
Security-Based Online Store Development

using Fully Homomorphic Encryption Algorithm

with BFV Scheme

Syarifuddin Fakhri A

School of Electrical Engineering and

Informatics

Bandung Institute of Technology

Bandung, Indonesia

syarifuddinfa@gmail.com

Rinaldi Munir

School of Electrical Engineering and

Informatics

Bandung Institute of Technology

Bandung, Indonesia

rinaldi@informatika.org

Infall Syafalni

School of Electrical Engineering and

Informatics

Bandung Institute of Technology

Bandung, Indonesia

infall@staff.stei.itb.ac.id

Abstract—The rapid and advanced development of technology

has impacted various sectors of life, one of which is the commerce

sector, namely the existence of online stores. With this shift in

habits, a new type of crime has emerged, known as cybercrime.

One consequence of cybercrime, which is still prevalent in

Indonesia, is data breaches. To address this issue, it is necessary to

create a security-based online store application. The development

of a security-based online store was carried out by implementing

the fully homomorphic encryption (FHE) algorithm with the BFV

(Brakerski-Fan-Vercauteren) scheme. This algorithm was chosen

for its ability to perform computations on encrypted data,

eliminating the need for prior decryption. The BFV scheme was

chosen for its faster performance compared to other schemes such

as BGV or CKKS. Based on development and testing results, this

algorithm can perform computations such as addition,

subtraction, negation, and multiplication on previously encrypted

data, producing the corresponding values when decrypted. In

addition, it is necessary to pay attention to the parameters of the

FHE algorithm builder with the BFV scheme because the greater

the ring dimension value and the multiplicative depth value, the

longer the computation time required, while the security level

parameter does not significantly affect application performance.

Keywords—online shop, web application, web security, fully

homomorphic encryption, BFV scheme

I. INTRODUCTION

With current technological advancements, commerce,
particularly the buying and selling of goods, can now be
conducted online. This has transformed the buying and selling
paradigm, which was previously limited to brick-and-mortar
stores, into online stores. The emergence of online stores has
enabled the buying and selling process to transcend time and
place. Buyers and sellers can conduct transactions wherever and
whenever they choose. These online transactions are known as
electronic commerce (e-commerce). Between 2019 and 2020,
138.1 million people in Indonesia shopped through e-commerce,
with an average purchase of $219 per person, resulting in total
transactions valued at $30.31 billion, a 49% increase from the
previous year [1].

Despite the many advantages of online stores, they also have
disadvantages, namely being vulnerable to cybercrime, often
referred to as cyberattacks. A cyberattack is a deliberate attempt
to steal, expose, alter, disable, or destroy data, applications, or
other assets through unauthorized access to a network, computer
system, or digital device [2]. One consequence of cybercrime,
which is still prevalent in Indonesia, is data breaches. According
to BSSN, in 2024, there were 241 suspected data breach
incidents [3]. One such breach incident involving an online store
was the data breach involving 91 million Tokopedia user
accounts that occurred in May 2020.

One way to secure online stores from cyber threats,
especially data breaches, is by using cryptography to secure data
and credentials. This data, including user accounts, purchase
data, payment data, and so on, is highly private and vulnerable
to misuse if it falls into the wrong hands. Cryptography is the art
and science of maintaining the security of messages [4].

Traditional encryption methods provide an efficient and
secure way to store private data in encrypted form. However, the
problem with traditional methods is that encrypted data cannot
be computed, so it must first be decrypted before computation
can be performed. Homomorphic encryption (HE) is a type of
encryption method that allows computations to be performed on
ciphertext data without first decrypting it using a secret key [5].
This encryption algorithm is believed to be difficult to crack,
even using quantum computers. Therefore, in the development
of this online store application, the HE algorithm will be used to
secure credential data. In its implementation, the type of
algorithm used is fully homomorphic encryption (FHE) with the
BFV (Brakerski-Fan-Vercauteren) scheme. FHE is an
encryption method that allows computations, both addition and
multiplication, to be performed directly on encrypted data. The
BFV scheme is one of the FHE implementation schemes chosen
because it is designed for exact computations on integers and has
faster processing time than other schemes such as BFV or
CKKS. It is hoped that by using this algorithm, data can be
stored securely and prevent data leaks in Indonesia.

