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Abstract. Fraud detection on large-scale dynamic graphs poses challenges related 

to label imbalance, structural noise, and oversmoothing in node representations. 

This study introduces the Dual-Gated Graph Neural Network (DG-GNN), a graph-

based architecture that integrates gating mechanisms both edge-wise during 

message aggregation and within the node update phase. Unlike attention-based 

methods, DG-GNN adopts a lightweight strategy to filter noisy information with 

lower computational overhead. Experiments on the DGraph dataset demonstrate 

that DG-GNN achieves a test ROC-AUC of 0.8538 ± 0.0009, outperforming the 

GEARSage baseline (0.8460 ± 0.0002), while reducing parameter count by over 

60% and memory usage by nearly half. The model also delivers the highest results 

compared to recent attention-based approaches such as HHSGT and DEDGAT. 

Keywords: fraud detection; gating mechanism; graph neural network; homophily; social 

financial graph. 

1 Introduction 

Graph-based representations have become increasingly important in fraud 

detection, particularly within the financial technology domain. DGraph, a large-

scale social financial graph dataset introduced by Huang, et al. [1] provides a 

realistic benchmark for fraud detection tasks. The graph comprises over 3.7 

million nodes and 4.3 million edges, capturing relationships between borrower 

accounts and their registered emergency contacts. However, DGraph presents 

several modeling challenges: (i) a high proportion of background nodes without 

labels, (ii) substantial missing values in node features, and (iii) a high degree of 

homophily due to label imbalance. These characteristics complicate the learning 

process and can lead to oversmoothing, where the node embeddings become 

indistinguishable, particularly between fraudulent and normal nodes [2]. 

Graph Neural Networks (GNNs) offer a compelling approach to capturing spatial 

and temporal dependencies in such complex graphs [3]. By leveraging local 

connectivity structures, GNNs can aggregate neighborhood information to 

generate expressive node representations for classification tasks [3]. However, in 
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fraud detection, where fraudulent accounts often connect to non-fraudulent ones 

to avoid detection, standard GNN aggregation may amplify noise from 

homophilic neighbors, resulting in oversmoothing and reduced classification 

performance [4]. 

Several recent studies have attempted to address this issue using GNN-based 

model with attention mechanisms that weigh the importance of neighboring 

nodes. GNN-based models such as DEDGAT [5], TGTOD [6], and HHSGT [7] 

have incorporated attention and relational modeling to distinguish homophilic 

from heterophilic edges. While effective, these methods often increase 

architectural complexity and computational overhead. 

In contrast, GEARSage [8] as current state-of-the-art model, achieves highest 

ROC-AUC score with a simpler architecture with using only two trainable 

weights per convolutional layer. However, it does not implement any neighbor-

specific weighting mechanism, relying instead on uniform aggregation and a 

fixed residual coefficient during node updates. This design limits its adaptability 

to diverse graph structures and causes model performance to depend heavily on 

the capacity of the two projection weights, which may result in high memory 

usage. 

To address these limitations, this study investigates a novel architecture named 

Dual-Gated Graph Neural Network (DG-GNN), which introduces gating 

mechanisms at both the message aggregation and node update stages. Inspired by 

existing works on gated graph models [9], [10], DG-GNN replaces attention with 

edge-wise gating to assign importance weights to neighbor messages and 

introduces a gated update mechanism to adaptively control how much 

information is integrated from the aggregated neighbors and the node’s previous 

state. This dual gating aims to reduce noise from irrelevant neighbors, mitigate 

oversmoothing, and enhance robustness. Additionally, the model is designed to 

maintain computational efficiency while reducing the number of parameters and 

memory usage compared to baseline models GEARSage. 

