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Abstract—The early detection of plant diseases plays a crucial 
role in preventing their spread and minimizing damage. With 
advancements in computer vision technology, deep learning 
approaches have emerged as effective methods for disease 
detection in plants. However, to make these models accessible to a 
wider audience, it is important to develop models that can run 
smoothly on simpler devices like mobile gadgets. The objective of 
this paper is to implement a plant disease classification model 
using transfer learning and the DCGAN data augmentation 
technique in an Android based application. The study focuses on 
tomato leaf diseases using the PlantVillage dataset. The transfer 
learning approach is chosen to leverage pre-trained models and 
accelerate the training process by leveraging existing knowledge. 
Additionally, the DCGAN data augmentation technique is 
employed to address data limitations by generating additional 
data that enhances the balance and diversity of the dataset. 
Through testing and evaluation, the model achieved the highest 
accuracy of 97.83% when trained and tested on the PlantVillage 
dataset. This model, with the highest accuracy, is then integrated 
into an Android application for disease classification on tomato 
plant leaves. 

Keywords—plant disease classification, transfer learning, 
DCGAN augmentation, android application. 

I.  INTRODUCTION 

Indonesia is a country with enormous natural resource 
potential in agriculture. This is supported by the agricultural 
industry which is the second largest supporting sector for the 
Indonesian economy which contributes 13.28% to national 
GDP in 2021 [1]. However, this great potential is also followed 
by threats that can harm the growth of cultivated plants which 
can result in losses, one of which is the threat of diseases in 
plants which are estimated to collectively cause around 16% 
loss of crop yields globally [2]. Early detection of disease in a 
plant needs to be done before the disease spreads and attacks 
other plants which can cause greater losses. 

Utilizing deep learning in agriculture for identifying 
diseases in cultivated plants necessitates a model that can run 
on basic devices, enabling a wide range of users to employ it. 

However, models designed for simple devices, which have 
limited memory and computing capabilities, often have to 
compromise with accuracy. Developing a model that can be 
implemented on such devices poses a challenge. In a study by 
Ahmed et al. [3], the detection of diseases on tomato plant 
leaves was examined through the utilization of the transfer 
learning method, employing a pre-trained MobileNetV2 model. 
By leveraging the knowledge derived from pre-trained models, 
transfer learning improves the training process, leading to 
faster and more efficient training. Similarly, Ahmad et al. [4] 
conducted a study on disease detection in plants, employing the 
stepwise transfer learning method with pre-trained models such 
MobileNetV3. The results of their research indicate enhanced 
accuracy, precision, recall, and f1-score for models trained with 
the stepwise transfer learning approach. It is important to note 
that this research did not focus on a single plant type but 
encompassed multiple plants within one model training. 
Additionally, Wu et al. [5] conducted a study where they 
examined disease detection on tomato plant leaves by 
employing the DCGAN data augmentation technique. 

This paper focuses on the implementation of deep learning 
models for identifying plant leaf diseases on mobile devices. It 
specifically presents a case study on tomato leaf disease using 
the PlantVillage dataset. Acquiring large plant disease datasets 
directly is challenging in reality. Hence, suitable data 
augmentation techniques are necessary to increase the initial 
dataset size for deep learning model training. The choice of 
transfer learning with a pre-trained model is favored over 
building a model from scratch due to its ability to expedite the 
training process by leveraging knowledge from the pre-trained 
model. Transfer learning enables reducing the dataset size 
while benefiting from expertise encoded in pre-trained models 
from relevant scientific domains. Additionally, the DCGAN 
data augmentation technique is employed to address the issue 
of limited and imbalanced datasets by generating additional 
data. Multiple basic model architectures are utilized during 
training, and the results are compared in terms of accuracy and 
model size. 



