comma along with other measurement numbers.
The model will be implemented directly on the mobile device.
Thus, model quantization techniques are performed to reduce
the computational and memory burden on such devices with
limited resources.

III. SOLUTION ANALYSIS

There are several approaches to reading numbers on seven-
segment displays: machine learning and deep learning. The
machine learning approach consists of two steps: feature
extraction and classification. The feature extraction step is a
step to segment each number and produce the features of each
number. Each number feature will then be classified using a
machine learning model to produce the value for each number.



3

The deep learning approach is able to read numbers end-to-
end because the model can learn image features and perform
classification on the same model.

Based on research conducted by Moreira, the deep learning
approach produces a model with higher accuracy than the
machine learning approach [5]. The deep learning model used
is convolutional neural network (CNN). The CNN model is
suitable for reading images because it could receives input in
the form of a matrix. Image is a matrix of pixels.

The CNN model architecture that will be used is YOLO
because it can predict quickly and accurately. YOLO (You
Only Look Once) is a trained CNN model for object detection
developed by Joseph Redmon, Santosh Divvala, Ross Gir-
shick, and Ali Farhadi in 2015. YOLO detects objects through
a single regression approach to generate bounding boxes and
class probabilities [7]. YOLO’s ability to detect and recognize
objects from whole images in one evaluation is the reason this
model is called You Only Look Once.

YOLO has several advantages over other object detection
models. First, YOLO has a very high speed because it detects
using regression approache so that it can make predictions
on real-time video input. Secondly, YOLO analyzes the full
image during training and testing so that it is able to implicitly
recognize contextual and appearance information about the
class. This prevents YOLO from identifying the background
as an object because YOLO is able to see the image as
a whole. Thirdly, YOLO learns general representations of
objects, making it easy to apply to new domains. However,
YOLO has a disadvantage in accuracy compared to other
object detection models. In addition, YOLO has difficulty in
detecting objects that are small in size.

YOLO11 is a YOLO model introduced by Ultralytics on
September 30, 2024. YOLO11 has accuracy and speed per-
formance built on the latest advances in deep learning and
computer vision [8]. The advancements of YOLO11 from
previous versions are the improved backbone and neck ar-
chitecture for better feature extraction, more efficient refined
architectural designs and optimized training pipelines, higher
accuracy with fewer parameters, ability to be implemented
in various devices, and model support in performing various
computer vision tasks. The YOLO11 architecture has better
accuracy and inference time than the previous YOLO model.

Mobile phones have several operating systems that can
be used for the development of m-health applications such
as Android and iOS. Android was chosen as the operating
system in this development of m-health applications. This is
because Android has a market share in Indonesia of 93.47%
in December 2024 [9]. Thus, the number reader model on the
seven-segment display developed must pay attention to the
computational load that can be handled by Android phones.
The developed m-health application has four main features:
image capture from camera, number reading using model,
saving result to database, and data visualization.

IV. IMPLEMENTATION

The implementation of the m-health application is divided
into two parts, namely model development and application

TABLE I
NUMBER OF IMAGES FROM THE DATA SOURCES

Source Amount Percentage

Datacluster Labs 223 14.22%
Workspace 1345 85.78%

Total 1568 100.00%

TABLE II
DISTRIBUTION OF UNIT TYPES

Unit Amount Percentage

mg/dL 1103 70%
mmol/L 465 30%

Total 1568 100%

development. Model development includes dataset collection,
model training, model conversion and model quantization.
The implementation process is carried out on two working
environments. The first environment is utilized for model
training and testing. The second environment is carried out
for the development and testing of m-health applications. The
working environments is as follows.

1) Model Development
• Google Colab Pro

– GPU : NVIDIA® T4
– System RAM : 12.7GB
– GPU RAM : 15.0GB
– Disk : 201.2GB

2) Application Development
• Laptop (Asus A412F)

– CPU : Intel® Core™ i7-10510U CPU @
1.80GHz 2.30 GHz

– RAM : 8GB
– OS : Windows 11 23H2

• Smartphone (Oppo A54)
– Processor : MediaTek MT6765V/CB
– RAM : 6GB
– OS: ColorOS V11.1

A. Dataset Collection

The data is collected from public image datasets. The
dataset used is an image of blood glucose measurement results
from glucose meters that has a seven-segment display screen.
The image dataset has variations in lighting, distance, and
viewing angle so that it reflects the real detection environment.
Details about the data source can be seen in Table I.