2 Nomenclatures 

The following nomenclatures are used throughout this paper: 

b = bias term (scalar or vector) 

𝑔(𝑣,𝑢)
(𝑘)

 = edge-wise gate controlling message from node u to 

node v at layer k 

h = hidden representation of a node 

ℎ𝑒 = edge feature embedding 
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ℎ𝑣
(𝑘)

 = hidden representation of node v at GNN layer k 

ℎ𝑛𝑣
(𝑘)

 = aggregated message from all neighbors of node v at 

layer k 

𝑚(𝑣,𝑢)
(𝑘)

 = message from node u to node v at layer k 

�̃�(𝑣,𝑢)
(𝑘)

 = gated message from node u to node v at layer k 

𝒩(𝑣) ∈ 𝑉 = direct neighbors of node v 

𝒩𝑘(𝑣) ∈ 𝑉 = k-hop neighbors of node v 

W = weight matrix 

x = node feature vector 

𝑥𝑒 = edge feature vector 

𝑥′ = node feature vector after feature engineering 

𝑥(𝑣,𝑢)
𝑒  = edge feature vector connecting node v and node u 

𝛼 ∈ [0, 1]  = gate coefficient for node update mechanism 

⨀ = element-wise multiplication operator 

 = vector concatenation operator 

3 Related Works 

GNN for Fraud Detection. A range of GNN-based architectures have been 

developed to address common challenges in fraud detection such as camouflage, 

oversmoothing, and label imbalance. Most of these methods employ attention 

mechanisms, popularized by the Graph Attention Network (GAT) [11], to 

selectively aggregate information from relevant neighbors. For instance, GAS 

[12] integrates Recurrent Neural Networks (RNN) with GAT to detect account 

takeover frauds by modeling temporal dependencies. STAGN [13] applies both 

spatial and temporal attention for credit card fraud detection, enabling the model 

to focus on time-sensitive transaction behaviors. MAFI [14] addresses fraud 

detection on heterogeneous graphs by combining attention with intra-relation 

aggregation, allowing it to distinguish between different types of relationships. 

SemiGNN [15] adopts a hierarchical attention mechanism to detect financial 

fraud in multiview graphs, effectively capturing both local and global patterns. 

Despite their effectiveness, attention-based approaches tend to introduce 

additional model complexity, which may increase computational costs and 

amplify noise, especially in large-scale or noisy graph settings. 

 

Existing Models on Dataset DGraph. Most of the top-performing models on 

the DGraph dataset also employ attention mechanisms to improve performance. 

For instance, HHSGT [7] integrates sparse graph transformers with relation 

scoring to capture structural fraud patterns. DEDGAT [5] constructs dual node 

embeddings (incoming and outgoing) at each convolutional layer and applies 

attention to refine message construction from neighbors. CAFD [16] utilizes 
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attention to fuse temporal frequency encoding with out-degree encoding. Despite 

these advanced mechanisms, these models have yet to surpass the performance 

of GEARSage [8] as the current state-of-the-art model, which adopts a 

significantly simpler architecture. 

 

GEARSage uses only two trainable weights in each convolutional layer: one for 

projecting the target node's features and the other for projecting the features of 

neighboring nodes along with their edge attributes. Unlike attention-based GNN 

models, GEARSage does not implement any neighbor-specific weighting 

mechanism. As a result, the model’s performance heavily depends on how 

effectively information is captured by these two projection parameters, which can 

lead to high training memory consumption. This indicates that there is still room 

to improve the architecture of GEARSage to reduce training memory 

consumption while enhancing its overall performance. 

 

Gated GNN. Initially proposed in LSTM [17], gating was later extended to 

convolutional networks through Gated Linear Units (GLU) and its variants [18], 

which combine transformed inputs with learnable gates using element-wise 

multiplication and, optionally, residual connections. These principles have been 

applied in GNNs to enhance message passing. Marcheggiani and Titov [9] 

introduced edge-wise gating with sigmoid activation to weigh neighbor 

messages. Bresson and Laurent [19] expanded this by integrating residual 

connections, improving depth scalability. Jiao et al. [10] further refined edge 

gating in egGNN using layer normalization, GELU, and exponential functions, 

incorporating edge features and enabling multi-head gating. 

 

These studies demonstrate that gating provides an efficient alternative to 

attention, especially for controlling noise in large-scale, heterophilic graphs. 

