
Implementation of Plant Disease Classification Model
Using Transfer Learning and DCGAN Data
Augmentation in Android Based Application

(Case Study on Tomato Leaves)

Christopher Justine William
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

Email: 13519006@std.stei.itb.ac.id

Abstract—The early detection of plant diseases plays a crucial
role in preventing their spread and minimizing damage. With
advancements in computer vision technology, deep learning
approaches have emerged as effective methods for disease
detection in plants. However, to make these models accessible to a
wider audience, it is important to develop models that can run
smoothly on simpler devices like mobile gadgets. The objective of
this paper is to implement a plant disease classification model
using transfer learning and the DCGAN data augmentation
technique in an Android based application. The study focuses on
tomato leaf diseases using the PlantVillage dataset. The transfer
learning approach is chosen to leverage pre-trained models and
accelerate the training process by leveraging existing knowledge.
Additionally, the DCGAN data augmentation technique is
employed to address data limitations by generating additional
data that enhances the balance and diversity of the dataset.
Through testing and evaluation, the model achieved the highest
accuracy of 97.83% when trained and tested on the PlantVillage
dataset. This model, with the highest accuracy, is then integrated
into an Android application for disease classification on tomato
plant leaves.

Keywords—plant disease classification, transfer learning,
DCGAN augmentation, android application.

I. INTRODUCTION

Indonesia is a country with enormous natural resource
potential in agriculture. This is supported by the agricultural
industry which is the second largest supporting sector for the
Indonesian economy which contributes 13.28% to national
GDP in 2021 [1]. However, this great potential is also followed
by threats that can harm the growth of cultivated plants which
can result in losses, one of which is the threat of diseases in
plants which are estimated to collectively cause around 16%
loss of crop yields globally [2]. Early detection of disease in a
plant needs to be done before the disease spreads and attacks
other plants which can cause greater losses.

Utilizing deep learning in agriculture for identifying
diseases in cultivated plants necessitates a model that can run
on basic devices, enabling a wide range of users to employ it.

However, models designed for simple devices, which have
limited memory and computing capabilities, often have to
compromise with accuracy. Developing a model that can be
implemented on such devices poses a challenge. In a study by
Ahmed et al. [3], the detection of diseases on tomato plant
leaves was examined through the utilization of the transfer
learning method, employing a pre-trained MobileNetV2 model.
By leveraging the knowledge derived from pre-trained models,
transfer learning improves the training process, leading to
faster and more efficient training. Similarly, Ahmad et al. [4]
conducted a study on disease detection in plants, employing the
stepwise transfer learning method with pre-trained models such
MobileNetV3. The results of their research indicate enhanced
accuracy, precision, recall, and f1-score for models trained with
the stepwise transfer learning approach. It is important to note
that this research did not focus on a single plant type but
encompassed multiple plants within one model training.
Additionally, Wu et al. [5] conducted a study where they
examined disease detection on tomato plant leaves by
employing the DCGAN data augmentation technique.

This paper focuses on the implementation of deep learning
models for identifying plant leaf diseases on mobile devices. It
specifically presents a case study on tomato leaf disease using
the PlantVillage dataset. Acquiring large plant disease datasets
directly is challenging in reality. Hence, suitable data
augmentation techniques are necessary to increase the initial
dataset size for deep learning model training. The choice of
transfer learning with a pre-trained model is favored over
building a model from scratch due to its ability to expedite the
training process by leveraging knowledge from the pre-trained
model. Transfer learning enables reducing the dataset size
while benefiting from expertise encoded in pre-trained models
from relevant scientific domains. Additionally, the DCGAN
data augmentation technique is employed to address the issue
of limited and imbalanced datasets by generating additional
data. Multiple basic model architectures are utilized during
training, and the results are compared in terms of accuracy and
model size.