The acquired images are first cleaned to remove images that
are not good for model training. The images that is not good
includes images that use numbers that are not seven-segment
displays, too tilted, too far away, or too difficult to read even
by humans. The glucose meter shows the measurement value
in one of two types of units, namely the mg/dL device and
the mmol/L device. The distribution of unit types in the image
dataset is shown in Table II.



4

Class

A
m

ou
nt

0

250

500

750

1000

, 0 1 2 3 4 5 6 7 8 9

Class distribution

Fig. 1. Class distribution

TABLE III
DATASET SPLIT

Split
Amount

Before Augmentation After Augmentation

Train 1098 (70 %) 3294 (88%)
Validation 314 (20%) 314 (8%)

Test 156 (10%) 156 (4%)

Total 1568 (100%) 3764 (100%)

The image is then annotated using the Roboflow application.
Annotation is in the form of giving bounding boxes and classes
to each object in the image. The image can contain several
objects in the form of numbers and commas. The objects are
grouped into 11 classes: “,”, “0”, “1”, “2”, “3”, “4”, “5”, “6”,
“7”, “8”, and “9”. Images that have comma object are images
that use mmol/L units. Meanwhile, images that do not have
comma object are images that use mg/dL units. The Class
distribution is as shown in Figure 1.

The image is then divided into three sets: train, validation,
and test. The training set is used in model training as a data
source. The validation set is used for validation during training.
The testing set is used in testing the model. The training data is
augmented to increase the number and variety of images. Data
augmentation was performed in the form of rotation by ±15°,
shear by ±15° horizontally and ±15° vertically, brightness by
±15%, and blur up to 2.5 pixels. Augmentation resulted in
three augmented images from one training set image. The
dataset splits before and after the augmentation process can
be seen in Table III.

B. Model Training

The YOLO11 model has several model variants: nano
(YOLO11n), small (YOLO11s), medium (YOLO11m), large
(YOLO11l), extra large (YOLO11x). The comparison between
the five models is shown in Table IV. The training process is
carried out on small, medium, and large variants. The nano
model is not trained because it has a very low mAP value
compare to other models even though it has a small size. The
extra-large model is not trained because it has a mAP that is

TABLE IV
COMPARISON OF YOLO11 VARIANTS

Model Size mAP Speed Speed Params FLOPs
Val CPU T4

ONNX TensorRT10
(pixels) 50-95 (ms) (ms) (M) (B)

YOLO11n 640 39.5 56.1 ± 0.8 1.5 ± 0.0 2.6 6.5
YOLO11s 640 47.0 90.0 ± 1.2 2.5 ± 0.0 9.4 21.5
YOLO11m 640 51.5 183.2 ± 2.0 4.7 ± 0.1 20.1 68.0
YOLO11l 640 53.4 238.6 ± 1.4 6.2 ± 0.1 25.3 86.9

YOLO11x large 640 54.7 462.8 ± 6.7 11.3 ± 0.2 56.9 194.9

not much larger than the large model despite being twice the
size.

The three model variants are trained with the following
hyperparameters.

• Epoch : 1000
• Patience : 100
• Image size : 640
• Optimizer : Auto (SGD)
• Learning rate : 0.01
• Momentum : 0.9

The hyperparameter optimized in this training process is
the epoch value. Other hyperparameters use the default values
provided by the Ultralytics library. This is done to simplify the
training process and reduce hyperparameter tuning. The epoch
and patience work together in the early stopping mechanism.
The epoch value is the maximum number of iterations the
model performs training using the entire dataset. The patience
value is the limit on the number of epochs that must be
passed without any increase in the validation metric. If the
number of epochs exceeds the limit, training will be stopped
(early stopping). The patience value is useful for preventing
overfitting when training process does not experience an
increase in the validation metric.

The epoch value is chosen with a value that is much higher
than the patience value. The default patience value from the
library is 100 and the selected epoch value is 10 times the
patience value, which is 1000. This is done so that training
process only stops when the validation metric stops increasing
for a number of epochs that is determined by the patience
value. The expectation of this approach is that the resulting
model has the most optimal validation metric value because
continuing training after that epoch does not result in an
increase in the validation metric.

The hyperparameter value for the input image size is 640.
This value was chosen because the models are pre-trained
models that have been trained using an input image size of 640.
Using the same input image size value is done to minimize
the difference between the data that the model already knows
and the data used in this training. The expectation of this
approach is to minimize the weight changes that must be made
in training to achieve optimal metrics.