However, these methods typically rely solely on edge features as gating inputs, 

without incorporating the features of neighboring nodes as part of the gating 

function. Moreover, to the best of our knowledge, none of the existing approaches 

simultaneously apply gating mechanisms both edge-wise during message 

aggregation and within the node update phase. 

 
Table 1 Comparison of existing GNN models on social financial fraud dataset DGraph 

Method Complexity # Parameters ROC-AUC 

Standard GNN 

(GCN [20], GraphSAGE [21], GAT [11]) 
Low Low 0.70-0.78 [5] 

Attention-based GNN for Fraud 

(HHSGT [7], CAFD [16], DEDGAT [5]) 
High High 0.81-0.83 

Current SOTA (GearSAGE) [8] Low High 0.846 

Dual Gated-based GNN (proposed) Medium Low > 0.846 
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4 Proposed Method 

This section presents the proposed solution developed as an extension of the 

GEARSage architecture, introduced by Li et al. [8], which serves as the baseline 

model and demonstrates high performance with relatively low complexity. The 

key novelty of this research lies in the design of a new architecture called the 

Dual-Gated Graph Neural Network (DG-GNN), which introduces two levels of 

gating mechanisms: (1) an edge-wise gating for message filtering from 

neighboring nodes, and (2) a dynamic gated update mechanism for node feature 

updates. Furthermore, we propose a modified temporal embedding strategy to 

improve the representation of timestamp-based edge features. An overview of the 

proposed architecture is depicted in Figure 1. 

 
Figure 1 Proposed enhanced architecture from  

4.1 Feature Engineering 

The input feature vector for each node is constructed by combining multiple 

engineered components, designed to capture both structural and semantic 

properties relevant to fraud detection in financial social networks. Importantly, 

the feature engineering process in this study is directly adopted from the 

GEARSage model [8] without any modification. The resulting enriched feature 

vector is denoted as 𝑥′ ∈ ℝ𝑑′
 and defined by the concatenation: 

 𝑥′ =  [𝑥𝑚𝑣||𝑥𝑠𝑖𝑚||𝑥𝑑𝑒𝑔||𝑥𝑏𝑛||𝑥𝑠𝑡||𝑥𝑛𝑡||𝑥𝑙𝑎] (1) 

Each component is described as follows: 

1. Missing Value Flag (𝑥𝑚𝑣 ∈ ℝ34). This component encodes both the imputed 

values and their missingness. The first 17 dimensions contain the original 

feature values where all missing entries that originally −1 are replaced with 0. 

The next 17 dimensions are binary flags indicating whether each original 

feature was missing. The equation is formally written in Eq. (2). 
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      𝑥𝑚𝑣 =  [𝑥𝑓𝑖𝑙𝑙𝑒𝑑||𝑥𝑓𝑙𝑎𝑔], 𝑥(𝑖)
𝑓𝑖𝑙𝑙𝑒𝑑

= {
𝑥(𝑖), 𝑖𝑓 𝑥(𝑖) ≠ −1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , 𝑥(𝑖)

𝑓𝑙𝑎𝑔
= {

1, 𝑖𝑓 𝑥(𝑖) ≠ −1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (2) 

2. Neighbor Similarity ( 𝑥𝑠𝑖𝑚 ∈ ℝ1). Represents the sum of cosine similarity 

scores between the target node and each of its neighbors as described in Eq. 

(3). 

  𝑥𝑠𝑖𝑚 =  ∑ cos (𝑥𝑣 , 𝑥𝑢)𝑢 ∈ 𝒩(𝑣)  (3) 

3. In & Out Degree (𝑥𝑑𝑒𝑔 ∈ ℝ2). Encodes the in-degree and out-degree of node, 

as described in Eq. (4). 

 𝑥𝑑𝑒𝑔 =  [𝑑𝑒𝑔𝑖𝑛(𝑣) , 𝑑𝑒𝑔𝑜𝑢𝑡(𝑣)] (4) 

4. Background Neighbor Count (𝑥𝑏𝑛 ∈ ℝ1). Counts the number of neighbors 

that belong to the “background” class (labels 2 and 3), as described in Eq. (5). 

