
Implementation of AES Encryption Algorithm with
Chaos-Based Dynamic Block Key on TLS Protocol

Bayu Samudra
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13520128@std.stei.itb.ac.id

Rinaldi Munir
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

rinaldi@informatika.org

Abstract—Nowadays, the Cryptography world is developing
very rapidly. One developmentin Cryptography is dynamic keys
ciphers. There are some studies about this topic, but so far,
there is no protocol that implements this cipher in practice. This
paper proposes a dynamic block key cipher that can be used
in the TLS protocol. The proposed cipher is implemented in
AES encryption algorithm with Sine-Henon map-based CSPRNG
as the key generator. Sine-Henon map is used because it can
preserve forward secrecy. The proposed cipher also implemented
in the TLSv1.2. The evaluation of the proposed scheme is done
by doing several experiments and comparing the cipher with the
original AES encryption algorithm. The result of the evaluation
shows that the proposed scheme has similar quality with the
original AES encryption algorithm based on NIST Statistical Test
Suite, MAD Analysis, and CCA Analysis. The proposed scheme
also can handle replay and tampering attack.

Index Terms—Sine-Henon Map, TLS, AES, Chaos System,
Dynamic Block Cipher

I. INTRODUCTION

Nowadays, Information security is one of the critical aspects
in the information system. Information security is needed to
protect data from unauthorized access. One of the methods to
protect the data is by encryption data. As [6], there are two
types of encryption, symmetric and asymmetric encryption.
Symmetric encryption is a method to encrypt and decrypt data
using the same key. On the other hand, asymmetric encryption
is a method to encrypt and decrypt the data with different
keys. Based on [4], asymmetric encryption is more secure
than symmetric encryption. However, asymmetric encryption
is slower than symmetric encryption.

Symmetric encryption has advantages in terms of speed.
Nowadays, symmetric encryption is developed rapidly. One
encryption scheme that is currently developed is dynamic
symmetric encryption. Dynamic encryption is a method to
change key dynamically when do encryption. This method
may increase the confidentiality of data because this method
can hide the statistical pattern of the ciphertext. As [6], this
scheme applies the confusion principle from Shannon.

TLS protocol is one of communication protocol that can
be use to preserve the confidentiality and the integrity of
data. This protocol can be used to transmit data securely
from one host to another host. The data that transmitted using
TLS protocol is encrypted using symmetric encryption. There

is many symmetric encryption algorithm that can be used
in TLS protocol, but there is not any implementation that
use dynamic encryption in TLS protocol. In this paper, we
propose a dynamic encryption scheme that can be used in
TLS protocol. We implement the dynamic encryption scheme
in AES encryption algorithm. We use chaos-based dynamic
block key to change the key dynamically. We evaluate the
functionality and robustness of the proposed scheme by doing
several experiments and comparing the cipher with original
AES encryption algorithm.

II. RELATED WORKS

There are several design of dynamic encryption. As [10], the
dynamic encryption scheme that they proposed is by changing
the internal structure of AES algorithm in one round. This
method changes the S-Box, irreducable polynomial, and affine
constant in AES algorithm. The disadvantage of this method
is the complexity of the implementation. Besides that, AES
encryption cannot be optimized because the internal structure
of AES algorithm is changed.

Another dynamic encryption scheme is proposed by [1]. In
their paper that they proposed a dynamic encryption scheme by
combining AES encryption with OTP Algoritm. The source of
OTP is generated using Linear Congruential Generator (LCG).
The salt of LCG is appended to the plaintext. After that, the
plaintext is encrypted using AES encryption algorithm. The
disadvantage of this method is the the security of the scheme is
not guaranteed because the source of OTP is generated using
LCG. LCG can be predicted by the attacker easily, so the
attacker can predict the OTP.

Lastly, dynamic encryption scheme is proposed by [5]. In
their paper, they proposed a dynamic encryption scheme by
changing the key dynamically. The key is generated based on
the chaos-based CSPRNG. The chaos system that they used
in this paper is Henon Map. The process of generating the
key is by iterating the Henon Map. The result of the Henon
Map is converted to integer. This integer is used as the key of
AES encryption algorithm. The disadvantage of this method is
henon map is not preserving forward secrecy. The attacker can
predict the key by knowing two consecutive key. Therefore,
they can generate the key and decrypt the ciphertext.

