

J. ………….. Vol. XX …, No. X, 20XX, XX-XX

1

Received ________, Revised _________, Accepted for publication __________
Copyright © xxxx Published by ITB Journal Publisher, ISSN: xxxx-xxxx, DOI: 10.5614/xxxx

Fraud Detection Model on Social Financial Graph Using

Dual-Gated Graph Neural Network (DG-GNN)

Muhamad Misykat Ali Al Mahdi*, Rinaldi Munir, Dimitri Mahayana

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

*Corresponding author: 23522027@std.stei.itb.ac.id

Abstract. Fraud detection on large-scale dynamic graphs poses challenges related

to label imbalance, structural noise, and oversmoothing in node representations.

This study introduces the Dual-Gated Graph Neural Network (DG-GNN), a graph-

based architecture that integrates gating mechanisms both edge-wise during

message aggregation and within the node update phase. Unlike attention-based

methods, DG-GNN adopts a lightweight strategy to filter noisy information with

lower computational overhead. Experiments on the DGraph dataset demonstrate

that DG-GNN achieves a test ROC-AUC of 0.8538 ± 0.0009, outperforming the

GEARSage baseline (0.8460 ± 0.0002), while reducing parameter count by over

60% and memory usage by nearly half. The model also delivers the highest results

compared to recent attention-based approaches such as HHSGT and DEDGAT.

Keywords: fraud detection; gating mechanism; graph neural network; homophily; social

financial graph.

1 Introduction

Graph-based representations have become increasingly important in fraud

detection, particularly within the financial technology domain. DGraph, a large-

scale social financial graph dataset introduced by Huang, et al. [1] provides a

realistic benchmark for fraud detection tasks. The graph comprises over 3.7

million nodes and 4.3 million edges, capturing relationships between borrower

accounts and their registered emergency contacts. However, DGraph presents

several modeling challenges: (i) a high proportion of background nodes without

labels, (ii) substantial missing values in node features, and (iii) a high degree of

homophily due to label imbalance. These characteristics complicate the learning

process and can lead to oversmoothing, where the node embeddings become

indistinguishable, particularly between fraudulent and normal nodes [2].

Graph Neural Networks (GNNs) offer a compelling approach to capturing spatial

and temporal dependencies in such complex graphs [3]. By leveraging local

connectivity structures, GNNs can aggregate neighborhood information to

generate expressive node representations for classification tasks [3]. However, in

2 M. Misykat Ali Al Mahdi, et al.

fraud detection, where fraudulent accounts often connect to non-fraudulent ones

to avoid detection, standard GNN aggregation may amplify noise from

homophilic neighbors, resulting in oversmoothing and reduced classification

performance [4].

Several recent studies have attempted to address this issue using GNN-based

model with attention mechanisms that weigh the importance of neighboring

nodes. GNN-based models such as DEDGAT [5], TGTOD [6], and HHSGT [7]

have incorporated attention and relational modeling to distinguish homophilic

from heterophilic edges. While effective, these methods often increase

architectural complexity and computational overhead.

In contrast, GEARSage [8] as current state-of-the-art model, achieves highest

ROC-AUC score with a simpler architecture with using only two trainable

weights per convolutional layer. However, it does not implement any neighbor-

specific weighting mechanism, relying instead on uniform aggregation and a

fixed residual coefficient during node updates. This design limits its adaptability

to diverse graph structures and causes model performance to depend heavily on

the capacity of the two projection weights, which may result in high memory

usage.

To address these limitations, this study investigates a novel architecture named

Dual-Gated Graph Neural Network (DG-GNN), which introduces gating

mechanisms at both the message aggregation and node update stages. Inspired by

existing works on gated graph models [9], [10], DG-GNN replaces attention with

edge-wise gating to assign importance weights to neighbor messages and

introduces a gated update mechanism to adaptively control how much

information is integrated from the aggregated neighbors and the node’s previous

state. This dual gating aims to reduce noise from irrelevant neighbors, mitigate

oversmoothing, and enhance robustness. Additionally, the model is designed to

maintain computational efficiency while reducing the number of parameters and

memory usage compared to baseline models GEARSage.

2 Nomenclatures

The following nomenclatures are used throughout this paper:

b = bias term (scalar or vector)

𝑔(𝑣,𝑢)
(𝑘)

 = edge-wise gate controlling message from node u to

node v at layer k

h = hidden representation of a node

ℎ𝑒 = edge feature embedding

 Fraud Detection Model on Social Financial Graph 3

ℎ𝑣
(𝑘)

 = hidden representation of node v at GNN layer k

ℎ𝑛𝑣
(𝑘)

 = aggregated message from all neighbors of node v at

layer k

𝑚(𝑣,𝑢)
(𝑘)

 = message from node u to node v at layer k

�̃�(𝑣,𝑢)
(𝑘)