 𝑥𝑏𝑛 =  |{𝑢 ∈  𝒩(𝑣) | 𝑦𝑢 ∈ {2,3}}| (5) 

5. Edge Timestamp Summary (𝑥𝑡𝑒𝑚𝑝 ∈ ℝ2). Summarizes the temporal activity 

of the node by aggregating the timestamps of its incident edges, as described 

in Eq. (6). 

 𝑥𝑣
𝑡𝑒𝑚𝑝

= [∑ 𝑥𝑒,𝑡𝑒𝑚𝑝
𝑒 ∈ 𝐸𝑣

, max 𝑥𝑒,𝑡𝑒𝑚𝑝] (6) 

6. Edge Type Frequency (𝑥𝑛𝑡 ∈ ℝ11). A histogram vector counting how many 

times each of the 11 edge types appears in the neighborhood, as described in 

Eq. (7). 

 𝑥(𝑖)
𝑛𝑡 =  |{𝑒 ∈  𝐸𝑣  | 𝑡𝑦𝑝𝑒(𝑒) = 𝑖}|, 𝑖 = 1, … ,11 (7) 

7. Edge Type Frequency (𝑥𝑙𝑎 ∈ ℝ1). The original dataset has four labels: 0 

(normal), 1 (fraud), and 2–3 (background classes). This feature map the fraud 

and normal label into 0 and the remaining labels (0, 2, 3) are shifted to (0, 1, 

2). Finally, the feature is one-hot encoded to a 3-dimensional vector, as 

described in Eq. (8). 

 𝑥(𝑖)
𝑙𝑎 = {

1, 𝑖𝑓 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑙𝑎𝑏𝑒𝑙(𝑣) = 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑖 ∈ {0,1,2} (8) 

4.2 Edge Embedding 

Each edge in the graph contains three attributes, as follows: 

1. 𝑥𝑒,𝑡𝑒𝑚𝑝 ∈ ℝ1: timestamp of emergency contact creation 

2. 𝑥𝑒,𝑡𝑦𝑝𝑒 ∈ {0, 1}12: one-hot encoding of relationship type 

3. 𝑥𝑒,𝑑𝑖𝑟 ∈ {0, 1}2: direction of the edge (inbound or outbound) 
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These features then transformed into embeddings as follows: 

 ℎ𝑒,𝑡𝑒𝑚𝑝 = 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑥𝑒,𝑡𝑒𝑚𝑝) (9) 

 ℎ𝑒,𝑎𝑡𝑡𝑟 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑇𝑦𝑝𝑒(𝑥𝑒,𝑑𝑖𝑟) + 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝐷𝑖𝑟(𝑥𝑒,𝑡𝑦𝑝𝑒) (10) 

 ℎ𝑒 = [ℎ𝑒,𝑎𝑡𝑡𝑟 || ℎ𝑒,𝑡𝑒𝑚𝑝] (11) 

To construct ℎ𝑒,𝑡𝑒𝑚𝑝, we replace the original time encoder using non-trainable 

temporal encoding from [22] as written in Eq. (12) with d as the embedding size. 

As for the EmbeddingType and EmbeddingDir, following the baseline model, we 

adopt a simple lookup table approach as shown in Eq. (13), where E denotes the 

trainable weight matrix, d denotes the resulting embedding size and i represents 

the index of the embedded value. As in the previous work, we then define ℎ𝑒,𝑎𝑡𝑡𝑟 

by performing element-wise summation on the resulted embeddings of edge type 

and edge direction. The final edge attribute ℎ𝑒 is then constructed by performing 

concatenation between ℎ𝑒,𝑎𝑡𝑡𝑟and ℎ𝑒,𝑡𝑒𝑚𝑝. 