As [5], they proposed a method to sync the chaos system
between participants. The method is by transferring some
correction parameter to the client. This process needs some
RTT to transfer the correction parameter. The disadvantage of
this method is the latency of the communication is increased.
Besides that, the security of the scheme is not guaranteed
because the attacker can predict the key by knowing the
correction parameter.

III. PROPOSED CIPHER

To solve the known problem, we propose the dynamic
encryption scheme and the implementation of TLS protocol.

A. Chaos System

Chaos system that we choose in this paper is developed
based on [5] and [8] methods. Instead of using Henon-Map,
we use Sine-Henon Map to generate the key. The Sine-Henon
Map is defined as Equation 1.

Xi+1 = mod((1− a ·X2
i + Yi) + (

µ

4
· sin (π ·Xi)) · 100, 1)

Yi+1 = mod((b ·Xi + Zi) · 100, 1)

Zi+1 =
µ

4
· sin (π · Zi)

(1)
This equation is built by combining the Henon map and

Sine map. This combining method is based on method that
proposed by [8]. The combination of this method can preserve
the forward secrecy. The reason of this claim is the attacker
should have parameter that is unknown to attacker. The pa-
rameter is Z. When the attacker know the value of X , they
cannot predict the value of Z. Therefore, the attacker cannot
predict the next key.

The modulo operation is used to make the value of X and
Y in the range of [0, 1]. This technique can make us easier to
convert the value of X , Y , Z to integer because we exactly
sure the range of generated value.

Based on [7], The multiplier 100 in Equation 1 is used
to make the distribution of the generated value uniform. This
differences can be seen in the histogram of the generated value.
The histogram of the generated value is shown in Figure 1.

Fig. 1. Histogram of Sine-Henon Map (a) without multiplier 100 and (b)
with multiplier 100

The value of parameter that we used in this paper is a = 1.4,
b = 0.3, and µ = 3.75. The reference value of a and b based

on experiments by [5]. The value of µ is choosen based on
recommendation by [8].

B. Dynamic Encryption Scheme

The dynamic encryption scheme that we proposed is by
changing the key dynamically. The key is generated based on
the chaos-based CSPRNG. The chaos system that we use is
Sine-Henon Map. Based on [6], chaos system can be used
to generate securely. The method to generate the key is by
generating a state of the chaos system. In this case, the state is
the value of X , Y , and Z. Next, the value of X is converted
to integer. Process of converting this value can be done by
using Equation 2.

X ′ = X · 2N (2)

In this case, N is the number of bits that we want to
generate. The value of X ′ is the result of the conversion. This
value is used to compose the key. Value of X is the number
that is generated by the chaos system. In our implementation,
we use 256-bit key. We compose the key by generating 32
bits of X ′ 8 times. The result of this process is the key that
is used to encrypt the plaintext.

The encryption process is done by using AES-256 encryp-
tion algorithm. We use counter mode to encrypt the plaintext.
Counter mode is choosen because this mode can give us
flexibility to encrypt the plaintext in any size. Besides that,
to increase the randomness of stream key that is generated by
counter mode, we also generate the counter by using Sine-
Henon Map. We convert the value of X to integer by using
Equation 2 with N = 16. Figure 2 shows the process of
encryption.

Fig. 2. Encryption Process

Based on that figure, the cipher needs initial value IV as
the initial counter and K1 as the initial key. The value of

IV will be a generator of the counter by expanding the value
using Sine-Henon Map-based CSPRNG. The value of K1 is
used as the initial key. The value of Kn is generated by using
Sine-Henon Map-based CSPRNG based on Equation 1. The
value of Kn is used as the key of AES encryption algorithm
at block n.

IV. PROPOSED TLS PROTOCOL

In implementation, we follow the TLSv1.2 specification as
defined in [3]. Overall, TLS protocol consists of two main
protocols, Handshake Protocol and Record Protocol. Hand-
shake Protocol is used to establish the connection between
the client and the server. In this protocol, we also establish
the chaos system between participiants. Record Protocol is
used to transmit the data securely. In this protocol, we use the
dynamic encryption scheme that we proposed.