 = gated message from node u to node v at layer k

𝒩(𝑣) ∈ 𝑉 = direct neighbors of node v

𝒩𝑘(𝑣) ∈ 𝑉 = k-hop neighbors of node v

W = weight matrix

x = node feature vector

𝑥𝑒 = edge feature vector

𝑥′ = node feature vector after feature engineering

𝑥(𝑣,𝑢)
𝑒 = edge feature vector connecting node v and node u

𝛼 ∈ [0, 1] = gate coefficient for node update mechanism

⨀ = element-wise multiplication operator

 = vector concatenation operator

3 Related Works

GNN for Fraud Detection. A range of GNN-based architectures have been

developed to address common challenges in fraud detection such as camouflage,

oversmoothing, and label imbalance. Most of these methods employ attention

mechanisms, popularized by the Graph Attention Network (GAT) [11], to

selectively aggregate information from relevant neighbors. For instance, GAS

[12] integrates Recurrent Neural Networks (RNN) with GAT to detect account

takeover frauds by modeling temporal dependencies. STAGN [13] applies both

spatial and temporal attention for credit card fraud detection, enabling the model

to focus on time-sensitive transaction behaviors. MAFI [14] addresses fraud

detection on heterogeneous graphs by combining attention with intra-relation

aggregation, allowing it to distinguish between different types of relationships.

SemiGNN [15] adopts a hierarchical attention mechanism to detect financial

fraud in multiview graphs, effectively capturing both local and global patterns.

Despite their effectiveness, attention-based approaches tend to introduce

additional model complexity, which may increase computational costs and

amplify noise, especially in large-scale or noisy graph settings.

Existing Models on Dataset DGraph. Most of the top-performing models on

the DGraph dataset also employ attention mechanisms to improve performance.

For instance, HHSGT [7] integrates sparse graph transformers with relation

scoring to capture structural fraud patterns. DEDGAT [5] constructs dual node

embeddings (incoming and outgoing) at each convolutional layer and applies

attention to refine message construction from neighbors. CAFD [16] utilizes

4 M. Misykat Ali Al Mahdi, et al.

attention to fuse temporal frequency encoding with out-degree encoding. Despite

these advanced mechanisms, these models have yet to surpass the performance

of GEARSage [8] as the current state-of-the-art model, which adopts a

significantly simpler architecture.

GEARSage uses only two trainable weights in each convolutional layer: one for

projecting the target node's features and the other for projecting the features of

neighboring nodes along with their edge attributes. Unlike attention-based GNN

models, GEARSage does not implement any neighbor-specific weighting

mechanism. As a result, the model’s performance heavily depends on how

effectively information is captured by these two projection parameters, which can

lead to high training memory consumption. This indicates that there is still room

to improve the architecture of GEARSage to reduce training memory

consumption while enhancing its overall performance.

Gated GNN. Initially proposed in LSTM [17], gating was later extended to

convolutional networks through Gated Linear Units (GLU) and its variants [18],

which combine transformed inputs with learnable gates using element-wise

multiplication and, optionally, residual connections. These principles have been

applied in GNNs to enhance message passing. Marcheggiani and Titov [9]

introduced edge-wise gating with sigmoid activation to weigh neighbor

messages. Bresson and Laurent [19] expanded this by integrating residual

connections, improving depth scalability. Jiao et al. [10] further refined edge

gating in egGNN using layer normalization, GELU, and exponential functions,

incorporating edge features and enabling multi-head gating.

These studies demonstrate that gating provides an efficient alternative to

attention, especially for controlling noise in large-scale, heterophilic graphs.

However, these methods typically rely solely on edge features as gating inputs,

without incorporating the features of neighboring nodes as part of the gating

function. Moreover, to the best of our knowledge, none of the existing approaches

simultaneously apply gating mechanisms both edge-wise during message

aggregation and within the node update phase.

Table 1 Comparison of existing GNN models on social financial fraud dataset DGraph

Method Complexity # Parameters ROC-AUC

Standard GNN

(GCN [20], GraphSAGE [21], GAT [11])
Low Low 0.70-0.78 [5]

Attention-based GNN for Fraud

(HHSGT [7], CAFD [16], DEDGAT [5])
High High 0.81-0.83

Current SOTA (GearSAGE) [8] Low High 0.846

Dual Gated-based GNN (proposed) Medium Low > 0.846

 Fraud Detection Model on Social Financial Graph 5

4 Proposed Method

This section presents the proposed solution developed as an extension of the

GEARSage architecture, introduced by Li et al. [8], which serves as the baseline

model and demonstrates high performance with relatively low complexity. The

key novelty of this research lies in the design of a new architecture called the

Dual-Gated Graph Neural Network (DG-GNN), which introduces two levels of

gating mechanisms: (1) an edge-wise gating for message filtering from

neighboring nodes, and (2) a dynamic gated update mechanism for node feature

updates. Furthermore, we propose a modified temporal embedding strategy to

improve the representation of timestamp-based edge features. An overview of the

proposed architecture is depicted in Figure 1.