 TemporalEncoding(𝑡)𝑖 = 𝑐𝑜𝑠 (𝑡 ⋅ √𝑑
−(𝑖−1)/√𝑑

) (12) 

 Embedding(𝑖) = 𝐸𝑖 ∈ ℝ𝑑 (13) 

4.3 Dual-Gated Graph Neural Network (DG-GNN) 

The Dual-Gated Graph Neural Network (DG-GNN) is the core contribution of 

this research. It extends the message passing framework in GEARSage by 

introducing two levels of gating mechanisms to explicitly control the flow of 

information during the learning process. These mechanisms are designed to 

address the oversmoothing problem, which arises when node representations 

become indistinguishable due to excessive mixing of neighborhood information 

that often exacerbated by noisy or irrelevant neighbor features. 

The two gating mechanisms are: 

1. Edge-Wise Message Gating: filters messages from neighbors before 

aggregation, based on edge attributes. 

2. Residual Gated Update: balances the contribution between the current node 

state and the aggregated message using a dynamically computed gate. 

An overview of the convolution architecture is shown in Figure 2.  
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Figure 2 DG-GNN convolution architecture 

4.3.1 Message Construction with Edge-Wise Gating 

In standard GNNs, all neighbors contribute equally or based on learned attention 

scores. However, this can be problematic in graphs where some edges carry more 

semantic importance than others. Inspired by the edge-gated GNN approach [10], 

our model learns a message-specific gate that depends solely on the edge feature 

vector ℎ(𝑣,𝑢)
𝑒 . Each neighbor node 𝑢 ∈  𝒩(𝑣) sends a message to node  that is 

conditioned on both its own representation and the connecting edge, as follows: 

 𝑚(𝑣,𝑢)
(𝑘)

= [ℎ𝑢
(𝑘−1)

, ℎ(𝑣,𝑢)
𝑒 ] ∙ 𝑊𝑚

(𝑘)
+ 𝑏𝑚

(𝑘)
 (14) 

A gating score is computed from the edge embedding: 

 𝑔(𝑣,𝑢)
(𝑘)

= 𝜎 (ℎ(𝑣,𝑢)
𝑒 ∙ 𝑊𝑔𝑒

(𝑘)
+ 𝑏𝑔𝑒

(𝑘)
)  (15) 

The final gated message becomes: 

 �̃�(𝑣,𝑢)
(𝑘)

= 𝑚(𝑣,𝑢)
(𝑘)

 ⨀ 𝑔(𝑣,𝑢)
(𝑘)

 (16) 

This gate acts as a soft mask, suppressing or amplifying messages based on edge 

semantics. The gating mechanism employed in DG-GNN shares similarities with 

the approach used in egGNN [10], but there are two key differences. First, while 

egGNN uses the neighbor node feature ℎ𝑢
(𝑘−1)

 as the gating target, DG-GNN 

applies the gating function over the message 𝑚(𝑣,𝑢)
(𝑘)

, which is the concatenation 

of the neighbor feature and the edge feature. Second, egGNN combines layer 

normalization with an exponential activation function to compute the gate value, 

whereas DG-GNN uses a sigmoid activation function. The gating mechanism in 

DG-GNN also resembles the approach proposed by Marcheggiani and Titov [9], 

who similarly use a sigmoid activation for gating. However, like egGNN, their 

method only considers the neighbor feature  ℎ𝑢
(𝑘−1)

 as the input to the gating 

function. 
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4.4 Message Aggregation 

The filtered messages are aggregated using element-wise summation, as follows: 

 ℎ𝑛𝑣
(𝑘)

= ∑ �̃�(𝑣,𝑢)
(𝑘)

𝑢 ∈ 𝒩(𝑣)
 (17) 

Summation is chosen for its simplicity and scalability to graphs with highly 

variable node degrees. Since each incoming message has already been selectively 

gated, the aggregated result reflects a more robust and noise-reduced 

neighborhood context. 

4.5 Node Representation Update with Residual Gated Mechanism 

To update the node representation, we propose a residual gating mechanism that 

dynamically combines the previous node state ℎ𝑣
(𝑘−1)

 and the aggregated 

neighborhood message ℎ𝑛𝑣
(𝑘)

. 