II. FHE ALGORITHM WITH BFV SCHEME

Fully homomorphic encryption (FHE) is an encryption
method that allows both addition and multiplication
computations to be performed directly on encrypted data. FHE
was first formally introduced by Craig Gentry in 2009, as a
solution to the limitations of the partially homomorphic
encryption (PHE) algorithm, which only allows one type of
operation (addition or multiplication) to be performed on
ciphertext [5]. The FHE algorithm is a type of public key
encryption that uses a public key to encrypt a message and a
private key to decrypt it.

The BFV (Brakerski-Fan-Vercauteren) scheme is one of the
most common and efficient FHE implementations, especially
for modular integer computation. BFV utilizes the Ring
Learning with Error (RLWE) assumption as a security
foundation and is designed to support arithmetic operations on
the plaintext ring Φ𝑛(𝑥), where 𝑡 is the plaintext modulus. This
scheme consists of the following.

• Key generation to generate the public key, private key,
and evaluation key (multiplication / relinearization /
rotation).

• Encryption to convert the plaintext to ciphertext.

• Evaluation to support arithmetic operations on the
ciphertext.

• Decryption to return the evaluation result to the plaintext
domain.

Mathematical operations for the FHE algorithm with the
BFV scheme, which include key generation, encoding/decoding,
encryption, decryption, addition operations, and multiplication
operations. Below, each mathematical operation will be
explained, the references of which are taken from Fan &
Vercauteren [6] and Brakerski [7].

A. Basic parameters and notation

• 𝑛: Degree of the polynomial (usually a power of 2). This
defines the space 𝑅 = ℤ[𝑥] / (𝑥𝑛 + 1).

• 𝑞: Ciphertext modulus (integer). This produces the space
𝑅𝑞 = ℤ𝑞[𝑥] / (𝑥𝑛 + 1).

• t: Plaintext modulus (integer t<q). This produces the
space 𝑅𝑡 = ℤ𝑡[𝑥] / (𝑥𝑛 + 1).

• 𝜒: Error distribution (noise) (usually a discrete Gaussian
distribution).

• Δ: Scale factor. Calculated as 𝛥 = ⌊𝑞 / 𝑡⌋.

• Private Key: A polynomial 𝑠 ∈ 𝑅𝑞 with small

coefficients taken from 𝜒.

• Public Key: A pair of polynomials (𝑝0, 𝑝1) ∈ 𝑅𝑞 × 𝑅𝑞.

• Plaintext: A polynomial 𝑚 ∈ 𝑅𝑡.

• Ciphertext: A pair of polynomials (𝑐0, 𝑐1) ∈ 𝑅𝑞 × 𝑅𝑞.

B. Key Generation

• Secret key (𝑠𝑘)

Sample a polynomial s from the error distribution 𝜒. The
secret key is 𝑠𝑘 = 𝑠.

• Public key (𝑝𝑘)

1. Random polynomial sample 𝑎 ∈ 𝑅𝑞 .

2. Small error sample 𝑒 ∈ 𝜒.

3. Calculate 𝑝0 = −(𝑎 ⋅ 𝑠 + 𝑒) (𝑚𝑜𝑑 𝑞).

4. Resulting public key 𝑝𝑘 = (𝑝0, 𝑝1).

𝑝𝑘 = (𝑝0, 𝑝1) = (𝑝0, 𝑎) = (−(𝑎 ⋅ 𝑠 + 𝑒), 𝑎) (1)

C. Encoding/Decoding

• 𝐸𝑛𝑐𝑜𝑑𝑒(𝑣): Generates the polynomials 𝑚(𝑥) ∈ 𝑅𝑡.

• 𝐷𝑒𝑐𝑜𝑑𝑒(𝑚(𝑥)): Extracts the constant coefficients from
the polynomial 𝑚(𝑥).

D. Encrypt

Encryption on plaintext 𝑚 using public key 𝑝𝑘.

1. Sample three small error polynomials 𝑢, 𝑒1, 𝑒2 ∈ 𝜒.

2. Scale the message 𝑚𝑠𝑐𝑎𝑙𝑒𝑑 = 𝛥 ⋅ 𝑚 ∈ 𝑅𝑞.

3. The resulting ciphertext is 𝑐𝑡 = (𝑐0, 𝑐1).

𝑐0 = 𝑝0 ⋅ 𝑢 + 𝑒1 + 𝑚𝑠𝑐𝑎𝑙𝑒𝑑(𝑚𝑜𝑑 𝑞) (2)

𝑐1 = 𝑝1 ∙ 𝑢 + 𝑒2 (𝑚𝑜𝑑 𝑞) (3)

E. Decrypt

Decryption on cihpertext 𝑐𝑡 using secret key 𝑠𝑘.