Figure 1 Proposed enhanced architecture from

4.1 Feature Engineering

The input feature vector for each node is constructed by combining multiple

engineered components, designed to capture both structural and semantic

properties relevant to fraud detection in financial social networks. Importantly,

the feature engineering process in this study is directly adopted from the

GEARSage model [8] without any modification. The resulting enriched feature

vector is denoted as 𝑥′ ∈ ℝ𝑑′
 and defined by the concatenation:

 𝑥′ = [𝑥𝑚𝑣||𝑥𝑠𝑖𝑚||𝑥𝑑𝑒𝑔||𝑥𝑏𝑛||𝑥𝑠𝑡||𝑥𝑛𝑡||𝑥𝑙𝑎] (1)

Each component is described as follows:

1. Missing Value Flag (𝑥𝑚𝑣 ∈ ℝ34). This component encodes both the imputed

values and their missingness. The first 17 dimensions contain the original

feature values where all missing entries that originally −1 are replaced with 0.

The next 17 dimensions are binary flags indicating whether each original

feature was missing. The equation is formally written in Eq. (2).

6 M. Misykat Ali Al Mahdi, et al.

 𝑥𝑚𝑣 = [𝑥𝑓𝑖𝑙𝑙𝑒𝑑||𝑥𝑓𝑙𝑎𝑔], 𝑥(𝑖)
𝑓𝑖𝑙𝑙𝑒𝑑

= {
𝑥(𝑖), 𝑖𝑓 𝑥(𝑖) ≠ −1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , 𝑥(𝑖)

𝑓𝑙𝑎𝑔
= {

1, 𝑖𝑓 𝑥(𝑖) ≠ −1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

2. Neighbor Similarity (𝑥𝑠𝑖𝑚 ∈ ℝ1). Represents the sum of cosine similarity

scores between the target node and each of its neighbors as described in Eq.

(3).

 𝑥𝑠𝑖𝑚 = ∑ cos (𝑥𝑣 , 𝑥𝑢)𝑢 ∈ 𝒩(𝑣) (3)

3. In & Out Degree (𝑥𝑑𝑒𝑔 ∈ ℝ2). Encodes the in-degree and out-degree of node,

as described in Eq. (4).

 𝑥𝑑𝑒𝑔 = [𝑑𝑒𝑔𝑖𝑛(𝑣) , 𝑑𝑒𝑔𝑜𝑢𝑡(𝑣)] (4)

4. Background Neighbor Count (𝑥𝑏𝑛 ∈ ℝ1). Counts the number of neighbors

that belong to the “background” class (labels 2 and 3), as described in Eq. (5).

 𝑥𝑏𝑛 = |{𝑢 ∈ 𝒩(𝑣) | 𝑦𝑢 ∈ {2,3}}| (5)

5. Edge Timestamp Summary (𝑥𝑡𝑒𝑚𝑝 ∈ ℝ2). Summarizes the temporal activity

of the node by aggregating the timestamps of its incident edges, as described

in Eq. (6).

 𝑥𝑣
𝑡𝑒𝑚𝑝

= [∑ 𝑥𝑒,𝑡𝑒𝑚𝑝
𝑒 ∈ 𝐸𝑣

, max 𝑥𝑒,𝑡𝑒𝑚𝑝] (6)

6. Edge Type Frequency (𝑥𝑛𝑡 ∈ ℝ11). A histogram vector counting how many

times each of the 11 edge types appears in the neighborhood, as described in

Eq. (7).

 𝑥(𝑖)
𝑛𝑡 = |{𝑒 ∈ 𝐸𝑣 | 𝑡𝑦𝑝𝑒(𝑒) = 𝑖}|, 𝑖 = 1, … ,11 (7)

7. Edge Type Frequency (𝑥𝑙𝑎 ∈ ℝ1). The original dataset has four labels: 0

(normal), 1 (fraud), and 2–3 (background classes). This feature map the fraud

and normal label into 0 and the remaining labels (0, 2, 3) are shifted to (0, 1,

2). Finally, the feature is one-hot encoded to a 3-dimensional vector, as

described in Eq. (8).