First, a gate vector 𝛼 ∈ [0, 1] is computed as: 

 𝛼 = 𝜎(𝑊𝑔𝑟
(𝑘)

⋅ [𝑊𝑚
(𝑘)

ℎ𝑛𝑣
(𝑘)

|| 𝑊𝑧
(𝑘)

ℎ𝑣
(𝑘−1)

]) (18) 

The final node embedding is then updated as: 

 ℎ𝑣
(𝑘)

= 𝛼 ⋅ ℎ𝑛𝑣
(𝑘)

+ (1 − 𝛼) ℎ𝑣
(𝑘−1)

 (19) 

This gated residual update allows the model to adaptively control how much of 

the new information should replace or complement the existing state. It provides 

a finer-grained control than standard residual connections or static blending 

factors (e.g., GEARSage uses a fixed α). From an information-theoretic 

standpoint, this mechanism mitigates oversmoothing by preserving node 

individuality and enabling information decay where necessary—an essential 

property in heterogeneous or fraud-prone networks. Compared to prior work, 

DG-GNN, by contrast, integrates both edge information and previous node states 

into its gating decision, making it more expressive and stable across deeper 

layers. 

5 Result and Discussion 

This section presents the dataset, experiment design and the results of the 

experiments conducted on the DG-GNN model. The results are including the 

impact of hyperparameter tuning, ablation studies to assess the contribution of 

each component, and a comparison with baseline and related models. 
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5.1 Dataset 

The dataset used in this study is DGraph [1], a large-scale financial social graph 

consisting of 3,700,550 nodes and 4,300,999 edges. The graph represents the 

relationships between loan applicant accounts and their registered emergency 

contacts. DGraph is derived from real-world data provided by Finvolution Group. 

Each node in DGraph is equipped with a 17-dimensional feature vector, 

describing user demographics and loan history. Due to Finvolution's policy of 

allowing optional inputs, 49.9% of the feature values are missing. Edges in the 

graph are temporal, reflecting the most recent emergency contact updates made 

by users before each loan application. Additional edge attributes such as kinship 

type are also available, making DGraph a dynamic graph with temporal and 

semantic relationships. Only 15,509 nodes (0.42%) are labeled as fraudsters, 

1,210,092 nodes (32.7%) as normal users, and 2,474,949 nodes (66.88%) as 

background nodes—accounts with no borrowing history.  

5.2 Experiment Design 

Experiments were conducted on NVIDIA RTX A5000 (24GiB) and Quadro RTX 

5000 (16GB). The node classification task in this study follows a semi-supervised 

learning setting, where all node types (training, validation, and test) are included 

during training to preserve graph structure and relation, unlike traditional 

supervised learning. The experiments are repeated 10 times (runs), each 

consisting of up to 500 epochs. Early stopping is applied if validation ROC-AUC 

does not improve for 100 epochs. Each epoch consists of: 

1. Undersampling: A subgraph G′ = (V′, E′) is sampled to balance fraud and 

normal labels. 

2. Training: Model receives G′, outputs prediction, computes training loss via 

NLLLoss, and ROC-AUC. 

3. Validation: Inference on full graph G to obtain prediction, then computes 

validation loss and ROC-AUC. 

The same undersampling strategy as the baseline model is applied, as follows: 

 𝒩3(𝑉𝑏𝑎𝑠𝑒) = ⋃ 𝒩3(𝑣)𝑣 ∈ 𝑉𝑏𝑎𝑠𝑒
 (20) 

 𝑉′ = 𝑉𝑏𝑎𝑠𝑒 ∪ 𝒩3(𝑉𝑏𝑎𝑠𝑒) (21) 

 𝐸′ = {(𝑢, 𝑣) ∈  𝐸 | 𝑢 ∈ 𝑉′, 𝑣 ∈ 𝑉′} (22) 

 𝐺′ = (𝑉′, 𝐸′) ⊂ 𝐺 = (𝑉, 𝐸) (23) 

