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Abstract—Traffic visualization in autonomous vehicles is 

important to improve the passengers’ sense of safety. This paper 

presents a workflow and implementation that can reconstruct 

traffic scenes using only a single image from a single monocular 

camera installed in a vehicle. The reconstruction process is also 

applied between frames utilizing Simple Online and Realtime 

Tracking (SORT) framework to improve vehicle movement 

smoothness. Vehicle shape reconstruction is carried out using 

gaussian process latent variable model (GPLVM) to embed 3D 

model shapes to latent variable space. Multisegmented Hough 

transform is used to detect lane marking resulting in line equation 

which approximate the lane’s shape. Finally, both the vehicle and 

road shape information are used to visualize the traffic scenes, 

although real-time performance is not achieved yet.  

Keywords—traffic scenes reconstruction; autonomous vehicle; 

gplvm; SORT; GPLVM;  

I.  INTRODUCTION 

Autonomous vehicle (AV) is a term for vehicle equipped 
with driving automation system [1]. According to National 
Highway Traffic Association, most traffic accidents are caused 
by human error [2]. Therefore, one of potential benefits of 
autonomous vehicles is reduced number of traffic accidents [3]. 
However, many people are still afraid of using autonomous 
vehicles [4] so it will potentially prevent the widespread usage 
of autonomous vehicles.  

Autonomous vehicles need to understand their surroundings 
to be able to make decisions. That understanding is not only 
important for themselves, but also for the passengers riding 
them. Passengers feel safer inside autonomous vehicles that can 
visualize their surroundings [4]. Therefore, traffic scenes 
visualization is an important aspect of autonomous vehicles. 

In this paper, a three-dimensional traffic scenes 
reconstruction from single monocular camera workflow and 
implementation is presented. The contribution of this paper is 
modular architecture that integrates vehicles and road 
reconstruction to form a 3D visualization. The implementation 
is suitable for autonomous vehicles since it only requires single 
dashboard-view monocular for reconstruction, although real-
time processing time is not achieved yet. 

II. LITERATURE REVIEW 

Tesla car manufacturer is well known for its electric 

autonomous driving car and its traffic visualization. One of its 

car models, Tesla Y [5], utilizes six cameras and sensors to 

sense its surroundings. It then visualizes the result to the 

passengers, being able to detect other vehicles, traffic lights, 

pedestrians, etc. However, since it is a proprietary system, the 

working mechanism is not publicly available. 

Another system that can visualize traffic scenes is in [6]. It 

uses several monocular surveillance cameras from various 

angles to reconstruct vehicle shapes and the traffic map. The 

system consists of three subsystems: tracking, reconstruction, 

and replay. Vehicle shape reconstruction is carried out using 

shape-from-silhouette and 3D CAD model fitting. However, it 

is not suitable for autonomous vehicles case since it requires 

cameras from various angles. 

One research that is suitable for autonomous vehicles is in 

[7]. It only uses a single monocular camera from inside a 

vehicle. A vehicle in an image is segmented between 

foreground and background and is estimated its orientation 

angle using two convolutional neural networks (CNN). The 

results are then reconstructed using gaussian process latent 

variable model (GPLVM). However, it only reconstructs the 

shape, position, and orientation of the vehicles; other aspects of 

the traffic are not reconstructed. The traffic reconstruction in 

this paper is inspired by this approach, but with an additional 

aspect of road reconstruction. 

III. PROBLEM AND SOLUTION ANALYSIS 

Two of many aspects important in traffic scene 
understanding are surrounding vehicles and surrounding road. 
By knowing the position of vehicles around ego vehicle, the ego 
vehicle can avoid potential crash with another vehicle. By 
knowing the shape of the road, the ego vehicle can detect and 
react to lane change and know where it can drive (drivable area). 

 



The proposed architecture is shown in Fig. 1. There are two 
parallel flows that will finally be merged to compose final 
visualization: surrounding vehicles understanding and 
surrounding road understanding. First, vehicles are detected 
using an object detector. Various object detectors can be used, 
but faster inference time is preferred since time is critical for 
reconstruction in an autonomous vehicle. In this paper, YOLOv9 
[8] is used. Since YOLOv9 detects objects of various classes, 
only objects with “car” class are processed further. 