 𝑥(𝑖)
𝑙𝑎 = {

1, 𝑖𝑓 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑙𝑎𝑏𝑒𝑙(𝑣) = 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑖 ∈ {0,1,2} (8)

4.2 Edge Embedding

Each edge in the graph contains three attributes, as follows:

1. 𝑥𝑒,𝑡𝑒𝑚𝑝 ∈ ℝ1: timestamp of emergency contact creation

2. 𝑥𝑒,𝑡𝑦𝑝𝑒 ∈ {0, 1}12: one-hot encoding of relationship type

3. 𝑥𝑒,𝑑𝑖𝑟 ∈ {0, 1}2: direction of the edge (inbound or outbound)

 Fraud Detection Model on Social Financial Graph 7

These features then transformed into embeddings as follows:

 ℎ𝑒,𝑡𝑒𝑚𝑝 = 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑥𝑒,𝑡𝑒𝑚𝑝) (9)

 ℎ𝑒,𝑎𝑡𝑡𝑟 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑇𝑦𝑝𝑒(𝑥𝑒,𝑑𝑖𝑟) + 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝐷𝑖𝑟(𝑥𝑒,𝑡𝑦𝑝𝑒) (10)

 ℎ𝑒 = [ℎ𝑒,𝑎𝑡𝑡𝑟 || ℎ𝑒,𝑡𝑒𝑚𝑝] (11)

To construct ℎ𝑒,𝑡𝑒𝑚𝑝, we replace the original time encoder using non-trainable

temporal encoding from [22] as written in Eq. (12) with d as the embedding size.

As for the EmbeddingType and EmbeddingDir, following the baseline model, we

adopt a simple lookup table approach as shown in Eq. (13), where E denotes the

trainable weight matrix, d denotes the resulting embedding size and i represents

the index of the embedded value. As in the previous work, we then define ℎ𝑒,𝑎𝑡𝑡𝑟

by performing element-wise summation on the resulted embeddings of edge type

and edge direction. The final edge attribute ℎ𝑒 is then constructed by performing

concatenation between ℎ𝑒,𝑎𝑡𝑡𝑟and ℎ𝑒,𝑡𝑒𝑚𝑝.

 TemporalEncoding(𝑡)𝑖 = 𝑐𝑜𝑠 (𝑡 ⋅ √𝑑
−(𝑖−1)/√𝑑

) (12)

 Embedding(𝑖) = 𝐸𝑖 ∈ ℝ𝑑 (13)

4.3 Dual-Gated Graph Neural Network (DG-GNN)

The Dual-Gated Graph Neural Network (DG-GNN) is the core contribution of

this research. It extends the message passing framework in GEARSage by

introducing two levels of gating mechanisms to explicitly control the flow of

information during the learning process. These mechanisms are designed to

address the oversmoothing problem, which arises when node representations

become indistinguishable due to excessive mixing of neighborhood information

that often exacerbated by noisy or irrelevant neighbor features.

The two gating mechanisms are:

1. Edge-Wise Message Gating: filters messages from neighbors before

aggregation, based on edge attributes.

2. Residual Gated Update: balances the contribution between the current node

state and the aggregated message using a dynamically computed gate.

An overview of the convolution architecture is shown in Figure 2.

8 M. Misykat Ali Al Mahdi, et al.

Figure 2 DG-GNN convolution architecture

4.3.1 Message Construction with Edge-Wise Gating

In standard GNNs, all neighbors contribute equally or based on learned attention

scores. However, this can be problematic in graphs where some edges carry more

semantic importance than others. Inspired by the edge-gated GNN approach [10],

our model learns a message-specific gate that depends solely on the edge feature

vector ℎ(𝑣,𝑢)
𝑒 . Each neighbor node 𝑢 ∈ 𝒩(𝑣) sends a message to node that is

conditioned on both its own representation and the connecting edge, as follows:

 𝑚(𝑣,𝑢)
(𝑘)

= [ℎ𝑢
(𝑘−1)

, ℎ(𝑣,𝑢)
𝑒] ∙ 𝑊𝑚

(𝑘)
+ 𝑏𝑚

(𝑘)
 (14)

A gating score is computed from the edge embedding:

 𝑔(𝑣,𝑢)
(𝑘)

= 𝜎 (ℎ(𝑣,𝑢)
𝑒 ∙ 𝑊𝑔𝑒

(𝑘)
+ 𝑏𝑔𝑒

(𝑘)
) (15)

The final gated message becomes:

 �̃�(𝑣,𝑢)
(𝑘)

= 𝑚(𝑣,𝑢)
(𝑘)

 ⨀ 𝑔(𝑣,𝑢)
(𝑘)

 (16)

This gate acts as a soft mask, suppressing or amplifying messages based on edge

semantics. The gating mechanism employed in DG-GNN shares similarities with

the approach used in egGNN [10], but there are two key differences. First, while

egGNN uses the neighbor node feature ℎ𝑢
(𝑘−1)

 as the gating target, DG-GNN

applies the gating function over the message 𝑚(𝑣,𝑢)
(𝑘)

, which is the concatenation

of the neighbor feature and the edge feature. Second, egGNN combines layer

normalization with an exponential activation function to compute the gate value,

whereas DG-GNN uses a sigmoid activation function. The gating mechanism in

DG-GNN also resembles the approach proposed by Marcheggiani and Titov [9],

who similarly use a sigmoid activation for gating. However, like egGNN, their

method only considers the neighbor feature ℎ𝑢
(𝑘−1)

 as the input to the gating

function.