A. Handshake Protocol

As [3], Handshake protocol is used to establish the con-
nection between the client and the server. We generate keys
for the encryption and do the peer verification in this phase.
In nutshell, the process of Handshake Protocol is shown in
Figure 3.

Fig. 3. TLS Protocol (Source [9])

In our implementation, we follow the process of Handshake
Protocol as defined in [3]. We use ECDH key exchange to
establish the connection. This method is choosen because this
method is more secure than RSA key exchange. Result of the
ECDH key exchange is premaster key. This key is used to

generate the master key. The master key is used to generate
the key for encryption and decryption. This process is shown
in Figure 4.

Fig. 4. Key Generation

Based on that figure, we expand master key using PRF
function that defined in [3]. The PRF function that we used is
HMAC-SHA256. Equation 3 shows the PRF function.

PRF(K,L, S) = Phash(K,L||S) (3)

In Equation 3, K is the master key. L is the label that we
used to generate. The label that we use is shown at Figure 4.
S is the seed. The P function is defined as Equation 4.

Phash(K,S) = HMAChash(K,A(1) + S) ∥
HMAChash(K,A(2) + S) ∥ . . .

(4)

In Equation 4, A is the function that is used to expand
the key. We generate the key until the length that we need.
Function A is defined as Equation 5.

A(0) = S
A(i) = HMAChash(K,A(i− 1))

(5)

Based Figure 4, first we should generate premaster key. This
premaster key is generated by using ECDH key exchange.
After that, we generate the master key by using PRF function.
The label that we use is ”master secret”. The seed that we
use is the premaster key. The result of the PRF function is
the master key. This master key is used to generate the keys
for cipher and HMAC. To generate the key for cipher, we use
label ”key expansion” and seed based on the master key. The
result of the PRF function is the key for cipher and image as
shown by Figure 4.

After we expand the master key, we should convert the
encryption key to chaos system. The process of converting
the key is shown in Figure 5.

To convert the key to chaos system, we devide 96-byte
encryption key into 3 parts. Each part is 32-byte. We convert
each part to integer by using Equation 2. The result of this
process is the value of X , Y , and Z. This value is used as the
initial value of the chaos system. To generate initial counter,

Fig. 5. Converting Key to Chaos System

we also devide 96-byte initial counter into 3 parts. Each part
is 32-byte. We convert each part to integer by using Equation
2. The result of this process is the value of X , Y , and Z.
This value is used as the initial value of the chaos system
to generate the counter. MAC key is not converted to chaos
system because it only use to generate the MAC of plaintext.

In this protocol, we generate premaster key by using ECDH
key exchange. We use secp256r1 curve to do ECDH
operation. One of the reason that we use this curve is this
curve is standardized by NIST. This curve also has small key
size, that is 256-bit. Besides that, this curve is supported by
most of the library and TLS protocol.

In this protocol, we also verify the server using pinned
certificate. The certificate that we use is self-signed certificate.
The public key of the certificate is used to verify the signature
of the server. The public key is pinned in the client. The client
should verify the signature of the server before sending the
data. Signature is used to protect ECDH parameter, client hello
random, and server hello random. When the signature is not
valid, the client should terminate the connection immediately.

B. Record Protocol

Record protocol is used to transimit encrypted data. In this
protocol, we use encryption algorithm that we proposed. The
frame generation is done by dividing the plaintext into sev-
eral blocks. Each block is encrypted by proposed encryption
algorithm. The process of encryption is shown in Figure 6.

Based on that figure, we save the initial value of the chaos
system to generate the key. This initial value should be kept
until the frame successfully generated. After that, the plaintext
MAC is generated by using HMAC-SHA256. As defined in
[3], The formula of MAC is shown in Equation 6.