The optimizer selection is done automatically by the library.
In addition to determining the optimizer used, the library also
automatically determines the best learning rate and momentum
values. The optimizer selected by the library is Stochastic



5

PyTorch ONNX TensorFlow

TensorFlow Lite
Float32

TensorFlow Lite
Float16

TensorFlow Lite
Int8

Fig. 2. Conversion and quantization process

Gradient Descent (SGD) with a learning rate of 0.01 and a
momentum of 0.9.

The training process produces two models, namely the last
epoch model and the best epoch model. The last epoch model
is the model at the time the last epoch was run before the
training process stopped. The best epoch model is the model
at which the best validation metric was obtained.

C. Model Conversion and Quantization

The trained model has a different format from the format
that can be used by the m-health application. Therefore, the
model will be converted to that format. The converted model
is then quantized into a model with a smaller bit precision.
Quantization is done to reduce the number of bits needed to
store the model weights so that the file size becomes smaller.
This can reduce the model computational load so they are
suitable for mobile phones with limited resources. However,
quantization can cause a reduction in model accuracy.

The training process produces a model file that has the
PyTorch (.py) format. Meanwhile, the model used in the m-
health application must be in TensorFlow Lite (.tflite) format.
Therefore, the model is converted to ONNX format first.
Then, the ONNX format model is converted to TensorFlow
format. Then, the Tensorflow format model is converted to
TensorFlow Lite format. In this conversion, model quantization
can be carried out from 32-bit float (FP32) precision to 16-
bit float (FP16) and 8-bit integer (INT8). The conversion and
quantization process is as shown in Figure 2.

This conversion and quantization process produce three files
for each model: models with FP32, FP16, and INT8 precision.
The FP32 precision model is the default model that stores
weights in 32-bits. Meanwhile, the FP16 precision model is a
quantization model that cuts the number of bits from 32-bits
to 16-bits. The INT8 precision model cuts the number of bits
from 32-bits to 8-bits and converts the weights and activation
outputs into integers.

D. Application Development

The m-health application will use the previously converted
model to perform reading of seven-segment display. The m-
health application developed has four main features: taking
images with a camera, reading images, storing reading results
to a database, and data visualization. In addition, there are
three additional features: manual value entry, taking images
from internal storage, and displaying list of all saved data.

This m-health application will have 7 use cases as shown
in Figure 3. The first three use cases are three ways that users

User

M-Health Application

Adding Blood Glucose
Data

Viewing Blood 
Glucose Data

Update Blood 
Glucose Data

Delete Blood
Glucose Data

Image Reading From
Camera

Image Reading From
Internal Storage

Manual Addition

View Blood Glucose
Data List

View Blood Glucose
Graph Visualization

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Fig. 3. Use case diagram of the m-health application

can add blood sugar data to the database. In the use case of
reading images from the camera, users must use the mobile
phone camera to get an image of a glucose meter. In the use
case of reading images from storage, users must search for an
image of a glucode meter from the mobile phone’s internal
storage. The image from both methods will be read by the
model to get the blood sugar values. The blood sugar values
are then inserted into the database. In addition to adding data
through image reading, users can also add blood sugar data
manually as explained in the manual addition use case.

The data that has been saved to the database can be
displayed to the user through two use cases: the use case of
viewing a list of blood sugar data and the use case of viewing
a visualization of a blood sugar graph. The use case of viewing
a list of blood sugar data displays all blood sugar data in the
form of a list. The use case of viewing a visualization of a
blood sugar graph displays all blood sugar data in the form
of a bar graph, line graph, or pie graph. In the use case of
updating blood sugar data, the user can make changes to the
time of collection and blood sugar values. In the use case of
deleting blood sugar data, the user is able to delete certain
data from the database.

The workflow of reading the blood glucose measurement
is as shown in Figure 4. The process of reading seven-
segment display numbers is divided into two steps: the number
identification process and the unit classification process. The
number identification process aims to detect all individual
numbers and commas in the image. The unit classification
process will identify the units used by the glucose meter based
on the presence of a comma symbol.