1. Calculate noisy message.

𝑚𝑛𝑜𝑖𝑠𝑦 = 𝑐0 + 𝑐1 ∙ 𝑠 (𝑚𝑜𝑑 𝑞) (4)

2. Get plaintext from scaling cancellation and reduce noise.

𝑚 = ⌊
𝑡

𝑞
⋅ 𝑚𝑛𝑜𝑖𝑠𝑦⌉ (𝑚𝑜𝑑 𝑡) (5)

F. Addition Operation

Addition operation is performed on the ciphertext 𝑐𝑡1 =
(𝑐1,0, 𝑐1,1) which encrypts 𝑚1 and 𝑐𝑡2 = (𝑐2,0, 𝑐2,1) which

encrypts 𝑚2 resulting new ciphertext 𝑐𝑡𝑎𝑑𝑑 = (𝑐𝑎𝑑𝑑,0, 𝑐𝑎𝑑𝑑,1).

𝑐𝑎𝑑𝑑,0 = 𝑐1,0 + 𝑐2,0 (𝑚𝑜𝑑 𝑞) (6)

𝑐𝑎𝑑𝑑,1 = 𝑐1,1 + 𝑐2,1 (𝑚𝑜𝑑 𝑞) (7)

G. Multiplication Operation

Multiplication operation is performed on the ciphertext
𝑐𝑡1 = (𝑐1,0, 𝑐1,1) which encrypts 𝑚1 and 𝑐𝑡2 = (𝑐2,0, 𝑐2,1)

which encrypts 𝑚2.

1. Calculate three new polynomials 𝑐0
′ , 𝑐1

′ , 𝑐2
′ .

𝑐0
′ = 𝑐1,0 ∙ 𝑐2,0 (𝑚𝑜𝑑 𝑞) (8)

𝑐1
′ = 𝑐1,0 ∙ 𝑐2,1 + 𝑐1,1 ∙ 𝑐2,0 (𝑚𝑜𝑑 𝑞) (9)

𝑐2
′ = 𝑐1,1 ∙ 𝑐2,1 (𝑚𝑜𝑑 𝑞) (10)

2. Scale the previous polynomials.

𝑐0
′′ = ⌊

𝑡

𝑞
𝑐0

′ ⌉ (𝑚𝑜𝑑 𝑞) (11)

𝑐1
′′ = ⌊

𝑡

𝑞
𝑐1

′ ⌉ (𝑚𝑜𝑑 𝑞) (12)

𝑐2
′′ = ⌊

𝑡

𝑞
𝑐2

′ ⌉ (𝑚𝑜𝑑 𝑞) (13)

In part 1 will produce ciphertext 𝑐𝑡𝑚𝑢𝑙𝑡
′ = (𝑐0

′ , 𝑐1
′ , 𝑐2

′)
which has 3 components in it. If decrypted with the modification
in part 2 to 𝑐𝑡𝑚𝑢𝑙𝑡

′′ = 𝑐0
′′ + 𝑐1

′′ + 𝑐2
′′ will produce

𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑐𝑡𝑚𝑢𝑙𝑡
′′) = 𝑚1 ∙ 𝑚2 (𝑚𝑜𝑑 𝑡).

III. ONLINE STORE APPLICATION IMPLEMENTATION USING

FHE WITH BFV SCHEME

A. User Functional Requirements

The following TABLE I defines the functional requirements
and security implementation of the FHE algorithm.

TABLE I. User Functional Requirements

Functional requirement FHE Operation

Users can register and log in to the
application

Initiate crypto context parameters
and create public and private keys

Users can top up and use balances Plaintext encryption and ciphertext
addition operations

Users can view balances and
previous balance history

Ciphertext decryption operations

Users can view products and add
them to their cart

-

Users can make transactions to
order products

Plaintext encryption, ciphertext
addition, and ciphertext
multiplication operations

Users can view previous transaction
history

Ciphertext decryption operations

Fig. 1. Data flow diagram in architecture

B. Solution Design and Implementation

The online store implementation will utilize a three-tier

architecture consisting of a database, back-end, and front-end.