II. RELATED WORKS 

The current deep learning model faces several challenges, 
including the necessity for a large number of parameters, 
lengthy training time, and difficulties in implementing the 
model on resource-constrained devices. Ahmed et al. [3] 
addressed these challenges by developing a classification 
model for tomato plant leaf diseases using transfer learning 
method with pre-trained models such MobileNetV2, followed 
by a classifier network. By employing transfer learning, the 
model training process becomes faster and more efficient as it 
leverages knowledge derived from pre-trained models. 
Furthermore, the MobileNetV2 architecture is specifically 
designed to generate models that can operate effectively on 
devices with limited computing resources, making them 
suitable for deployment on simple devices such as mobile 
device. The model implemented using MobileNetV2 
architecture achieved an accuracy of 97.27% with a total of 
2.28 million parameters when evaluated on the tomato plant 
leaf dataset from PlantVillage. In this study, the transfer 
learning method involved activating all layers in the model. 
However, it is important to note that the model may lose its 
ability to recognize fundamental features of unseen data if it 
becomes overly focused on studying the training data, resulting 
in reduced accuracy for previously unseen data. 

In the study conducted by Ahmad et al. [4], the model used 
for plant disease classification employed the stepwise transfer 
learning method with pre-trained models. Unlike conventional 
approach of training all layers simultaneously, the stepwise 
transfer learning model initially freezes all layers except the 
classification layer. This approach gradually introduces updates 
to the layers after they have reached a certain level of 
saturation over a specific number of epochs. In contrast, 
conventional transfer learning begins training by updating the 
weights of all layers, effectively overwriting the weights 
inherited from the previously trained model. However, in 
stepwise transfer learning, the previously trained weights are 
retained by initially freezing the layers, and they are only 
activated when the model's capacity to learn new features 
becomes insufficient. The implemented model, utilizing the 
MobileNetV3 architecture, achieved an impressive accuracy of 
99% on the plant leaf dataset obtained from PlantVillage. It is 
important to note that this research did not exclusively focus on 
tomato plant leaves but encompassed various types of plants 
and other plant parts as well.  

In the study conducted by Wu et al. [5], a novel approach 
for data augmentation was proposed in the model used to 
classify diseases on tomato plant leaves. Conventional data 
augmentation techniques such as rotation, flip, and translation 
often do not achieve satisfactory accuracy. To address this 
issue, the researchers utilized the Deep Convolutional 
Generative Adversarial Network (DCGAN) model. This model 
combines the original image with the augmented image 
generated by DCGAN as input for the identification model. 
The images generated by DCGAN exhibit improved 
consistency and diversity compared to those produced by 
conventional GANs. The accuracy results of the implemented 
model, utilizing GoogLeNet, achieved 94.33% when evaluated 
on the tomato plant dataset from PlantVillage. 

III. MATERIAL AND METHOD 

The proposed solution in this paper is an application that 
runs on a device, allowing users to input images of tomato 
plant leaves and receive predictive results regarding the 
detection of diseases affecting those leaves. In order to 
generate these predictions, a lightweight model is developed, 
prioritizing computational and memory efficiency. The model 
will then be integrated into a mobile application to facilitate the 
identification of diseases on tomato plant leaves. There are 
three main components in this solution: the DCGAN model, 
the classification model, and the device application. The 
research foundation for this paper is based on the work of Wu 
et al. [5] research on DCGAN data augmentation and explores 
the potential of different pre-trained models and transfer 
learning methods. Additionally, it incorporates the transfer 
learning approach from Ahmed et al. [3] and Ahmad et al. [4]. 

A. Dataset 

The initial dataset is processed through the data preparation 
phase, following a similar approach as in Wu et al. [5] study, to 
partition it into training, validation, and test data. The dataset 
employed in this paper consists of tomato plant leaf data 
obtained from PlantVillage. It is divided into ten classes 
representing different types of leaf diseases in tomato plants, 
resulting in a total of 300 instances. Each class contains 240 
training samples and 60 test samples, randomly distributed. 
The DCGAN model is trained using the 240 training samples 
from each class. Subsequently, the DCGAN model expands the 
training dataset to include 1000 instances for each class, 
resulting in 800 training samples and 200 validation samples. 
These augmented samples will be utilized in the training 
process of the classification model. The distribution of data 
quantities per class after the data preparation process is 
presented in Table I. 