II. RELATED WORKS

The current deep learning model faces several challenges,
including the necessity for a large number of parameters,
lengthy training time, and difficulties in implementing the
model on resource-constrained devices. Ahmed et al. [3]
addressed these challenges by developing a classification
model for tomato plant leaf diseases using transfer learning
method with pre-trained models such MobileNetV2, followed
by a classifier network. By employing transfer learning, the
model training process becomes faster and more efficient as it
leverages knowledge derived from pre-trained models.
Furthermore, the MobileNetV2 architecture is specifically
designed to generate models that can operate effectively on
devices with limited computing resources, making them
suitable for deployment on simple devices such as mobile
device. The model implemented using MobileNetV2
architecture achieved an accuracy of 97.27% with a total of
2.28 million parameters when evaluated on the tomato plant
leaf dataset from PlantVillage. In this study, the transfer
learning method involved activating all layers in the model.
However, it is important to note that the model may lose its
ability to recognize fundamental features of unseen data if it
becomes overly focused on studying the training data, resulting
in reduced accuracy for previously unseen data.

In the study conducted by Ahmad et al. [4], the model used
for plant disease classification employed the stepwise transfer
learning method with pre-trained models. Unlike conventional
approach of training all layers simultaneously, the stepwise
transfer learning model initially freezes all layers except the
classification layer. This approach gradually introduces updates
to the layers after they have reached a certain level of
saturation over a specific number of epochs. In contrast,
conventional transfer learning begins training by updating the
weights of all layers, effectively overwriting the weights
inherited from the previously trained model. However, in
stepwise transfer learning, the previously trained weights are
retained by initially freezing the layers, and they are only
activated when the model's capacity to learn new features
becomes insufficient. The implemented model, utilizing the
MobileNetV3 architecture, achieved an impressive accuracy of
99% on the plant leaf dataset obtained from PlantVillage. It is
important to note that this research did not exclusively focus on
tomato plant leaves but encompassed various types of plants
and other plant parts as well.

In the study conducted by Wu et al. [5], a novel approach
for data augmentation was proposed in the model used to
classify diseases on tomato plant leaves. Conventional data
augmentation techniques such as rotation, flip, and translation
often do not achieve satisfactory accuracy. To address this
issue, the researchers utilized the Deep Convolutional
Generative Adversarial Network (DCGAN) model. This model
combines the original image with the augmented image
generated by DCGAN as input for the identification model.
The images generated by DCGAN exhibit improved
consistency and diversity compared to those produced by
conventional GANs. The accuracy results of the implemented
model, utilizing GoogLeNet, achieved 94.33% when evaluated
on the tomato plant dataset from PlantVillage.

III. MATERIAL AND METHOD

The proposed solution in this paper is an application that
runs on a device, allowing users to input images of tomato
plant leaves and receive predictive results regarding the
detection of diseases affecting those leaves. In order to
generate these predictions, a lightweight model is developed,
prioritizing computational and memory efficiency. The model
will then be integrated into a mobile application to facilitate the
identification of diseases on tomato plant leaves. There are
three main components in this solution: the DCGAN model,
the classification model, and the device application. The
research foundation for this paper is based on the work of Wu
et al. [5] research on DCGAN data augmentation and explores
the potential of different pre-trained models and transfer
learning methods. Additionally, it incorporates the transfer
learning approach from Ahmed et al. [3] and Ahmad et al. [4].

A. Dataset

The initial dataset is processed through the data preparation
phase, following a similar approach as in Wu et al. [5] study, to
partition it into training, validation, and test data. The dataset
employed in this paper consists of tomato plant leaf data
obtained from PlantVillage. It is divided into ten classes
representing different types of leaf diseases in tomato plants,
resulting in a total of 300 instances. Each class contains 240
training samples and 60 test samples, randomly distributed.
The DCGAN model is trained using the 240 training samples
from each class. Subsequently, the DCGAN model expands the
training dataset to include 1000 instances for each class,
resulting in 800 training samples and 200 validation samples.
These augmented samples will be utilized in the training
process of the classification model. The distribution of data
quantities per class after the data preparation process is
presented in Table I.