The database implementation will utilize a relational database

with the PostgreSQL database system. The back-end

implementation will utilize Python, utilizing the OpenFHE

library to handle the FHE algorithm and the FastAPI framework

to create the API service. The front-end implementation will

also utilize Python, utilizing the Django framework for the GUI

and the Requests library to make requests to the API service.

The data processing diagram for this online store can be seen in

Fig. 1.

Fig. 2. Application Use Case Diagram

Based on the user functionality requirements in TABLE I, the

proposed solution system has four main components:

authentication service, balance service, product service, and

ordering service. These four components need to be

implemented at each architectural tier. The authentication

service regulates how users verify their identity. However, if a

user has not registered, the authentication service functions to

register the user. The balance service is used to view and

manage the user's balance. Users can use their balance for

transactions; if the balance is insufficient, they can top up the

balance first. The product service is used to view products that

can be added to the cart and later purchased by the user.

Meanwhile, the ordering service is used to carry out product

ordering transactions. In addition, this service is also used to

view previous transaction history. Of the four services

mentioned, only the product service does not use FHE

operations. For details on the relationship between services and

functionality, see Fig. 2.

Below you can see product ordering service implemented in

Fig. 3 and Fig. 4. With an initial balance of Rp1.275.000, then an

additional balance of Rp100.000 is added. After clicking “Top

Up”, the balance will increase to Rp1.375.000.

Fig. 3. App view when top up balance

Fig. 4. App view after top up balance

Below you can see product ordering service implemented in

Fig. 5 and Fig. 6. With an initial balance of Rp1.375.000, an order

is placed for two items for a total purchase of Rp635.000. After

clicking "Proceed to Checkout", the order is processed and the

previous balance is deducted, leaving a remaining balance of

Rp740.000.

Fig. 5. App view when ordering products

Fig. 6. App view after ordering products

Fig. 7. Performance Testing Result of Primitive FHE BFV with Ring

Dimension (N) Parameter

Fig. 8. Performance Testing Result of Service with Ring Dimension (N)

Parameter

IV. APPLICATION COMPUTATIONAL PERFORMANCE

TESTING

Application computational performance testing is conducted
to evaluate the computational time performance of primitive
functions of the FHE algorithm using the BFV scheme, the
performance of features utilizing the FHE algorithm using the
BFV scheme, and performance when receiving a certain amount
of load or traffic. The metric used for this test evaluation is
response time, which is the time required to process and respond
to a request. In this test, performance testing was conducted on
variations in the parameters used to build the FHE algorithm
using the BFV scheme. Testing was conducted using Python,
utilizing the Pytest and Locust libraries. This test consisted of

testing FHE primitive functions, testing services, and testing
multiple user loads. All tests were performed with the plain
modulus (𝑡) parameter set to 119603201. This parameter defines
the value space or range for your original data (plaintext) before
encryption. The following parameters were used for testing:

1. ring dimension (N): 213, 214, and 215

2. security level: HEStd_128_classic, HEStd_192_classic,
and HEStd_256_classic

3. multiplicative depth: 3, 4, and 5

Fig. 9. Load Testing Performance Result in Service with Ring Dimension (N)

Parameters

A. Testing on Ring Dimension Parameters

Ring dimension (N) parameter is a parameter that determines
the degree of the polynomial that determines the size of the
algebraic structure (polynomial ring) used in the encryption
scheme. Ring dimension testing is carried out using the security
level HEStd_128_classic and multiplicative depth 3. In the
results of the ring dimension testing that has been tried in Fig. 7,
it can be seen that the larger the number N, the required
operating time increases in all primitive functions of the FHE
algorithm with the BFV scheme. A significant increase occurs
when generating the crypto context value and generating the
eval mult key value but is not too significant in the evalSub and
evalNegate functions. The increase in this primitive function has
an impact on increasing the execution time of the service using
the FHE algorithm with the BFV scheme as can be seen in Fig. 8.
It can also be seen in Fig. 9 that with the increasing number of
users, there is an increase in service execution time.