TABLE I.  DISTRIBUTION OF CLASSES IN THE DATASET AFTER 
PROCESSING 

Class Label 
Initial 
Data 

DCGAN 
Data 

Train 
Data  

Test Data 

Bacterial Spot 300 760 1000 60 

Early Blight 300 760 1000 60 

Healthy 300 760 1000 60 

Late Blight 300 760 1000 60 

Leaf Mold 300 760 1000 60 

Septoria Leaf 
Spot 

300 760 1000 60 

Target Spot 300 760 1000 60 

Tomato Mosaic 
Virus 

300 760 1000 60 

Two Spotted 
Spider Mites 

300 760 1000 60 

Yellow Leaf Curl 
Virus 

300 760 1000 60 

Total 3000 7600 1000 600 

 

 



B. DCGAN Model 

The DCGAN model is developed to expand the training 
dataset by generating artificial images, thereby increasing its 
size. It consists of two distinct models: the Generator and the 
Discriminator. The Generator is responsible for creating 
artificial images, which are then used to augment the training 
dataset. On the other hand, the Discriminator plays a crucial 
role in the overall training process of the DCGAN model by 
distinguishing between original and generated images. During 
the training process, the DCGAN model undergoes a set 
number of epochs. In each epoch, both the Generator and the 
Discriminator are trained iteratively on batches of the dataset. 
The Generator receives a noise input at each iteration and 
generates artificial images, while the Discriminator takes an 
input image and determines whether it is real or generated. The 
Discriminator's output value is used to calculate the losses for 
both the Generator and the Discriminator. The gradient of each 
model is then multiplied by the model parameters, allowing 
them to be trained and updated. 

The architecture of the DCGAN model used in this paper is 
presented in Fig 1. Within the generator component, a dense 
layer employed to transform the input noise into a more 
complex representation with dimensions of 32x32x256. This is 
followed by multiple deconvolution layers that upscale the 
image to achieve the desired resolution. The inclusion of the 
dense layer with these dimensions enables it to capture 
complex patterns from the initial noise and generate improved 
output. To ensure compatibility during deconvolution 
operations, the input size of each deconvolution layer matches 
the output size of the preceding layer. On the other hand, the 
discriminator model incorporates a convolution layer 
responsible for extracting features from the image being 
evaluated. 

 

Fig. 1. Architecture of the Generator model (top) and Discriminator model 
(bottom). 

C. Classification Model 

The design solution in this paper incorporates architectural 
modification derived from the Ahmed et al. [3]. In this design, 
a pre-trained model is employed as a feature extractor, serving 
as input for additional classification layers. The additional 
classification layer comprises a combination of dense layers, 
batch normalization, and dropouts, as depicted in Fig 2. The 
dense layer, utilizing the ReLu activation function, calculates 
the weights between the nodes in the preceding layer and the 
nodes in the current layer. The batch normalization layer 
normalizes input values, aiming to expedite the training 
process and prevent overfitting of the training data. Meanwhile, 
the dropout layer aids in mitigating overfitting by randomly 
deactivating a small portion of neurons during each training 
iteration. Through experiments conducted using Bayesian 
Optimization on Keras Tuner to identify the model with the 
most optimal parameters, it was determined that the ideal 
number of nodes is 128 and 64, with a dropout rate of 0.2. The 
number of nodes indicates the quantity of units utilized in the 
dense layer, while the dropout rate represents the proportion of 
units randomly deactivated during the training process. 

 

Fig. 2. Classification Layer Architecture. 