Where 

𝑉𝑏𝑎𝑠𝑒 =  𝑉𝑓𝑟𝑎𝑢𝑑
𝑡𝑟𝑎𝑖𝑛 ∪ �̃�𝑛𝑜𝑟𝑚𝑎𝑙

𝑡𝑟𝑎𝑖𝑛  
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5.3 Hyperparameter Tuning Result 

First, we conducted an experiment to determine the optimal set of 

hyperparameters using a sequential hyperparameter tuning strategy. This strategy 

involves tuning one hyperparameter at a time while keeping the others fixed, 

typically using default or previously selected values. For each hyperparameter, 

several candidate values were evaluated, and the value that yielded the highest 

ROC-AUC score on the validation set was selected. The selected value for each 

hyperparameter is indicated with an asterisk (*) in Table 2. Once the best value 

was determined for one hyperparameter, it was fixed, and the next 

hyperparameter was tuned in the same manner. This process was repeated 

iteratively until all hyperparameters had been explored. The results of each tuning 

step are visualized in Figure 4. 

Table 2 Hyperparameter values 

No Hyperparameter Values 

1 Hidden Size 30, 40*, 45, 50, 60, 70, 80 

2 Weight Decay 1e-5, 7e-5*, 1e-4, 2e-4, 1e-3 

3 Activation Function ReLU, ELU* 

4 Learning Rate 1e-4, 1e-3*, 1e-2 

5 

Edge Embedding Size 

(Edge Attr & Edge 

Timestamp) 

10 & 20*, 20 & 20, 30 & 30 

6 Dropout 0.2 & 0.3* 

7 Number of Conv Layers 3*, 4, 5 

8 Mekanisme Gating GLU*, GTU, GTRU 

 

 

Figure 3 ROC-AUC curve of the best performing model 
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Figure 4 Hyperparameter tuning result 

The selected hyperparameters yielded a ROC-AUC score of 0.8538 ± 0.0009, 

representing an improvement of 0.0078 over the baseline model, while also 

reducing the number of parameters by 40% (from 50,544 to 20,126). To evaluate 

the effect of architectural changes independently, the selected hyperparameters 

were applied to the baseline model, resulting in a performance drop of up to 

0.0057. This confirms that the improvement is attributed not only to 

hyperparameter tuning but also to the proposed architectural enhancements. 
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Several key observations were drawn: (1) the model exhibits sensitivity to noise, 

as evidenced by performance degradation when using larger hidden sizes or 

ReLU activation; (2) regularization techniques—dropout, weight decay, and 

early stopping—effectively mitigate overfitting; and (3) DG-GNN benefits from 

weight decay due to its architectural complexity, whereas the baseline performs 

better without it. Figure 3 presents the ROC-AUC curve of the best-performing 

model, which achieved a peak ROC-AUC score of 0.8553. 

5.4 Ablation Study 

An ablation study conducted to evaluate the individual contribution of each 

component in the proposed DG-GNN architecture and to assess the interactions 

among these components. All experiments were performed using the optimized 

hyperparameters obtained through prior tuning. 

Table 3 Ablation study result 

No Feature 

Engineering 

Time 

Embedding 

Edge-

gated 

Update-

gated 

ROC-AUC △ 

1 Yes 
Temporal 

Embedding 
Yes Yes 0,8538 ± 0,0009 0 

2 No 
Time 

Encoding 
No No 0,8299 ± 0,0010 -0,0239 

3 Yes 
Time 

Encoding 
No No 0,8400 ± 0,0007 -0,0138 

4 No 
Temporal 

Embedding 
Yes Yes 0,8440 ± 0,0010 -0,0098 

5 Yes 
Time 

Encoding 
Yes Yes 0,8509 ± 0,0006 -0,0029 

6 Yes 
Temporal 

Embedding 
No Yes 0,8493 ± 0,0006 -0,0044 

7 Yes 
Temporal 

Embedding 
2 heads Yes 0,8529 ± 0,0007 -0,0009 

8 Yes 
Temporal 

Embedding 
3 heads Yes 0,8528 ± 0,0008 -0,0010 

9 Yes 
Temporal 

Embedding 
Yes No 0,8499 ± 0,0004 -0,0039 

       

Table 3 presents all the experimental scenarios. The results show that removing 

all components reduced the ROC-AUC by 0.0239, while removing only the 

newly proposed components resulted in a decrease of 0.0138. These findings 

indicate that both the original components adopted from the baseline model and 

the newly proposed components contribute significantly to the model's 

performance. 