The presence of a comma indicates that the unit used is



6

Image of Blood Glucose
Measurement

Detection of Numbers and
Comma

Seven-Segment Display
Detection Model

Glucose Unit Classification Blood Glucose Value,
Glucose Unit

Saving Data
Database

Data Visualization,
List of Data

Fig. 4. Workflow of reading blood glucose measurement

mmol/L. If there is no comma, then the unit used is mg/dL.
The reading process results are blood glucose values and
glucose units. Then, the reading results are inserted into the
database. Blood glucose values are stored in the database
in mg/dL units. Therefore, glucose values in mmol/L units
must first be converted to mg/dL units. If glusose unit used is
mmol/L, the blood glucose value will be multiplied by 18.0156
before being entered into the database.

Blood glucose data that has been stored in the database
will be used to create data visualizations for users. When the
user opens the dashboard page. Then, the application will take
blood glucose data to create bar charts, line charts, or pie
charts.

The m-health application has five pages, namely the dash-
board page, the camera page, the manual data addition page,
the data list page, and the edit page. The user interface of
the five pages is displayed in Figure 5. The dashboard page
contains data visualization in the form of graphs. Data can be
visualized in the form of bar graphs, line graphs, and pie charts
by selecting the graph option. There is a button to change the
units used by the graph. This display the graph in either the
mg/dL or mmol/L unit.

The camera page serves to read numbers using images
from the camera. In addition to images from the camera,
this page provides the option to use images from the phone’s
internal storage. The camera page consists of a PreviewView
to show images from the camera, an OverlayView to show the
bounding box above the PreviewView, two TextViews to show
measurement values and inference time, and a button with the
words ”Save Value” to save the measurement value to the
database. There is a button above the PreviewView with the
words ”Open Gallery” to retrieve image from internal storage.

The manual data addition page contains an EditText to enter
blood glucose measurement values and a RadioGroup to select
the glucose units used. The “Save Value” button will save the
data to the database. This page is useful for entering data if
the image reading on the camera page is unsuccessful.

TABLE V
EVALUATION METRICS OF MODEL TRAINING

Metric YOLO11s YOLO11m YOLO11l

Accuracy (%) 96.67 96.67 97.77
Precision (%) 97.90 98.31 98.82

Recall (%) 98.32 98.32 98.77
F1-score (%) 98.07 98.29 98.77

Inference time (ms) 11.00 20.20 25.80
File size (MB) 18.30 38.70 48.90

The data list page shows all stored blood glucose data. The
data list is implemented into a RecyclerView. Each element has
a glucose value in mg/dL units, a glucose value in mmol/L
units, the date and time of measurement, the class of the
glucose value, a button to delete data, and a button to edit
data. The edit data button functions to open the edit page.

The edit page contains two EditTexts, one RadioGroup,
and a Button. The first EditText is a place to enter the
time and date of the blood glucose measurement. The second
EditText contains the blood glucose value in mg/dL units. The
RadioGroup contains two elements that are the units of the
blood glucose value. The “Save Value” button will change the
glucose measurement on the data that has been selected on the
edit page.

V. RESULTS AND DISCUSSION

A. Evaluation of Model Training

Evaluation on the trained model is done to obtain the
control metric values that will be compared with the metrics
of the converted and quantized model. The results of the
model testing produce metrics of accuracy, macro-averaged
precision, macro-averaged recall, macro-averaged f1-score,
inference time, and model file size. The evaluation metrics
of the YOLO11 trained model are as shown in Table V.

In general, more complex and larger models will have
higher performance. However, larger models also have larger
inference times and file sizes. Among the three trained models,
the YOLO11l model has the highest accuracy, precision,
recall, and f1-score. Meanwhile, the YOLO11s model has the
smallest inference time and file size. There is no significant
difference in the accuracy, precision, recall, and f1-score
metrics of the three models. The significant differences are
in the inference time and file size metrics.

B. Evaluation of Model Conversion and Quantization

Evaluation on the conversion and quantization result models
is done to select the model to be implemented in the m-health
application. The resulting metrics are compared with the base
model to identify and measure the differences in metric values
due to the conversion and quantization process. The evaluation
metrics of the YOLO11 FP32 model resulting from conversion
and quantization is displayed in Table VI. Based on the test
results of the YOLO11 FP32 model, there is no difference in
the accuracy, precision, recall, and f1-score metrics between
the base and FP32 models. However, there is a significant
difference in the inference time. The increase in inference



7

Fig. 5. User interface of the m-health application

time in the FP32 model is due to the file format conversion
from PyTorch (.py) to TensorFlow Lite (.tflite). The file size
in the FP32 model has increased by about 100% from the
base model. This is because the PyTorch model stores weights
and activation outputs in 16-bit precision. Therefore, the file
size doubled when converting from 16-bit precision to 32-
bit precision. Among the three FP32 models, the YOLO11l
FP32 model has the highest accuracy, precision, recall, and f1-
score. Meanwhile, the YOLO11s FP32 model has the smallest
inference time and file size.