Experiments were conducted on pre-trained models 
utilizing diverse base architectures, such as DenseNet121, 
MobileNetV2, ResNet50, and VGG19. Each architecture 
underwent training using the transfer learning technique on an 
initial dataset containing 300 samples for each class. The 
outcomes revealed that the DenseNet121 model achieved the 
highest accuracy rate of 91% compared to other base 
architectures. The VGG19 and MobileNetV2 models 
demonstrated similar accuracy rates of 84.67% and 85% 
respectively. On the other hand, the ResNet50 model exhibited 
the lowest accuracy level among the different base 
architectures, reaching 66.33%. The number of parameters 
served as the primary consideration when selecting the base 



model for implementation in Android applications. This is 
because a lower number of parameters necessitates less 
computation and memory. Among the examined base 
architectures, MobileNetV2 possessed the fewest parameters 
and the smallest model size with around 2.4 million, making it 
the chosen architecture for implementation in Android 
application. Once the chosen base architecture is obtained, 
additional training is conducted using two scenarios during the 
classification model training process. 

In the first scenario, all layers of the pre-trained model are 
initially unfrozen, allowing their weights to be updated 
throughout the training process. This enables the model to 
continuously learn and adapt its weights based on the training 
dataset. However, there are potential drawbacks to this 
approach. One is the risk of overfitting, where the model 
becomes too specialized to the training data and struggles to 
generalize to unseen data. Additionally, since all layers' 
weights are updated, the training time required may be longer. 

In the second scenario, the weights of the pre-trained 
model's layers are frozen at the beginning of the training 
process, except for the classification layer. This means that the 
pre-trained model serves as an initial feature extractor, while 
the classification layer is updated to learn specific features 
relevant to the classification task. By freezing the pre-trained 
model's layers, the previously learned features at lower levels 
are retained, while the classification layer can adapt its weights 
to the new dataset. This approach is beneficial when the dataset 
is limited or when leveraging existing knowledge from a pre-
trained model for a particular classification task. Consequently, 
the classification layer progressively learns the feature 
representation specific to the classification task. After several 
epochs, certain layers in the pre-trained model can be unfrozen 
to allow for updates and the learning of additional features at 
lower levels. 

D. Android Application 

During this phase, development of an Android based device 
application is undertaken, utilizing the previously constructed 
classification model. The resulting model is initially converted 
into a readable format, which is subsequently integrated into 
the application. The application allows users to input images 
either from the camera or the gallery. Subsequently, it displays 
the classification results based on the provided image. The 
application consists of various pages that serve different 
functionalities, including the homepage, plant selection page, 
camera page, gallery page, and classification results page. The 
specific functional requirements of the application can be 
found in Table II. 

TABLE II.  APPLICATION FUNCTIONAL REQUIREMENTS 

ID Description 
FR-001 The application can select the type of plant. 

FR-002 The application can capture images from the camera. 

FR-003 The application can retrieve images from the gallery. 

FR-004 The application can display the classification results of 
diseases on the selected plant from the camera. 

FR-005 The application can display the classification results of 
diseases on the selected plant from the gallery. 

IV. EXPERIMENT AND RESULT 

A. Experimental Setup 

The DCGAN model and classification model were 
implemented using the TensorFlow and Keras libraries in 
Python, while the mobile applications were implemented using 
the Flutter library in the Dart programming language. The 
implementation and testing environments for the DCGAN 
model and classification model are specified in Table III. 
Likewise, the implementation and testing environments for the 
device applications are outlined in Table IV. 

TABLE III.  ENVIRONMENT SPECIFICATION FOR IMPLEMENTATION AND 
TESTING OF DCGAN MODEL AND CLASSIFICATION MODEL 

Hardware Specification 
CPU Intel Xeon E5-2698 v3 (16 core, Haswell-EP) 

GPU Nvidia Tesla V100 32 GB RAM 

Software Specification 
Operating System Ubuntu 20.04.2 LTS 

CUDA CUDA Toolkit 11.8, cuDNN SDK 8.6.0 

TensorFlow TensorFlow 2.12.0 

TABLE IV.  ENVIRONMENT SPECIFICATION FOR IMPLEMENTATION AND 
TESTING OF ANDROID APPLICATION 

Hardware Specification 
CPU Qualcomm SDM730 Snapdragon 730 (8 core) 

GPU Adreno 618 

Memory 8 GB RAM 

Software Specification 
Operating System Android 13 

Flutter Flutter 3.7.12 

 