Fig. 10. Performance Testing Result of Primitive FHE BFV with Level

Security Parameter

B. Testing on Security Level Parameters

The security level parameter is a parameter that defines the

resilience of the encryption scheme against cryptanalysis

attacks. This parameter sets the level of bit security equivalent

to established cryptographic standards. Security level testing is

carried out using Ring Dimension (N) 214 and multiplicative

depth 3. In the results of the security level testing that has been

tried in Fig. 10, it can be seen that the higher the security level,

the execution time on the entire primitive function of the FHE

algorithm with the BFV scheme tends to be unchanged but there

is still a very slight increase of less than one millisecond. This

can also be seen in Fig. 11, the results of the service performance

test tend to only increase slightly, namely less than fifty

milliseconds. Although it tends to increase, it can be seen in Fig.

12 that there is still an increase in execution time if the number

of service users increases.

Fig. 11. Performance Testing Result of Service with Security Level Parameter

Fig. 12. Load Testing Performance Result in Service with Security Level

Parameters

Fig. 13. Performance Testing Result of Primitive FHE BFV with

Multiplicative Depth Parameter

Fig. 14. Performance Testing Result of Service with Multiplicative Depth

Parameter

Fig. 15. Load Testing Performance Result in Service with Multiplicative

Depth Parameters

C. Testing on Multiplicative Depth

The multiplicative depth parameter defines the maximum

number of consecutive multiplication operations that can be

performed on encrypted data before the noise inherent in the

ciphertext grows too large, making the data unable to be

decrypted correctly. Each multiplication operation between two

ciphertexts will increase this noise level. Multiplicative depth

testing was performed using a ring dimension (N) of 214 and a

security level of HEStd_128_classic. The results of the

multiplicative depth testing that have been tried, can be seen in

Fig. 13 that the larger the multiplicative depth number, the more

the required operation time increases for all primitive functions

of the FHE algorithm with the BFV scheme. Significant

increases occur when generating crypto context values and

generating eval mult key values but are not very significant for

the evalSub and evalNegate functions. Increases in these

primitive functions have an impact on increasing execution

time on services using the FHE algorithm with the BFV scheme

as can be seen in Fig. 14. In the load testing, it can be seen in

Fig. 15 that there is an increase in time when the number of

service users increases.

V. CONCLUSION

Based on the design results, test results, and analysis, the
following conclusions can be drawn.

1. Online store applications can be built and developed with
a security-based approach using the FHE algorithm with
the BFV scheme. This utilizes the Python programming
language, the OpenFHE, FastAPI, and Django libraries,
and the PostgreSQL relational database, allowing users
to conduct transactions and securely store stored data.

2. With the FHE algorithm with the BFV scheme,
computations (addition, subtraction, negation, and
multiplication) can be performed on encrypted data and
produce the appropriate values without requiring prior
decryption.

3. The larger the ring dimension (N) and multiplicative
depth parameters, the greater the computation time of the
FHE algorithm with the BFV scheme. The security level
parameter does not significantly increase computation
time. Furthermore, the greater the number of application
users, the greater the computation time.

4. To build an online store application using the FHE
algorithm with a secure BFV scheme with a reasonable
computation time, you can use the ring dimension 2^14,
security level HEStd_256_classic, and multiplicative
depth 3.

5. The private key cannot be stored privately by the user, so
it still needs to be stored in the database and user
credentials are required to access it.

REFERENCES

[1] Kemp, S. (2021). DIGITAL 2021: INDONESIA.
https://datareportal.com/reports/digital-2021-indonesia

[2] IBM. (2021). What is a cyberattack?
https://www.ibm.com/think/topics/cyber-attack

[3] BSSN. (2025). Lanskap Keamanan Siber Indonesia 2024.
https://www.bssn.go.id/wp-content/uploads/2025/02/LANSKAP-
KEAMANAN-SIBER-2024-1.pdf

[4] Schneier, B. (1997). Applied Cryptography. CRC Press, Inc.

[5] Gentry, C. (2009). A Fully Homomorphic Encryption Scheme.

[6] Fan, J., & Vercauteren, F. (2012). Somewhat Practical Fully
Homomorphic Encryption. IACR Cryptology ePrint Archive, 2012, 144.

[7] Brakerski, Z. (2012). Fully Homomorphic Encryption without Modulus
Switching from Classical GapSVP. CRYPTO 2012

https://datareportal.com/reports/digital-2021-indonesia
https://www.ibm.com/think/topics/cyber-attack
https://www.bssn.go.id/wp-content/uploads/2025/02/LANSKAP-KEAMANAN-SIBER-2024-1.pdf
https://www.bssn.go.id/wp-content/uploads/2025/02/LANSKAP-KEAMANAN-SIBER-2024-1.pdf