 

Fig. 1. Traffic scenes reconstruction activity diagram 

Then, each detected vehicle’s orientation angle is estimated 
using a deep learning model. 3D Deepbox [9] is used as vehicle 
orientation estimator. Since generally vehicles on a road will 
have approximately zero roll and pitch, only yaw angle (rotation 
around y axis) is estimated. This stage adds additional yaw data 
to the bounding box of each vehicle produced by YOLOv9, from 
(x, y, w, h) to (x, y, w, h yaw), where x and y is the horizontal and 
vertical position of the vehicle from top left corner of an image, 
and w and h is the width and height of the vehicle’s bounding 
box. 

Bounding boxes are in 2D, so depth information needs to be 
estimated for 3D reconstruction to work. The depth is estimated 
using a pinhole camera model. A vehicle with height s and at 
distance d will be detected in image as a bounding box with h 

height. Given a camera constant zc, a vehicle’s distance from 
camera can be estimated using equation (1). Note that s can be 
estimated as the average height of cars, for example 1.6 meter. 

𝑑 = 𝑠 × 𝑧𝑐 ×
1

ℎ
(1) 

Vehicle detections between frames are not associated yet, so 
a tracking algorithm is applied. For tracking, SORT [10] 
tracking framework is used, which is based on Kalman Filter and 

Hungarian algorithm. Each bounding box detected in a frame is 
associated with a detection in previous frame, or a new tracked 
vehicle is added if no association exists for that detection. 
Constant velocity model is adopted and the state vector for 3D 
tracking is in equation (2), where scale and ratio is the area and 
aspect ratio of the bounding box respectively, and v is the speed 
of each component.  

𝒙 = [𝑥  𝑦  𝑧  𝑦𝑎𝑤  𝑠𝑐𝑎𝑙𝑒  𝑟𝑎𝑡𝑖𝑜  𝑣𝑥  𝑣𝑦   𝑣𝑧  𝑣𝑦𝑎𝑤   𝑣𝑠𝑐𝑎𝑙𝑒] (2) 

Road understanding consists of three steps: preprocessing, 
line detection using multi-segment Hough transform, and 
tracking. Road is detected based on its marking. In the 
preprocessing step, the traffic image is cropped so that only the 
region of interest (ROI) remains. The image is then transformed 
to bird’s eye view (BEV) using projective transformation 
(homography) to remove the perspective effect (i.e. farther an 
object, smaller the size). The image is further converted to HSV 
to extract the road marking based on its color (yellow or white). 
Finally, the edges of the image are detected using Canny edge 
detection operator, resulting in binary image (1 if a pixel is part 
of edge, 0 if not). 

After the image has been processed, straight lines in the 
processed binary image are detected using multi-segment Hough 
transform to detect road lanes. Since the shape of the road may 
curve (not perfectly straight), ordinary line detection is not 
sufficient. Therefore, the image is divided into horizontal 
segments (Fig. 2) to approximate curved road. A Hough 
transform is applied to each of these segments to detect lines. 
Finally, lines located in proximity are grouped together to 
remove line noises and to connect lines between two adjacent 
segments. Lanes are represented by their endpoint position on 
each segment. 

 
Fig. 2. Multi-segment hough transform 

The road lanes are then tracked using SORT [10] tracking 
framework. Just like vehicle tracking, a constant velocity model 
is used. The state vector is defined in equation (3). Each pi denote 
the endpoint position on segment i and vpi denote the 
corresponding velocity. Lanes between frames are associated 
based on their endpoints’ proximity. 



𝒙 = [𝑝1 . . . 𝑝𝑛 𝑣𝑝1 . . . 𝑣𝑝𝑛] (3) 

Road lanes can be simply reconstructed based on the 
coordinates of its endpoints, while vehicle shapes need a more 
sophisticated reconstruction method. A good shape 
reconstruction is one which combines both visual information 
and shape priors. Therefore, gaussian process latent variable 
model (GPLVM) based shape reconstruction is used in this 
paper. 