 Fraud Detection Model on Social Financial Graph 9

4.4 Message Aggregation

The filtered messages are aggregated using element-wise summation, as follows:

 ℎ𝑛𝑣
(𝑘)

= ∑ �̃�(𝑣,𝑢)
(𝑘)

𝑢 ∈ 𝒩(𝑣)
 (17)

Summation is chosen for its simplicity and scalability to graphs with highly

variable node degrees. Since each incoming message has already been selectively

gated, the aggregated result reflects a more robust and noise-reduced

neighborhood context.

4.5 Node Representation Update with Residual Gated Mechanism

To update the node representation, we propose a residual gating mechanism that

dynamically combines the previous node state ℎ𝑣
(𝑘−1)

 and the aggregated

neighborhood message ℎ𝑛𝑣
(𝑘)

.

First, a gate vector 𝛼 ∈ [0, 1] is computed as:

 𝛼 = 𝜎(𝑊𝑔𝑟
(𝑘)

⋅ [𝑊𝑚
(𝑘)

ℎ𝑛𝑣
(𝑘)

|| 𝑊𝑧
(𝑘)

ℎ𝑣
(𝑘−1)

]) (18)

The final node embedding is then updated as:

 ℎ𝑣
(𝑘)

= 𝛼 ⋅ ℎ𝑛𝑣
(𝑘)

+ (1 − 𝛼) ℎ𝑣
(𝑘−1)

 (19)

This gated residual update allows the model to adaptively control how much of

the new information should replace or complement the existing state. It provides

a finer-grained control than standard residual connections or static blending

factors (e.g., GEARSage uses a fixed α). From an information-theoretic

standpoint, this mechanism mitigates oversmoothing by preserving node

individuality and enabling information decay where necessary—an essential

property in heterogeneous or fraud-prone networks. Compared to prior work,

DG-GNN, by contrast, integrates both edge information and previous node states

into its gating decision, making it more expressive and stable across deeper

layers.

5 Result and Discussion

This section presents the dataset, experiment design and the results of the

experiments conducted on the DG-GNN model. The results are including the

impact of hyperparameter tuning, ablation studies to assess the contribution of

each component, and a comparison with baseline and related models.

10 M. Misykat Ali Al Mahdi, et al.

5.1 Dataset

The dataset used in this study is DGraph [1], a large-scale financial social graph

consisting of 3,700,550 nodes and 4,300,999 edges. The graph represents the

relationships between loan applicant accounts and their registered emergency

contacts. DGraph is derived from real-world data provided by Finvolution Group.

Each node in DGraph is equipped with a 17-dimensional feature vector,

describing user demographics and loan history. Due to Finvolution's policy of

allowing optional inputs, 49.9% of the feature values are missing. Edges in the

graph are temporal, reflecting the most recent emergency contact updates made

by users before each loan application. Additional edge attributes such as kinship

type are also available, making DGraph a dynamic graph with temporal and

semantic relationships. Only 15,509 nodes (0.42%) are labeled as fraudsters,

1,210,092 nodes (32.7%) as normal users, and 2,474,949 nodes (66.88%) as

background nodes—accounts with no borrowing history.

5.2 Experiment Design

Experiments were conducted on NVIDIA RTX A5000 (24GiB) and Quadro RTX

5000 (16GB). The node classification task in this study follows a semi-supervised

learning setting, where all node types (training, validation, and test) are included

during training to preserve graph structure and relation, unlike traditional

supervised learning. The experiments are repeated 10 times (runs), each

consisting of up to 500 epochs. Early stopping is applied if validation ROC-AUC

does not improve for 100 epochs. Each epoch consists of:

1. Undersampling: A subgraph G′ = (V′, E′) is sampled to balance fraud and

normal labels.

2. Training: Model receives G′, outputs prediction, computes training loss via

NLLLoss, and ROC-AUC.

3. Validation: Inference on full graph G to obtain prediction, then computes

validation loss and ROC-AUC.

The same undersampling strategy as the baseline model is applied, as follows:

 𝒩3(𝑉𝑏𝑎𝑠𝑒) = ⋃ 𝒩3(𝑣)𝑣 ∈ 𝑉𝑏𝑎𝑠𝑒
 (20)

 𝑉′ = 𝑉𝑏𝑎𝑠𝑒 ∪ 𝒩3(𝑉𝑏𝑎𝑠𝑒) (21)

 𝐸′ = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢 ∈ 𝑉′, 𝑣 ∈ 𝑉′} (22)

 𝐺′ = (𝑉′, 𝐸′) ⊂ 𝐺 = (𝑉, 𝐸) (23)