B. Evaluation Metrics 

In this paper, the evaluation process includes testing both 
the model and the android application. Model testing is 
conducted to identify the optimal model for implementation in 
the android application. Similarly, android application testing is 
performed to ensure the proper functionality of the application, 
aligning with the specified test scenarios. The classification 
model was tested by evaluating its accuracy, precision, recall, 
and f1-score. Accuracy measures the model's ability to 
correctly classify tomato plant leaf diseases and serves as the 
primary metric for evaluating its performance. Precision 
indicates how well the model classifies positive samples while 
minimizing false positive errors. Recall measures the model's 
ability to correctly classify a class and minimize false negative 
errors. The F1-score provides an overall view of the balance 
between precision and recall. The model with the highest 
accuracy, considering precision, recall, and f1-score, was 
selected. Android application testing followed the functionality 
testing method, where test cases were executed on the 
application to achieve the goals specified in Table II. 
Functionality testing ensures that each test case can be 
successfully executed and evaluated. 



C. Experiment on Scenario 1 

The experiment was conducted on the model trained under 
scenario 1, which involved training the model with the pre-
trained model layer unfrozen from the beginning of the training 
process. The evaluation results for the model trained with the 
original data set, without any augmentation, can be observed in 
Table V. Similarly, the evaluation results for the model trained 
with the original data set, augmented using DCGAN, can be 
found in Table VI. The following parameters were employed 
during the training of the classification model for scenario 1: 

1) The batches were set to 16, 32, and 64. 

2) The initial number of epochs consisted of 30 epochs, early 
stop if there was no validation loss improvement within 10 
epochs. 

3) Optimizer Adam with a learning rate of 0.0001, a multiplier 
factor of 0.1 applied if there was no improvement in 
validation accuracy within 5 epochs. 

TABLE V.  MODEL EXPERIMENT FOR SCENARIO 1 ON THE INITIAL DATA 
SET 

Batch Size Accuracy 
Precision 
(Average) 

Recall 
(Average) 

F1-Score 
(Average) 

16 0.9733 0.9737     0.9733     0.9733 

32 0.9533 0.9541     0.9533     0.9529 

64 0.9633 0.9638     0.9633     0.9632 

TABLE VI.  MODEL EXPERIMENT FOR SCENARIO 1 ON THE INITIAL DATA 
SET WITH DCGAN AUGMENTATION 

Batch 
Size 

DCGAN 
Batch 

Accuracy 
Precision 
(Average) 

Recall 
(Average) 

F1-Score 
(Average) 

16 32 0.9717 0.9718     0.9717     0.9716 

64 0.9783 0.9786     0.9783     0.9781 

32 32 0.9767 0.9771     0.9767     0.9766 

64 0.9750 0.9761     0.9750     0.9748 

64 32 0.9667 0.9671     0.9667     0.9667 

64 0.9550 0.9550     0.9550     0.9549 

 

The model trained on the initial dataset without 
augmentation achieved a high accuracy rate of 97.37% in 
scenario 1. With DCGAN augmentation, the model achieved a 
slightly higher accuracy of 97.83%. Augmentation increased 
the data set size and improved the model's adaptability to 
unseen variations. Both models demonstrated good 
performance with average precision, recall, and f1-score 
exceeding 90% for each class in the test data. 

D. Experiment on Scenario 2 

The experiment was conducted on a model trained for 
scenario 2, which involved freezing the pre-trained model layer 
at the start of the training process and gradually activating it 
layer by layer. The test outcomes for the model trained using 
the initial data set without augmentation are presented in Table 
VII. Additionally, the test results for the model trained with the 
DCGAN augmentation data set can be observed in Table VIII. 
The following parameters were employed during the training of 
the classification model for scenario 2: 

1) The batches were set to 16, 32, and 64. 

2) The initial number of epochs consisted of 30 epochs with 
all pre-trained model layers frozen, followed by 15 epochs 
with some of the pre-trained model layers activated, and 
finally 5 epochs with all pre-trained model layers 
activated. 