H = HMAC(key, frame number ||
frame.type ||
frame.version ||
frame.length ||
frame.plaintext
)

(6)

In Equation 6, key is the MAC key that we have generated
in handshake. frame number is the number of frame that is
currently generated. frame.type is the type of frame. For data
transmission, the value of type that used is 33 in decimal.
frame.version is the version of the frame. We used value
0x03 0x03 as defined in RFC TLSv1.2. frame.length is the
length of the plaintext. frame.plaintext is the plaintext of the
frame. The result of the HMAC function is the MAC of the
plaintext. This MAC is appended to the plaintext. We do not
use compression in this protocol. The reason is for simplicity
when analyzing the ciphertext.

Fig. 6. Record Protocol

After we generate the MAC, we encrypt the plaintext and
the MAC using the encryption algorithm that we proposed.
The cipher generates new counter and key for each block. The
counter is generated by using Sine-Henon Map. We only use
parameter X of state to be converted as integer. Conversion
is done by using Equation 2. The process continue until the
plaintext is fully encrypted. The result of the encryption is the
ciphertext.

After we generate the ciphertext, we should compile the
frame. The frame is compiled by appending the ciphertext to
the frame based on Record Protocol structure. The frame is
shown in Figure 7.

Fig. 7. TLS Frame

In this frame, the first byte is the type of the frame. The
type of the frame that we used is 33 in decimal. This value is
used to tell that we use TLSv1.2. The second and third byte
is the version of the frame. We used value 0x03 0x03 as
defined in RFC TLSv1.2. The next blocj is the length of the

frame. The length of the frame is the length of the ciphertext.
The rest of the frame is the ciphertext. The frame is sent to
the peer.

When peer receive the frame, they should decompile the
frame and decrypt the ciphertext. The process of decryption
is shown in Figure 8.

Fig. 8. Record Protocol Decryption

In Figure 8, the peer should save the initial value of the
chaos system to generate the key. This initial value should
be kept until the frame successfully decrypted. After that,
peer should decrypt the ciphertext by using the encryption
algorithm that we proposed. The key rotation is done every
block. The counter is generated by using Sine-Henon Map.
The process continue until the ciphertext is fully decrypted.
When the decryption process is failed, the peer should recover
the initial value of the counter and the key. After all ciphertext
is decrypted, the peer should verify the MAC of the plaintext
based on formula at Equation 6. When the MAC is not valid,
the peer should recover the initial value of the counter and the
key. When all process is success, the data will be passed to
the application layer.

V. IMPLEMENTATION

We implement our proposed scheme in Python language.
We build a python library and simple file server to demostrate

our scheme. Overall, our implementation is based on compo-
nent diagram at Figure 9.

This library consists of several components. The first com-
ponent is the main module. This module is used as entry
point for simple file server and echo server. This module is
used for testing purposes only. In this library, there is important
modules, these are data, conn, and crypto module.

Fig. 9. Component Diagram

Module data is responsible for representing data in TLS
protocol. This module implements data structure that defined
in [3] and [2]. In other hand, module conn is responsible
to establish the connection between client and server. This
module implements TLS protocol and TCP for transport layer
of TLS. This module also implement connection using UNIX
socket. This feature will be used for scenario testing. This
module also responsible for handing handshake and sending
encrypted data. Lastly, module crypto is the implementation
of cipher that we proposed. This module implements the
encryption and decryption process of the data. This module
also implements the chaos system that we used in the cipher.

VI. TESTING

This section will discuss the testing that we have done to
evaluate the functionality and security of the proposed scheme.
We evaluate the functionality of the proposed scheme by
doing several scenario related to functionality and attack. We
evaluate the security of the proposed scheme by comparing
the cipher with original AES encryption algorithm. We are
comparing the result based on NIST Statistical Test Suite,
MAD Analysis, adn CCA Analysis.

A. Cipher Testing

We evaluate the security of the proposed scheme by com-
paring the cipher with original AES encryption algorithm. We
compare with counter mode in dynamic block and static block
cipher. We use NIST Statistical Test Suite, MAD Analysis, and
CCA Analysis to evaluate the security of the proposed scheme.
Confidence level that is used in this test is 95%. The test is
success if the proposed cipher has similar or better quality if
we compare with the static block cipher. The result of NIST
Statistical Test Suite is shown in Table I.