Where

𝑉𝑏𝑎𝑠𝑒 = 𝑉𝑓𝑟𝑎𝑢𝑑
𝑡𝑟𝑎𝑖𝑛 ∪ �̃�𝑛𝑜𝑟𝑚𝑎𝑙

𝑡𝑟𝑎𝑖𝑛

 Fraud Detection Model on Social Financial Graph 11

5.3 Hyperparameter Tuning Result

First, we conducted an experiment to determine the optimal set of

hyperparameters using a sequential hyperparameter tuning strategy. This strategy

involves tuning one hyperparameter at a time while keeping the others fixed,

typically using default or previously selected values. For each hyperparameter,

several candidate values were evaluated, and the value that yielded the highest

ROC-AUC score on the validation set was selected. The selected value for each

hyperparameter is indicated with an asterisk (*) in Table 2. Once the best value

was determined for one hyperparameter, it was fixed, and the next

hyperparameter was tuned in the same manner. This process was repeated

iteratively until all hyperparameters had been explored. The results of each tuning

step are visualized in Figure 4.

Table 2 Hyperparameter values

No Hyperparameter Values

1 Hidden Size 30, 40*, 45, 50, 60, 70, 80

2 Weight Decay 1e-5, 7e-5*, 1e-4, 2e-4, 1e-3

3 Activation Function ReLU, ELU*

4 Learning Rate 1e-4, 1e-3*, 1e-2

5

Edge Embedding Size

(Edge Attr & Edge

Timestamp)

10 & 20*, 20 & 20, 30 & 30

6 Dropout 0.2 & 0.3*

7 Number of Conv Layers 3*, 4, 5

8 Mekanisme Gating GLU*, GTU, GTRU

Figure 3 ROC-AUC curve of the best performing model

12 M. Misykat Ali Al Mahdi, et al.

Figure 4 Hyperparameter tuning result

The selected hyperparameters yielded a ROC-AUC score of 0.8538 ± 0.0009,

representing an improvement of 0.0078 over the baseline model, while also

reducing the number of parameters by 40% (from 50,544 to 20,126). To evaluate

the effect of architectural changes independently, the selected hyperparameters

were applied to the baseline model, resulting in a performance drop of up to

0.0057. This confirms that the improvement is attributed not only to

hyperparameter tuning but also to the proposed architectural enhancements.

 Fraud Detection Model on Social Financial Graph 13

Several key observations were drawn: (1) the model exhibits sensitivity to noise,

as evidenced by performance degradation when using larger hidden sizes or

ReLU activation; (2) regularization techniques—dropout, weight decay, and

early stopping—effectively mitigate overfitting; and (3) DG-GNN benefits from

weight decay due to its architectural complexity, whereas the baseline performs

better without it. Figure 3 presents the ROC-AUC curve of the best-performing

model, which achieved a peak ROC-AUC score of 0.8553.

5.4 Ablation Study

An ablation study conducted to evaluate the individual contribution of each

component in the proposed DG-GNN architecture and to assess the interactions

among these components. All experiments were performed using the optimized

hyperparameters obtained through prior tuning.

Table 3 Ablation study result

No Feature

Engineering

Time

Embedding

Edge-

gated

Update-

gated

ROC-AUC △

1 Yes
Temporal

Embedding
Yes Yes 0,8538 ± 0,0009 0

2 No
Time

Encoding
No No 0,8299 ± 0,0010 -0,0239

3 Yes
Time

Encoding
No No 0,8400 ± 0,0007 -0,0138

4 No
Temporal

Embedding
Yes Yes 0,8440 ± 0,0010 -0,0098

5 Yes
Time

Encoding
Yes Yes 0,8509 ± 0,0006 -0,0029

6 Yes
Temporal

Embedding
No Yes 0,8493 ± 0,0006 -0,0044

7 Yes
Temporal

Embedding
2 heads Yes 0,8529 ± 0,0007 -0,0009

8 Yes
Temporal

Embedding
3 heads Yes 0,8528 ± 0,0008 -0,0010

9 Yes
Temporal

Embedding
Yes No 0,8499 ± 0,0004 -0,0039

Table 3 presents all the experimental scenarios. The results show that removing

all components reduced the ROC-AUC by 0.0239, while removing only the

newly proposed components resulted in a decrease of 0.0138. These findings

indicate that both the original components adopted from the baseline model and

the newly proposed components contribute significantly to the model's

performance.

The feature engineering, adopted directly from the GEARSage baseline, still

showed a significant impact with a delta of 0.0098. Temporal Embedding

14 M. Misykat Ali Al Mahdi, et al.

consistently outperformed the baseline Time Encoding, particularly when

combined with the Edge-Gated Convolution, indicating a strong positive

interaction. The Edge-Gated Convolution itself contributed a delta of 0.0044,

while adding multi-head gating slightly reduced performance, likely due to

increased complexity and noise. Lastly, the Gated Update Mechanism provided

an improvement of 0.0039 over a fixed-weight residual update. Overall, the

results confirm that all components are complementary and non-redundant.