GPLVM is a dimensionality reduction with nonlinear 
property. The idea behind reconstruction using it is to embed 
high dimensional 3D shapes to low dimensional latent space. 
Therefore, to find the shape of a vehicle, only search in low 
dimensional latent space is needed. In [11], 3D shape 
reconstruction is carried out by converting training 3D shapes to 
signed distance function (SDF) first. Then, 3D DCT (discrete 
cosine transform) to compress the SDF is applied before 
GPLVM training is carried out. The original shape can be 
approximately reconstructed by doing the inverse of these 
transformations from latent variable, i.e. applying inverse of 
GPLVM to a latent coordinate, then inverse of 3D DCT, and 
finally marching cube algorithm to form the mesh. This 
approach is used in this paper. 

Shape reconstruction is an optimization process to find the 
best latent variable that matches the input image. First, the input 
image is segmented between foreground vehicle and 
background. Then, grid search is carried out in this paper to find 
the best latent variable which when reconstructed, the resulting 
projection best matches the segmented input image. After the 
vehicles’ shapes are known based on this optimization process, 
the final piece of 3D traffic visualization is solved. Based on the 
position, orientation, and shape of the vehicles and road, they 
can be arranged in a frame to form three-dimensional traffic 
scenes reconstruction. 

IV. IMPLEMENTATION 

The program is implemented using Python 3.10. Vehicle 
detection is carried out using the YOLOv9c pretrained model in 
Ultralytics library. Vehicle orientation estimation is carried out 
using 3D Deepbox pretrained model [9]. Tracking is 
implemented using SORT [10] tracking framework. SORT is 
designed to track 2D bounding box, so it is modified the matrices 
and vectors to suit the required 3D tracking (see section III). 

The lane detection is implemented using OpenCV. The 
GPLVM training is implemented using fmin_cg from scipy, 
with RBF (radial basis function) kernel. Since GPLVM is 
sensitive to local optima, PCA (principal component analysis) is 
utilized to initialize the latent variables, using scikit-learn 
library.  

Vehicle models for GPLVM training used in this paper 
consist of five 3D shapes: jeep, sedan, pickup, SUV, and 
hatchback. The 3D shapes and resulting latent space are shown 
in Fig. 3. To form smooth reconstructed shape from a latent 
variable, marching cube algorithm in skimage library is used. 

 

 

 

Fig. 3. Training 3D shapes (above) and resulting latent space 

(below) 

V. TESTING 

 Testing is carried out using several dashcam videos from the 
internet. The reconstructed traffic frames can be examined in 
Fig. 4. Generally, traffic scenes can be reconstructed well from 
the input image. However, for vehicles located far from the 
camera, the reconstructed shape and orientation is not accurate 
due to its small size in the image hence not enough information 
to accurately reconstruct it. For roads with bright/white color, 
the lane detection is confused since the road color is like the lane 
marking color, resulting in many false positive. In addition, the 
road detection does not work on roads without marking since it 
is based on the lane marking. 

 Execution time is calculated to measure its real-time 
performance and the results are shown in Error! Reference 
source not found.. The execution time measurement is 
performed on machine with CPU Intel i5-1035G1 and GPU 
NVIDIA GeForce MX330. According to the measurements, the 
implementation has not reached real-time processing time yet. 
Particularly, the shape reconstruction takes a long time to 
process. Therefore, more optimization is needed so that it can be 
suitable for autonomous vehicles which need real-time 
processing time. 

 

 

 



Table 1. Execution time per step 

Step Execution time 

Vehicle detection and 
orientation estimation 

120 ms per frame 

Vehicle tracking 20 ms per frame 

Road detection and tracking 220 ms per frame 

Vehicle shape reconstruction 3,1 second per frame 

VI. CONCLUSION 

 A workflow and implementation of 3D traffic scenes 
reconstruction is developed in this paper. The program can 
reconstruct the position, orientation, and shape of the vehicles in 
vicinity of ego vehicle. The road and its lanes are also detected 
based on its road marking and then reconstructed along with the 
vehicles. However, the program has not achieved real-time 
processing time yet, so it is not suitable for autonomous vehicle 
applications yet. 

The architecture of the reconstruction program is modular so 
various of its components can be replaced with better methods 
or models in the future. An additional model for detection is 
needed since currently road detection is based on road marking 
and not all roads have marking. The program can be further 
improved by combining it with GPS and map to prevent failed 
road detection in case of occlusion due to traffic. 
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Fig. 4. Some examples of reconstructed traffic scene

 