The evaluation metrics of the YOLO11 FP16 model result-
ing from conversion and quantization is displayed in Table VII.
The test results of the FP16 precision YOLO11 model are
similar to the FP32 model. There is no difference in the
accuracy, precision, recall, and f1-score metrics between the
base and FP16 models. There is a significant difference in
the inference time due to the change in file format from
PyTorch (.py) to TensorFlow Lite (.tflite). The file size of the
FP16 model is almost the same as the baseline model because
the base model stores weights and activation outputs in 16-
bit precision. Among the three FP16 models, the YOLO11l
FP16 model has the highest accuracy, precision, recall, and f1-
score. Meanwhile, the YOLO11s FP16 model has the smallest
inference time and file size.

The evaluation metrics of the YOLO11 INT8 model re-
sulting from conversion and quantization is displayed in
Table VIII. Based on the test results of the YOLO11 INT8
precision model, there is a significant increase in the file size
metrics for the medium and large models. The increase in file
size in the YOLO11 INT8 medium and large models is due
to changes in file format. The file size in the YOLO11s INT8
model has decreased by about 50% from the base model. This
is because the PyTorch model stores weights and activation
outputs in 16-bit precision. Therefore, the file size halved when
converting from 16-bit precision to 8-bit precision. There has

been a slight decrease in the accuracy, precision, recall, and
f1-score metrics between the base and INT8 models. This
is due to some information loss when reducing the model
precision from 16-bit to 8-bit. Among the three INT8 models,
the YOLO11l INT8 model has the highest accuracy, precision,
recall, and f1-score. Meanwhile, the YOLO11s INT8 model
has the smallest inference time and file size.

The YOLO11 model converted and quantized to FP32 and
FP16 precision has no difference in accuracy, precision, recall,
f1-score, and inference time metrics. Therefore, the FP16
precision model is preferred over FP32 because it has the
smaller inference time and file size. The three FP16 models
have differences in accuracy, precision, recall, and f1-score
metrics that are not too far apart.

The significant difference is in the inference time and file
size metrics. Inference time determines the computational load
on the application and file size increases the size of the
application. These two metrics are important considerations
for mobile devices that have limited resources. Therefore, the
model chosen in the FP16 model is the small model.

There is no very significant difference in accuracy, preci-
sion, recall, and f1-score metrics between the FP16 and INT8
model. Thus, the INT8 model is preferred over the FP16
model because of the smaller inference time and file size. The
differences in accuracy, precision, recall, and f1-score metrics
between INT8 models are also not significant. Therefore, the
YOLO11s INT8 model was chosen because it has the smallest
inference time and file size.

Comparison of the YOLO11s INT8 model with related
studies is displayed in Table IX. In general, the YOLO11s
INT8 model has been able to detect seven-segment display
numbers accurately. The model has higher accuracy metrics
and f1-scores than the research of Finnegan et al. However,
the accuracy and f1-score of the model are smaller than the
research of Shenoy and Aalami and the research of Moreira.



8

TABLE VI
EVALUATION METRICS OF YOLO11 FP32

Metric YOLO11s YOLO11m YOLO11l

Base FP32 Delta (%) Base FP32 Delta (%) Base FP32 Delta (%)

Accuracy (%) 96.67 96.67 0.00 96.67 96.67 0.00 97.77 97.77 0.00
Precision (%) 97.90 97.90 0.00 98.31 98.31 0.00 98.82 98.82 0.00

Recall (%) 98.32 98.32 0.00 98.32 98.32 0.00 98.77 98.77 0
F1-score (%) 98.07 98.07 0.00 98.29 98.29 0.00 98.77 98.77 0.00

Inference time (ms) 11.00 431.50 +3822.73 20.20 1260.40 +6139.60 25.80 1649.50 +6293.41
File size (MB) 18.30 36.30 +98.36 38.70 77.40 +100.00 48.90 97.60 +99.59