3) Optimizer Adam with a learning rate of 0.0001, a multiplier 
factor of 0.1 applied if there was no improvement in 
validation accuracy within 5 epochs. 

TABLE VII.  MODEL EXPERIMENT FOR SCENARIO 2 ON THE INITIAL DATA 

Batch Size Accuracy 
Precision 
(Average) 

Recall 
(Average) 

F1-Score 
(Average) 

16 0.8917 0.8919     0.8917     0.8912 

32 0.8750 0.8778     0.8750     0.8747 

64 0.8800 0.8822     0.8800     0.8793 

TABLE VIII.  MODEL EXPERIMENT FOR SCENARIO 2 ON THE INITIAL DATA 
SET WITH DCGAN AUGMENTATION 

Batch 
Size 

DCGAN 
Batch 

Accuracy 
Precision 
(Average) 

Recall 
(Average) 

F1-Score 
(Average) 

16 32 0.8967 0.8967     0.8967     0.8961 

64 0.9233 0.9350     0.9233     0.9241 

32 32 0.9367 0.9381     0.9367     0.9362 

64 0.9033 0.9046     0.9033     0.9034 

64 32 0.9533 0.9575     0.9533     0.9528 

64 0.8933 0.8933     0.8933     0.8929 

 

The model trained on the initial dataset without 
augmentation achieved 89.17% accuracy in scenario 2, while 
the model trained with DCGAN augmentation reached 95.33% 
accuracy. Adding DCGAN augmentation significantly 
improved the model's accuracy. Average precision, recall, and 
f1-score exceeded 80% for each class in the test data, 
indicating strong predictive performance. 

E. Experiment on Android Application 

Based on the experiment outcomes, the implemented 
Android application successfully fulfills several tested 
functionalities. The features including plant type selection, 
camera capture, and gallery image capture work as intended. 
However, there are limitations in the application's ability to 
accurately classify diseases on tomato plant leaves. It performs 
well on test data from the PlantVillage dataset, but struggles 
with out-of-distribution (OOD) data. OOD refers to situations 
where a model trained on a specific dataset fails to generalize 
to data from a different distribution not encountered during 
training. When faced with significantly different characteristics 
and unseen data, the transfer learning-trained model may 
produce inaccurate classification results. Further research is 
necessary to improve the model's capability to address OOD 
problems and enhance its generalization abilities. The Android 
application user interface can be seen in Fig 3. 

 

 



  

 
Fig. 3. Android Application User Interface for Plant Disease Detection. 

 

V. CONCLUSION 

This paper focuses on implementing a tomato plant leaf 
disease classification model in Android based application. 
The model is trained using the transfer learning method and 
DCGAN data augmentation technique. Through 
experimentation, several conclusions have been drawn from 
the preparation of this project. Firstly, the MobileNetV2 
architecture is chosen for its smaller size and fewer 
parameters compared to other architectures. The trained 
model achieves a highest accuracy rate of 97.83%. 
Additionally, incorporating DCGAN augmentation data 
improves the model's accuracy. In scenario 1, the highest 
accuracy increases from 97.33% to 97.83%, while in 
scenario 2, it rises from 89.17% to 95.33%. Lastly, the 
successfully trained MobileNetV2 model is integrated into 
an Android application, allowing users to select the plant 
type, capture images from the camera or gallery, and obtain 
disease classification results. However, it should be noted 
that there are limitations to the application's consistency 
when classifying images outside the PlantVillage dataset. 

There are two suggestions that can be implemented. 
Firstly, consider employing a similarity-based approach 
instead of classification to detect diseases on tomato plant 
leaves. This approach is less affected by data variations and 

does not require prior class information. Secondly, assess the 
quality of images generated by DCGAN using the Frechet 
Inception Distance (FID) method. This evaluation helps 
select high-quality DCGAN images that can serve as 
valuable additional data. Implementing these suggestions 
will improve the project's robustness and overall 
performance. 
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