TABLE I. DISTRIBUTION OF CLASSES IN THE DATASET AFTER
PROCESSING

Class Label
Initial
Data

DCGAN
Data

Train
Data

Test Data

Bacterial Spot 300 760 1000 60

Early Blight 300 760 1000 60

Healthy 300 760 1000 60

Late Blight 300 760 1000 60

Leaf Mold 300 760 1000 60

Septoria Leaf
Spot

300 760 1000 60

Target Spot 300 760 1000 60

Tomato Mosaic
Virus

300 760 1000 60

Two Spotted
Spider Mites

300 760 1000 60

Yellow Leaf Curl
Virus

300 760 1000 60

Total 3000 7600 1000 600

B. DCGAN Model

The DCGAN model is developed to expand the training
dataset by generating artificial images, thereby increasing its
size. It consists of two distinct models: the Generator and the
Discriminator. The Generator is responsible for creating
artificial images, which are then used to augment the training
dataset. On the other hand, the Discriminator plays a crucial
role in the overall training process of the DCGAN model by
distinguishing between original and generated images. During
the training process, the DCGAN model undergoes a set
number of epochs. In each epoch, both the Generator and the
Discriminator are trained iteratively on batches of the dataset.
The Generator receives a noise input at each iteration and
generates artificial images, while the Discriminator takes an
input image and determines whether it is real or generated. The
Discriminator's output value is used to calculate the losses for
both the Generator and the Discriminator. The gradient of each
model is then multiplied by the model parameters, allowing
them to be trained and updated.

The architecture of the DCGAN model used in this paper is
presented in Fig 1. Within the generator component, a dense
layer employed to transform the input noise into a more
complex representation with dimensions of 32x32x256. This is
followed by multiple deconvolution layers that upscale the
image to achieve the desired resolution. The inclusion of the
dense layer with these dimensions enables it to capture
complex patterns from the initial noise and generate improved
output. To ensure compatibility during deconvolution
operations, the input size of each deconvolution layer matches
the output size of the preceding layer. On the other hand, the
discriminator model incorporates a convolution layer
responsible for extracting features from the image being
evaluated.

Fig. 1. Architecture of the Generator model (top) and Discriminator model
(bottom).

C. Classification Model

The design solution in this paper incorporates architectural
modification derived from the Ahmed et al. [3]. In this design,
a pre-trained model is employed as a feature extractor, serving
as input for additional classification layers. The additional
classification layer comprises a combination of dense layers,
batch normalization, and dropouts, as depicted in Fig 2. The
dense layer, utilizing the ReLu activation function, calculates
the weights between the nodes in the preceding layer and the
nodes in the current layer. The batch normalization layer
normalizes input values, aiming to expedite the training
process and prevent overfitting of the training data. Meanwhile,
the dropout layer aids in mitigating overfitting by randomly
deactivating a small portion of neurons during each training
iteration. Through experiments conducted using Bayesian
Optimization on Keras Tuner to identify the model with the
most optimal parameters, it was determined that the ideal
number of nodes is 128 and 64, with a dropout rate of 0.2. The
number of nodes indicates the quantity of units utilized in the
dense layer, while the dropout rate represents the proportion of
units randomly deactivated during the training process.

Fig. 2. Classification Layer Architecture.

Experiments were conducted on pre-trained models
utilizing diverse base architectures, such as DenseNet121,
MobileNetV2, ResNet50, and VGG19. Each architecture
underwent training using the transfer learning technique on an
initial dataset containing 300 samples for each class. The
outcomes revealed that the DenseNet121 model achieved the
highest accuracy rate of 91% compared to other base
architectures. The VGG19 and MobileNetV2 models
demonstrated similar accuracy rates of 84.67% and 85%
respectively. On the other hand, the ResNet50 model exhibited
the lowest accuracy level among the different base
architectures, reaching 66.33%. The number of parameters
served as the primary consideration when selecting the base

model for implementation in Android applications. This is
because a lower number of parameters necessitates less
computation and memory. Among the examined base
architectures, MobileNetV2 possessed the fewest parameters
and the smallest model size with around 2.4 million, making it
the chosen architecture for implementation in Android
application. Once the chosen base architecture is obtained,
additional training is conducted using two scenarios during the
classification model training process.