TABLE VII
EVALUATION METRICS OF YOLO11 FP16

Metric YOLO11s YOLO11m YOLO11l

Base FP16 Delta (%) Base FP16 Delta (%) Base FP16 Delta (%)

Accuracy (%) 96.67 96.67 0.00 96.67 96.67 0.00 97.77 97.77 0.00
Precision (%) 97.90 97.90 0.00 98.31 98.31 0.00 98.82 98.82 0.00

Recall (%) 98.32 98.32 0.00 98.32 98.32 0.00 98.77 98.77 0.00
F1-score (%) 98.07 98.07 0.00 98.29 98.29 0.00 98.77 98.77 0.00

Inference time (ms) 11.00 410.90 +3635.45 20.20 1279.90 +6236.14 25.80 1627.90 +6209.69
File size (MB) 18.30 18.30 0.00 38.70 39.20 +1.29 48.90 49.40 +1.02

TABLE VIII
EVALUATION METRICS OF YOLO11 INT8

Metric YOLO11s YOLO11m YOLO11l

Base INT8 Delta (%) Base INT8 Delta (%) Base INT8 Delta (%)

Accuracy (%) 96,67 94,14 -2,62 96,67 93,10 -3,69 97,77 95,00 -2,83
Precision (%) 97,90 96,14 -1,80 98,31 96,09 -2,26 98,82 96,83 -2,01

Recall (%) 98,32 98,01 -0,32 98,32 97,59 -0,74 98,77 98,41 -0,36
F1-score (%) 98,07 97,03 -1,06 98,29 96,82 -1,50 98,77 97,59 -1,19

Inference time (ms) 11 330,7 +2906,36 20,2 945,3 +4579,70 25,8 1226,2 +4652,71
File size (MB) 18,3 11,4 -37,70 38,7 93,5 +141,60 48,9 125,7 +157,06

TABLE IX
COMPARISON OF YOLO11S INT8 WITH RELATED STUDIES

Research Model/Algorithm Accuracy (%) F1-score (%)

Shenoy and Aalami (2016) Random Forest 98,20 97,80
Moreira (2022) CNN 100,00 99,70

Finnegan et al. (2019) ANN 93,00 87,00
Proposed model YOLO11s INT8 94,14 97,03

This is due to the difference in objects that can be detected by
the model of this research with the model of related studies.
The model in the related studies is only able to detect numbers,
while the model in this research is able to detect commas. The
ability to detect commas causes a decrease in accuracy metrics
and f1-scores because the size of the comma is quite small so
that it is difficult for the model to detect. This is indicated
by the difference in f1-score for commas with the average
f1-score, which are 84.09% and 97.03%. In addition, there
are differences in the data sets used in this research with the
related studies so that the differences in accuracy metrics and
f1-score cannot be compared directly.

C. Evaluation of M-Health Application

The YOLO11s INT8 model was selected for use in the
m-health application. The m-health application testing was

carried out by reading 156 images from the test dataset.
The images have various variations, such as mg/dL images,
mmol/L images, tilted images, distant images, and blurry
images. The sample results of the m-health application testing
are is displayed in Figure 6.

From the test results, an accuracy metric of 97.77% and
an f1-score of 98.34% were obtained. The average inference
time for one image is 1918.15 ms. The inference time on the
application increased by 5 times from the model testing results.
This is due to the difference in the model testing environment
and application testing. In addition, the smartphone used in
the application testing has a GPU that is not supported by the
library used. The inference computational load is given to the
cellphone CPU which causes slower inference time.

VI. CONCLUSION

In this study, a m-health application that is able to read
the blood glucose value and determine the glucose unit from
a blood glucose measurement of a glucose meter has been
successfully designed, implemented and tested with a good
accuracy. The application use YOLO11, a convolutional neural
network model. The model has been trained, converted to
TensorFlow Lite format, and quantized to 16-bit and 8-bit
precision. The model used in the application is YOLO11s



9

Fig. 6. Sample results of the m-health application testing

INT8. The model has an accuracy of 94.14% and an f1-
score of 97.03%. The model has a small file size of 11.4
MB, making it suitable for mobile devices. The model has
an average inference time of 330.7 ms on Google Colab and
1918.15 ms on smartphone. Through testing with 156 images,
the application produced an accuracy of 97.77% and an f1-
score of 98.34%.