5.5 Performance Comparation

To evaluate the performance of DG-GNN, we compare it with the GEARSage

baseline model and several existing models reported in related studies. DG-GNN

achieves a test ROC-AUC score of 0.8538 ± 0.0009, which is an improvement of

+0.0078 over the GEARSage baseline (0.8460 ± 0.0002), while reducing the

number of model parameters by more than 60% (from 50,544 to 20,126) and

lowering memory usage from 18.5 GB to 9.5 GB.

When compared to other models, such as HHSGT (0.8340), CAFD (0.8150 ±

0.0009), and DEDGAT (0.8137 ± 0.0006), DG-GNN shows higher ROC-AUC

scores. It also achieves better performance than recent temporal graph models

including TE-GAT (0.791), TGTOD (0.7830 ± 0.0003), and TGN (0.7747),

despite using fewer parameters and moderate memory resources. These findings

suggest that the combination of dual gating mechanisms and enriched node

features contributes to performance improvements on the DGraph dataset.

Table 4 Model performance comparison

No Model ROC-AUC Parameters
Training

Memory

1 DG-GNN 0.8538 ± 0.0009 20,126 9.5 GB
2 GEARSage [8] 0.8460 ± 0.0002 50,544 18.5 GB
3 HHSGT [7] 0.8340 Unknown Unknown
4 CAFD [16] 0.8150 ± 0.0009 Unknown Unknown
5 DEDGAT [5] 0.8137 ± 0.0006 88,200 Unknown
6 TE GAT [23] 0.791 Unknown Unknown
7 TGTOD [6] 0.7830 ± 0.0003 6,865 16 GB
8 TGN [24] 0.7747 Unknown Unknown
9 GODM [25] 0.7580 Unknown < 1 GB

6 Conclusions

This study introduces DG-GNN, a Dual-Gated Graph Neural Network designed

to tackle challenges in large-scale, dynamic financial graphs with severe label

imbalance. The architecture incorporates two gating mechanisms: edge-gated

convolution for filtering messages using both node and edge features, and a gated

 Fraud Detection Model on Social Financial Graph 15

update mechanism for adaptively integrating neighbor information with prior

node states. Ablation studies confirm that both components contribute

meaningfully to performance gains.

Experiments on the DGraph dataset show that DG-GNN outperforms the

GEARSage baseline and several attention-based models, achieving a test ROC-

AUC of 0.8538 ± 0.0009—an increase of 0.0078 over the baseline. Remarkably,

this improvement is achieved with only 20,126 parameters (40% of baseline’s

parameter number) and a training memory footprint of 9.5 GB, which is almost

half of the memory required by the baseline model. Future work may explore

strategies to improve training stability and evaluate the model’s adaptability on

other large-scale fraud detection datasets with varying degrees of label imbalance

and structural heterogeneity.

References

[1] X. Huang et al., “DGraph: A Large-Scale Financial Dataset for Graph

Anomaly Detection,” 36th Conf. Neural Inf. Process. Syst., vol. 35, 2022.

[2] Y. Gao, X. Wang, X. He, Z. Liu, H. Feng, and Y. Zhang, “Addressing

Heterophily in Graph Anomaly Detection: A Perspective of Graph

Spectrum,” in Proceedings of the ACM Web Conference 2023, Austin TX

USA: ACM, Apr. 2023, pp. 1528–1538. doi: 10.1145/3543507.3583268.

[3] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “Survey 2021 A

Comprehensive Survey on Graph Neural Networks,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021, doi:

10.1109/TNNLS.2020.2978386.

[4] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing

Graph Neural Network-based Fraud Detectors against Camouflaged

Fraudsters,” in Proceedings of the 29th ACM International Conference on

Information & Knowledge Management, Virtual Event Ireland: ACM,

Oct. 2020, pp. 315–324. doi: 10.1145/3340531.3411903.

[5] J. Wu et al., “DEDGAT: Dual Embedding of Directed Graph Attention

Networks for Detecting Financial Risk,” Mar. 06, 2023, arXiv:

arXiv:2303.03933. doi: 10.48550/arXiv.2303.03933.

[6] K. Liu, J. Ding, M. Torkamani, and P. S. Yu, “TGTOD: A Global

Temporal Graph Transformer for Outlier Detection at Scale,” Dec. 01,

2024, arXiv: arXiv:2412.00984. doi: 10.48550/arXiv.2412.00984.

[7] X. Wang, L. Xiangfeng, X. Wang, and H. Yu, “Homophilic and

Heterophilic-Aware Sparse Graph Transformer for Financial Fraud

Detection,” in 2024 International Joint Conference on Neural Networks

(IJCNN), Jun. 2024, pp. 1–8. doi: 10.1109/IJCNN60899.2024.10650212.