In the first scenario, all layers of the pre-trained model are
initially unfrozen, allowing their weights to be updated
throughout the training process. This enables the model to
continuously learn and adapt its weights based on the training
dataset. However, there are potential drawbacks to this
approach. One is the risk of overfitting, where the model
becomes too specialized to the training data and struggles to
generalize to unseen data. Additionally, since all layers'
weights are updated, the training time required may be longer.

In the second scenario, the weights of the pre-trained
model's layers are frozen at the beginning of the training
process, except for the classification layer. This means that the
pre-trained model serves as an initial feature extractor, while
the classification layer is updated to learn specific features
relevant to the classification task. By freezing the pre-trained
model's layers, the previously learned features at lower levels
are retained, while the classification layer can adapt its weights
to the new dataset. This approach is beneficial when the dataset
is limited or when leveraging existing knowledge from a pre-
trained model for a particular classification task. Consequently,
the classification layer progressively learns the feature
representation specific to the classification task. After several
epochs, certain layers in the pre-trained model can be unfrozen
to allow for updates and the learning of additional features at
lower levels.

D. Android Application

During this phase, development of an Android based device
application is undertaken, utilizing the previously constructed
classification model. The resulting model is initially converted
into a readable format, which is subsequently integrated into
the application. The application allows users to input images
either from the camera or the gallery. Subsequently, it displays
the classification results based on the provided image. The
application consists of various pages that serve different
functionalities, including the homepage, plant selection page,
camera page, gallery page, and classification results page. The
specific functional requirements of the application can be
found in Table II.

TABLE II. APPLICATION FUNCTIONAL REQUIREMENTS

ID Description
FR-001 The application can select the type of plant.

FR-002 The application can capture images from the camera.

FR-003 The application can retrieve images from the gallery.

FR-004 The application can display the classification results of
diseases on the selected plant from the camera.

FR-005 The application can display the classification results of
diseases on the selected plant from the gallery.

IV. EXPERIMENT AND RESULT

A. Experimental Setup

The DCGAN model and classification model were
implemented using the TensorFlow and Keras libraries in
Python, while the mobile applications were implemented using
the Flutter library in the Dart programming language. The
implementation and testing environments for the DCGAN
model and classification model are specified in Table III.
Likewise, the implementation and testing environments for the
device applications are outlined in Table IV.

TABLE III. ENVIRONMENT SPECIFICATION FOR IMPLEMENTATION AND
TESTING OF DCGAN MODEL AND CLASSIFICATION MODEL

Hardware Specification
CPU Intel Xeon E5-2698 v3 (16 core, Haswell-EP)

GPU Nvidia Tesla V100 32 GB RAM

Software Specification
Operating System Ubuntu 20.04.2 LTS

CUDA CUDA Toolkit 11.8, cuDNN SDK 8.6.0

TensorFlow TensorFlow 2.12.0

TABLE IV. ENVIRONMENT SPECIFICATION FOR IMPLEMENTATION AND
TESTING OF ANDROID APPLICATION

Hardware Specification
CPU Qualcomm SDM730 Snapdragon 730 (8 core)

GPU Adreno 618

Memory 8 GB RAM

Software Specification
Operating System Android 13

Flutter Flutter 3.7.12

B. Evaluation Metrics

In this paper, the evaluation process includes testing both
the model and the android application. Model testing is
conducted to identify the optimal model for implementation in
the android application. Similarly, android application testing is
performed to ensure the proper functionality of the application,
aligning with the specified test scenarios. The classification
model was tested by evaluating its accuracy, precision, recall,
and f1-score. Accuracy measures the model's ability to
correctly classify tomato plant leaf diseases and serves as the
primary metric for evaluating its performance. Precision
indicates how well the model classifies positive samples while
minimizing false positive errors. Recall measures the model's
ability to correctly classify a class and minimize false negative
errors. The F1-score provides an overall view of the balance
between precision and recall. The model with the highest
accuracy, considering precision, recall, and f1-score, was
selected. Android application testing followed the functionality
testing method, where test cases were executed on the
application to achieve the goals specified in Table II.
Functionality testing ensures that each test case can be
successfully executed and evaluated.