REFERENCES

[1] Mayo Clinic, “Diabetes : Diagnosis treatment,” 2024, accessed: 2025-01-
22. [Online]. Available: https://www.mayoclinic.org/diseases-conditions/
diabetes/diagnosis-treatment/drc-20371451

[2] E. Finnegan, M. Villarroel, C. Velardo, and L. Tarassenko, “Automated
method for detecting and reading seven-segment digits from images of
blood glucose metres and blood pressure monitors,” Journal of medical
engineering & technology, vol. 43, no. 6, pp. 341–355, 2019.

[3] Statista, “Number of smartphone users in indonesia from 2019
to 2029,” 2024, accessed: 2025-01-22. [Online]. Available: https:
//www.statista.com/forecasts/266729/smartphone-users-in-indonesia

[4] V. N. Shenoy and O. O. Aalami, “Utilizing smartphone-based machine
learning in medical monitor data collection: Seven segment digit recog-
nition,” in AMIA Annual Symposium Proceedings, vol. 2017, 2018, p.
1564.

[5] L. P. Moreira, “Automated medical device display reading using deep
learning object detection,” arXiv preprint arXiv:2210.01325, 2022.

[6] J. Sanchez, Glucose Meters and Strips. New York, NY: Springer New
York, 2013, pp. 870–871. [Online]. Available: https://doi.org/10.1007/
978-1-4419-1005-9 1191

[7] J. Redmon, “You only look once: Unified, real-time object detection,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016.

[8] Ultralytics, “Ultralytics yolo docs : Home,” 2024, accessed: 2025-01-22.
[Online]. Available: https://docs.ultralytics.com/

[9] Statcounter, “Mobile operating system market share indonesia,” 2024,
accessed: 2025-01-22. [Online]. Available: https://gs.statcounter.com/
os-market-share/mobile/indonesia

Daffa Romyz Aufa currently pursuing B.Eng. de-
gree in informatics engineering from Bandung In-
stitute of Technology (ITB), Indonesia. His research
interests include web development, data engineering,
machine learning, computer vision, and software
engineering.

Rinaldi Munir received the B.Eng. degree in infor-
matics engineering and the M.Sc. degree in digital
image compression from the Bandung Institute of
Technology (ITB), Indonesia, in 1992 and 1999,
respectively. He received his Ph.D. degree in image
watermarking from the School of Electrical Engi-
neering and Informatics, ITB, in 2010. In 1993,
he started his academic career as a Lecturer with
the Department of Informatics, ITB. He is currently
an Associate Professor with the School of Elec-
trical Engineering and Informatics, ITB, and the

Informatics Research Group. His research interests include cryptography
and steganography-related topics, digital image processing, fuzzy logic, and
numerical computation.

Nur Ahmadi (Member, IEEE) received the B.Eng.
degree in electrical engineering from Bandung In-
stitute of Technology (ITB), Indonesia, in 2011 and
M.Eng. degree in communication and integrated
systems from Tokyo Institute of Technology, Japan,
in 2013. He received his Ph.D. degree in Electrical
and Electronic Engineering from Imperial College
London, UK, in 2020. His Ph.D. research focused on
signal processing and deep learning for intracortical
brain-machine interfaces. He is now with the Center
for Artificial Intelligence and School of Electrical

Engineering and Informatics, Institut Teknologi Bandung. His current research
interests include biomedical signal processing, artificial intelligence, machine
learning, digital and embedded systems.

https://www.mayoclinic.org/diseases-conditions/diabetes/diagnosis-treatment/drc-20371451
https://www.mayoclinic.org/diseases-conditions/diabetes/diagnosis-treatment/drc-20371451
https://www.statista.com/forecasts/266729/smartphone-users-in-indonesia
https://www.statista.com/forecasts/266729/smartphone-users-in-indonesia
https://doi.org/10.1007/978-1-4419-1005-9_1191
https://doi.org/10.1007/978-1-4419-1005-9_1191
https://docs.ultralytics.com/
https://gs.statcounter.com/os-market-share/mobile/indonesia
https://gs.statcounter.com/os-market-share/mobile/indonesia

	Introduction
	Related Works
	Solution Analysis
	Implementation
	Dataset Collection
	Model Training
	Model Conversion and Quantization
	Application Development

	Results and Discussion
	Evaluation of Model Training
	Evaluation of Model Conversion and Quantization
	Evaluation of M-Health Application

	Conclusion
	References
	Biographies
	Daffa Romyz Aufa
	Rinaldi Munir
	Nur Ahmadi