The feature engineering, adopted directly from the GEARSage baseline, still 

showed a significant impact with a delta of 0.0098. Temporal Embedding 



14 M. Misykat Ali Al Mahdi, et al. 

consistently outperformed the baseline Time Encoding, particularly when 

combined with the Edge-Gated Convolution, indicating a strong positive 

interaction. The Edge-Gated Convolution itself contributed a delta of 0.0044, 

while adding multi-head gating slightly reduced performance, likely due to 

increased complexity and noise. Lastly, the Gated Update Mechanism provided 

an improvement of 0.0039 over a fixed-weight residual update. Overall, the 

results confirm that all components are complementary and non-redundant. 

5.5 Performance Comparation 

To evaluate the performance of DG-GNN, we compare it with the GEARSage 

baseline model and several existing models reported in related studies. DG-GNN 

achieves a test ROC-AUC score of 0.8538 ± 0.0009, which is an improvement of 

+0.0078 over the GEARSage baseline (0.8460 ± 0.0002), while reducing the 

number of model parameters by more than 60% (from 50,544 to 20,126) and 

lowering memory usage from 18.5 GB to 9.5 GB. 

When compared to other models, such as HHSGT (0.8340), CAFD (0.8150 ± 

0.0009), and DEDGAT (0.8137 ± 0.0006), DG-GNN shows higher ROC-AUC 

scores. It also achieves better performance than recent temporal graph models 

including TE-GAT (0.791), TGTOD (0.7830 ± 0.0003), and TGN (0.7747), 

despite using fewer parameters and moderate memory resources. These findings 

suggest that the combination of dual gating mechanisms and enriched node 

features contributes to performance improvements on the DGraph dataset. 

Table 4 Model performance comparison 

No Model ROC-AUC Parameters 
Training 

Memory 

1 DG-GNN 0.8538 ± 0.0009 20,126 9.5 GB 
2 GEARSage [8] 0.8460 ± 0.0002 50,544 18.5 GB 
3 HHSGT [7] 0.8340 Unknown Unknown 
4 CAFD [16] 0.8150 ± 0.0009 Unknown Unknown 
5 DEDGAT [5] 0.8137 ± 0.0006 88,200 Unknown 
6 TE GAT [23] 0.791 Unknown Unknown 
7 TGTOD [6] 0.7830 ± 0.0003 6,865 16 GB 
8 TGN [24] 0.7747 Unknown Unknown 
9 GODM [25] 0.7580 Unknown < 1 GB 

6 Conclusions 

This study introduces DG-GNN, a Dual-Gated Graph Neural Network designed 

to tackle challenges in large-scale, dynamic financial graphs with severe label 

imbalance. The architecture incorporates two gating mechanisms: edge-gated 

convolution for filtering messages using both node and edge features, and a gated 



 Fraud Detection Model on Social Financial Graph 15 

 

update mechanism for adaptively integrating neighbor information with prior 

node states. Ablation studies confirm that both components contribute 

meaningfully to performance gains. 

Experiments on the DGraph dataset show that DG-GNN outperforms the 

GEARSage baseline and several attention-based models, achieving a test ROC-

AUC of 0.8538 ± 0.0009—an increase of 0.0078 over the baseline. Remarkably, 

this improvement is achieved with only 20,126 parameters (40% of baseline’s 

parameter number) and a training memory footprint of 9.5 GB, which is almost 

half of the memory required by the baseline model. Future work may explore 

strategies to improve training stability and evaluate the model’s adaptability on 

other large-scale fraud detection datasets with varying degrees of label imbalance 

and structural heterogeneity. 
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