TABLE I
NIST TEST RESULT

Test Name Static Block Dynamic Block P-Value
Entropy Test 98,6% 98,2% -0,504049
Block Frequency Test 99,0% 98,4% 0,837512
Cummulative Sum
Test

98,5% 99,2% 1.038080

FFT Test 98,0% 98,4% 0,475705
Frequency Test 98,6% 99,2% 0,909550
Linear Complexity
Test

99,0% 99,2% 0,334844

Longest Runs Test 99,2% 99,0% -0,334844
Non Overlapping
Template Test

99,0% 99,0% -0,037565

Overlapping
Template Test

99,2% 98,8% -0,635642

Random Excursions
Test

98,1% 98,6% -0,787570

Random Excursions
Variant Test

98,8% 99,2% 0,607298

Rank Test 99,4% 98,8% -1.004531
Runs Test 98,8% 99,1% 1.674218
Serial Test 99,2% 99,0% 0,635642
Universal Test 99,4% 99,4% 0,000000

Based on Z-test, the critical value for this test is -1.729.
Based on the result of the test, the proposed cipher has similar
quality with the static block cipher. The p-value of the test is
above than the critical value. Therefore, the proposed cipher
has similar secure quality based on NIST Statistical Test Suite.

The MAD (Mean Absolute Deviation) Analysis is con-
ducted by comparing the mean of the absolute difference of
the proposed cipher and the static block cipher. The testing
is conducted by comparing 10 encrypted images using the
proposed cipher and the static block cipher. The formula that
we used to conduct this test is shown by Equation 7.

MAD = 1
N

∑N−1
i=0 |Xi − X̄|

X̄ = 1
N

∑N−1
i=0 Xi

(7)

The result of the test is shown in Table II. The result of the
test is the proposed cipher has similar quality with the static
block cipher. The MAD of the proposed cipher is 201.077
and the MAD of the static block cipher is 203.470840. The
deviation of the MAD is 59.976003 and 60.427154. Based t-
test with 95% confidence level, the critical value is -1.729.
The p-value of the test is -0.0889. Thus, the proposed cipher
has similar quality with the static block cipher based on MAD
Analysis.

TABLE II
MAD TEST RESULT

Cipher Type MAD average MAD deviation
Static Block 201.077 59.976003

Dynamic Block (Proposed) 203.470840 60.427154

TABLE III
MEAN OF RESULT CCA TEST

Cipher Type CCA Mean
Horizontal Vertical Diagonal

Static Block 0.000165 0.000207 0.000278
Dynamic Block (Proposed) 0.000150 0.000193 0.000310

The CCA (Connected Component Analysis) is conducted by
comparing the connected component of the proposed cipher
and the static block cipher. The testing is conducted by
comparing 10 encrypted images using the proposed cipher and
the static block cipher. The direction that we used to conduct
this test is diagonal, vertical, and horizontal. The formula that
we used to conduct this test is shown by Equation 8.

CCA =

∑N
i=1 (xi − 1

N

∑N
i=1 xi)(yi − 1

N

∑N
i=1 yi)√∑N

i=1 (xi − 1
N

∑N
i=1 xi)2 ·

∑N
i=1 (yi −

1
N

∑N
i=1 yi)

2

(8)
The test is accepted when the connected component of the

proposed cipher is similar or better than the static block cipher.
The result of the test is shown in Table III and IV.

The result of the test is the proposed cipher has similar
quality with the static block cipher. The connected component
of the proposed cipher is 0.0001 and the connected component
of the static block cipher is 0.0002. The deviation of the
connected component is 0.0001 and 0.0002. Based t-test with
95% confidence level, the critical value is -1.729. The p-
value of the test for direction horizontal, vertical, and diagonal
respectively are 0.277, 0.218, and -0.324. Thus, the proposed
cipher has similar quality with the static block cipher based
on CCA Analysis.