16 M. Misykat Ali Al Mahdi, et al.

[8] J. Li, Z. Yu, W. Sun, X. Jin, Q. Wang, and L. Chen, “GEARSage,”

Competition Technical Report, 2022. [Online]. Available:

https://github.com/storyandwine/GEARSage-DGraphFin/tree/main

[9] D. Marcheggiani and I. Titov, “Encoding Sentences with Graph

Convolutional Networks for Semantic Role Labeling,” Jul. 30, 2017,

arXiv: arXiv:1703.04826. doi: 10.48550/arXiv.1703.04826.

[10] Q. Jiao, Z. Qiu, Y. Wang, C. Chen, Z. Yang, and X. Cui, “Edge-Gated

Graph Neural Network for Predicting Protein-Ligand Binding Affinities,”

in 2021 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM), Dec. 2021, pp. 334–339. doi:

10.1109/BIBM52615.2021.9669846.

[11] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.

Bengio, “Graph Attention Networks,” Feb. 04, 2018, arXiv:

arXiv:1710.10903. doi: 10.48550/arXiv.1710.10903.

[12] J. Tao, H. Wang, and T. Xiong, “2018 Selective Graph Attention

Networks for Account Takeover Detection,” in 2018 IEEE International

Conference on Data Mining Workshops (ICDMW), Nov. 2018, pp. 49–54.

doi: 10.1109/ICDMW.2018.00015.

[13] D. Cheng, X. Wang, Y. Zhang, and L. Zhang, “2022 Graph Neural

Network for Fraud Detection via Spatial-Temporal Attention,” IEEE

Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3800–3813, Aug. 2022, doi:

10.1109/TKDE.2020.3025588.

[14] N. Jiang, F. Duan, H. Chen, W. Huang, and X. Liu, “MAFI: GNN-Based

Multiple Aggregators and Feature Interactions Network for Fraud

Detection Over Heterogeneous Graph,” IEEE Trans. Big Data, vol. 8, no.

4, pp. 905–919, Aug. 2022, doi: 10.1109/TBDATA.2021.3132672.

[15] D. Wang et al., “A Semi-Supervised Graph Attentive Network for

Financial Fraud Detection,” in 2019 IEEE International Conference on

Data Mining (ICDM), Beijing, China: IEEE, Nov. 2019, pp. 598–607. doi:

10.1109/ICDM.2019.00070.

[16] C. Lou, Y. Wang, J. Li, Y. Qian, and X. Li, “Graph neural network for

fraud detection via context encoding and adaptive aggregation,” Expert

Syst. Appl., vol. 261, p. 125473, Feb. 2025, doi:

10.1016/j.eswa.2024.125473.

[17] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:

10.1162/neco.1997.9.8.1735.

[18] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language Modeling

with Gated Convolutional Networks,” in Proceedings of the 34th

International Conference on Machine Learning, PMLR, Jul. 2017, pp.

933–941. Accessed: Apr. 16, 2025. [Online]. Available:

https://proceedings.mlr.press/v70/dauphin17a.html

 Fraud Detection Model on Social Financial Graph 17

[19] X. Bresson and T. Laurent, “Residual Gated Graph ConvNets,” Apr. 24,

2018, arXiv: arXiv:1711.07553. doi: 10.48550/arXiv.1711.07553.

[20] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph

Convolutional Networks,” Feb. 22, 2017, arXiv: arXiv:1609.02907.

Accessed: May 24, 2023. [Online]. Available:

http://arxiv.org/abs/1609.02907

[21] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation

Learning on Large Graphs,” Sep. 10, 2018, arXiv: arXiv:1706.02216.

Accessed: Jul. 29, 2024. [Online]. Available:

http://arxiv.org/abs/1706.02216

[22] W. Cong et al., “Do We Really Need Complicated Model Architectures

For Temporal Networks?,” Feb. 22, 2023, arXiv: arXiv:2302.11636. doi:

10.48550/arXiv.2302.11636.

[23] Y. Wang, H. Zhan, and W. Jiang, “Time Encoding Graph Attention Model

for Financial Fraud Detection in Large-scale Financial Social Networks,”

in Proceedings of the 2024 3rd International Conference on

Cryptography, Network Security and Communication Technology, Harbin

China: ACM, Jan. 2024, pp. 70–74. doi: 10.1145/3673277.3673290.

[24] Y. Kim, Y. Lee, M. Choe, S. Oh, and Y. Lee, “Temporal Graph Networks

for Graph Anomaly Detection in Financial Networks,” Mar. 27, 2024,

arXiv: arXiv:2404.00060. Accessed: Oct. 01, 2024. [Online]. Available:

http://arxiv.org/abs/2404.00060

[25] K. Liu, H. Zhang, Z. Hu, F. Wang, and P. S. Yu, “Data Augmentation for

Supervised Graph Outlier Detection via Latent Diffusion Models,” Nov.

23, 2024, arXiv: arXiv:2312.17679. doi: 10.48550/arXiv.2312.17679.