C. Experiment on Scenario 1

The experiment was conducted on the model trained under
scenario 1, which involved training the model with the pre-
trained model layer unfrozen from the beginning of the training
process. The evaluation results for the model trained with the
original data set, without any augmentation, can be observed in
Table V. Similarly, the evaluation results for the model trained
with the original data set, augmented using DCGAN, can be
found in Table VI. The following parameters were employed
during the training of the classification model for scenario 1:

1) The batches were set to 16, 32, and 64.

2) The initial number of epochs consisted of 30 epochs, early
stop if there was no validation loss improvement within 10
epochs.

3) Optimizer Adam with a learning rate of 0.0001, a multiplier
factor of 0.1 applied if there was no improvement in
validation accuracy within 5 epochs.

TABLE V. MODEL EXPERIMENT FOR SCENARIO 1 ON THE INITIAL DATA
SET

Batch Size Accuracy
Precision
(Average)

Recall
(Average)

F1-Score
(Average)

16 0.9733 0.9737 0.9733 0.9733

32 0.9533 0.9541 0.9533 0.9529

64 0.9633 0.9638 0.9633 0.9632

TABLE VI. MODEL EXPERIMENT FOR SCENARIO 1 ON THE INITIAL DATA
SET WITH DCGAN AUGMENTATION

Batch
Size

DCGAN
Batch

Accuracy
Precision
(Average)

Recall
(Average)

F1-Score
(Average)

16 32 0.9717 0.9718 0.9717 0.9716

64 0.9783 0.9786 0.9783 0.9781

32 32 0.9767 0.9771 0.9767 0.9766

64 0.9750 0.9761 0.9750 0.9748

64 32 0.9667 0.9671 0.9667 0.9667

64 0.9550 0.9550 0.9550 0.9549

The model trained on the initial dataset without
augmentation achieved a high accuracy rate of 97.37% in
scenario 1. With DCGAN augmentation, the model achieved a
slightly higher accuracy of 97.83%. Augmentation increased
the data set size and improved the model's adaptability to
unseen variations. Both models demonstrated good
performance with average precision, recall, and f1-score
exceeding 90% for each class in the test data.

D. Experiment on Scenario 2

The experiment was conducted on a model trained for
scenario 2, which involved freezing the pre-trained model layer
at the start of the training process and gradually activating it
layer by layer. The test outcomes for the model trained using
the initial data set without augmentation are presented in Table
VII. Additionally, the test results for the model trained with the
DCGAN augmentation data set can be observed in Table VIII.
The following parameters were employed during the training of
the classification model for scenario 2:

1) The batches were set to 16, 32, and 64.

2) The initial number of epochs consisted of 30 epochs with
all pre-trained model layers frozen, followed by 15 epochs
with some of the pre-trained model layers activated, and
finally 5 epochs with all pre-trained model layers
activated.

3) Optimizer Adam with a learning rate of 0.0001, a multiplier
factor of 0.1 applied if there was no improvement in
validation accuracy within 5 epochs.

TABLE VII. MODEL EXPERIMENT FOR SCENARIO 2 ON THE INITIAL DATA

Batch Size Accuracy
Precision
(Average)

Recall
(Average)

F1-Score
(Average)

16 0.8917 0.8919 0.8917 0.8912

32 0.8750 0.8778 0.8750 0.8747

64 0.8800 0.8822 0.8800 0.8793

TABLE VIII. MODEL EXPERIMENT FOR SCENARIO 2 ON THE INITIAL DATA
SET WITH DCGAN AUGMENTATION

Batch
Size

DCGAN
Batch

Accuracy
Precision
(Average)

Recall
(Average)

F1-Score
(Average)