B. Protocol Testing

We evaluate the functionality and security of the proposed
TLS protocol by doing several scenario. The scenarios that
we implements are handshake scenario, data transmission
scenario, and attack scenario. Handshake scenario is used
to evaluate the functionality of the handshake protocol. This
test will be accepted when the connection is established
successfully. Data transmission scenario is used to evaluate the
functionality of the record protocol. This test will be accepted

TABLE IV
DEVIATION OF RESULT CCA TEST

Cipher Type CCA Deviation
Horizontal Vertical Diagonal

Static Block 0.000183 0.000251 0.000337
Dynamic Block (Proposed) 0.000199 0.000232 0.000346

when the data is transmitted successfully. Attack scenario is
used to evaluate the robustness of the proposed scheme. Attack
scenario that we use is tampering attack and replay attack. This
test will be accepted when the protocol can handle the attack
and still can receive data normally. Result of the testing is
shown in Table V.

TABLE V
FUNCTIONALITY TESTING

Scenario Result
Handshake Success

Data Transmission Success
Tampering Attack Success

Replay Attack Success

Based on Table V, the proposed scheme is success to
handle the scenario that we have implemented. The handshake
protocol is success to establish the connection between client
and server. The handsahke protocol generates chaos system
successfully based on ECDH parameter. The record protocol is
success to transmit the data and receive the data. The protocol
is also success to handle the attack. The protocol can detect the
tampering attack and replay attack. The protocol can handle
the attack and still can receive data normally.

VII. CONCLUSION

Dynamic block encryption can be implemented in TLS pro-
tocol. This can be done by using Chaos-based AES encryption
algorithm. Chaos system that proposed in this paper is Sine-
Henon Map. The key is generated by using the state of the
chaos system. The state is used as the initial value of the
chaos system. The key is generated by converting the value of
the state to integer. The encryption process is done by using
AES encryption algorithm. The counter is generated by using
Sine-Henon Map. The counter is used as the counter of the
counter mode. The result of the encryption is the ciphertext.
The decryption process is done by using the same process
as the encryption process. The result of the decryption is the
plaintext.

Based on the testing that we have done, the proposed
scheme is success to handle the scenario that we have im-
plemented. The proposed cipher has similar quality with the
static block cipher based on NIST Statistical Test Suite, MAD
Analysis, and CCA Analysis. The proposed TLS protocol is
success to establish the connection between client and server.
The protocol is also success to transmit the data and receive
the data. The TLS protocol can handle tampering attack and
replay attack. The protocol can detect the attack and still can
receive data normally.

VIII. CODE REPOSITORY

This implementation of this paper can be accessed
at https://github.com/bayusamudra5502/dynamic-encryption-
protocol

REFERENCES

[1] M. M. Bachtiar et al., “Security enhancement of aes based encryption
using dynamic salt algorithm,” International Conference on Applied
Engineering, 2018.

[2] S. Blake-Wilson et al., “Elliptic curve cryptography (ecc) cipher
suites for transport layer security (tls),” Internet Requests
for Comments, IETF, RFC 4492, 2006. [Online]. Available:
https://datatracker.ietf.org/doc/rfc4492

[3] T. Dierks and E. Rescorla, “The transport layer security (tls) protocol
version 1.2,” Internet Requests for Comments, IETF, RFC 5246, 2008.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc5246

[4] B. Halak et al., “Comparative analysis of energy costs of asymmetric
vs symmetric encryption-based security applications,” IEEE Access,
vol. 10, pp. 76 707–76 719, 2022.

[5] C.-H. Lin, G.-S. Hu, C.-Y. Chan, and Y. Jun-Juh, “Chaos-based syn-
chronized dynamic keys and their application to image encryption with
an improved aes algorithm,” Appl. Sci, vol. 11, no. 3, 2021.

[6] R. Munir, Kriptografi, ser. Volume 2. Penerbit Informatika, 2019.
[7] P. Nurhaliza, “Implementasi pembangkit bilangan acak semu dengan

henon-sine hyperchaotic map,” Makalah Tugas IF4020 Kriptografi,
2023.

[8] S. Patel et al., “Colour image encryption based on customized neural net-
work and dna encoding,” Neural Computing and Applications, vol. 33,
2021.

[9] W. M. Shbair et al., “A multi-level framework to identify https services,”
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2016.

[10] A. Singh et al., “Image encryption and analysis using dynamic aes,”
2019 5th International Conference on Optimization and Applications
(ICOA), pp. 1–6, 2019.