16 32 0.8967 0.8967 0.8967 0.8961

64 0.9233 0.9350 0.9233 0.9241

32 32 0.9367 0.9381 0.9367 0.9362

64 0.9033 0.9046 0.9033 0.9034

64 32 0.9533 0.9575 0.9533 0.9528

64 0.8933 0.8933 0.8933 0.8929

The model trained on the initial dataset without
augmentation achieved 89.17% accuracy in scenario 2, while
the model trained with DCGAN augmentation reached 95.33%
accuracy. Adding DCGAN augmentation significantly
improved the model's accuracy. Average precision, recall, and
f1-score exceeded 80% for each class in the test data,
indicating strong predictive performance.

E. Experiment on Android Application

Based on the experiment outcomes, the implemented
Android application successfully fulfills several tested
functionalities. The features including plant type selection,
camera capture, and gallery image capture work as intended.
However, there are limitations in the application's ability to
accurately classify diseases on tomato plant leaves. It performs
well on test data from the PlantVillage dataset, but struggles
with out-of-distribution (OOD) data. OOD refers to situations
where a model trained on a specific dataset fails to generalize
to data from a different distribution not encountered during
training. When faced with significantly different characteristics
and unseen data, the transfer learning-trained model may
produce inaccurate classification results. Further research is
necessary to improve the model's capability to address OOD
problems and enhance its generalization abilities. The Android
application user interface can be seen in Fig 3.

Fig. 3. Android Application User Interface for Plant Disease Detection.

V. CONCLUSION

This paper focuses on implementing a tomato plant leaf
disease classification model in Android based application.
The model is trained using the transfer learning method and
DCGAN data augmentation technique. Through
experimentation, several conclusions have been drawn from
the preparation of this project. Firstly, the MobileNetV2
architecture is chosen for its smaller size and fewer
parameters compared to other architectures. The trained
model achieves a highest accuracy rate of 97.83%.
Additionally, incorporating DCGAN augmentation data
improves the model's accuracy. In scenario 1, the highest
accuracy increases from 97.33% to 97.83%, while in
scenario 2, it rises from 89.17% to 95.33%. Lastly, the
successfully trained MobileNetV2 model is integrated into
an Android application, allowing users to select the plant
type, capture images from the camera or gallery, and obtain
disease classification results. However, it should be noted
that there are limitations to the application's consistency
when classifying images outside the PlantVillage dataset.

There are two suggestions that can be implemented.
Firstly, consider employing a similarity-based approach
instead of classification to detect diseases on tomato plant
leaves. This approach is less affected by data variations and

does not require prior class information. Secondly, assess the
quality of images generated by DCGAN using the Frechet
Inception Distance (FID) method. This evaluation helps
select high-quality DCGAN images that can serve as
valuable additional data. Implementing these suggestions
will improve the project's robustness and overall
performance.

REFERENCES

[1] Pusat Data dan Sistem Informasi Pertanian. (2021). Statistik Pertanian

2021. Kementerian Pertanian Republik Indonesia.

[2] Oerke, E. C. (2005). Crop losses to pests. The Journal of Agricultural
Science, 144(1), 31–43. https://doi.org/10.1017/s0021859605005708.

[3] Ahmed, S., Hasan, M. B., Ahmed, T., Sony, M. R. K., & Kabir, M. H.
(2022). Less is More: Lighter and Faster Deep Neural Architecture
for Tomato Leaf Disease Classification. IEEE Access, 10, 68868–
68884. https://doi.org/10.1109/access.2022.3187203.

[4] Ahmad, M., Abdullah, M., Moon, H., & Han, D. (2021). Plant
Disease Detection in Imbalanced Datasets Using Efficient
Convolutional Neural Networks With Stepwise Transfer Learning.
IEEE Access, 9, 140565–140580.
https://doi.org/10.1109/access.2021.3119655

[5] Wu, Q., Chen, Y., & Meng, J. (2020). DCGAN-Based Data
Augmentation for Tomato Leaf Disease Identification. IEEE Access.

