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Abstract—Traffic Sign Recognition Systems (TSRS) are a 

crucial component of autonomous vehicles, yet they are highly 

vulnerable to adversarial attacks. Existing patch-based attacks 

are often unrealistic and lack robustness in dynamic, real-world 

conditions. This paper proposes a method to generate 

naturalistic and effective adversarial patches for evaluating 

TSRS robustness. Our approach utilizes a Generative 

Adversarial Network (GAN) augmented with a transformation 

module that simulates realistic patch placement and lighting, 

targeting the modern YOLOv8 object detection model. 

Experiments were conducted using a custom Indonesian traffic 

sign dataset, with seed patches sourced from the Quick, Draw! 

dataset to mimic common vandalism. The results show that the 

generated patches successfully degrade the performance of the 

target YOLOv8x model, achieving an Attack Success Rate 

(ASR) of 8.02% on the mAP50-95 metric in a white-box 

scenario. Furthermore, the attacks exhibit high transferability, 

reaching an ASR of 9.85% against the YOLO12x model in a 

black-box scenario. However, a subjective survey involving 24 

participants revealed a fundamental trade-off: the most 

effective patches were consistently rated as the least natural, 

with the average naturalness score for adversarial patches 

(32.6%) being lower than that of the original seed patches 

(43.1%). This research underscores the challenge of balancing 

attack effectiveness with visual realism and contributes a 

framework for generating more realistic attacks to test TSRS 

security. 

Keywords—Naturalistic Adversarial Patch, TSR, GAN, 

YOLO, Gen AI 

I. INTRODUCTION 

In recent decades, the advancement of artificial 
intelligence, particularly deep learning, has significantly 
impacted real-world technologies. A key driver of this 
transformation is the widespread adoption of deep neural 
networks (DNNs), which have become the state-of-the-art 
method for various visual data processing applications, 
including object recognition, image classification, and 
segmentation. The proficiency of DNNs in analyzing visual 
data has made them a cornerstone in the development of AI-
based technologies, most notably in autonomous vehicles. 

A reliable perception system is essential for autonomous 
vehicles to ensure accurate and safe decision-making. A 
critical component of this system is the ability to recognize 
traffic signs in real-time, which is paramount for navigation 
and safety. Modern Traffic Sign Recognition Systems (TSRS) 
leverage sophisticated DNN architectures like Convolutional 
Neural Networks (CNNs) to overcome the challenges of sign 
recognition in complex traffic environments. 

However, despite their impressive performance, DNNs 
have been found to be vulnerable to minor perturbations in 
their input, a phenomenon known as adversarial examples. 
Szegedy et al. first demonstrated that minimal, often human-
imperceptible, changes to an input can cause a model to make 
incorrect predictions[1]. This vulnerability is a major concern 
in safety-critical applications like autonomous driving, where 
a small disturbance to a traffic sign image could lead to 
catastrophic failures, such as ignoring a stop sign or 
misinterpreting a speed limit, thereby endangering passengers 
and other road users. To mitigate this, adversarial training 
(training a model on specifically crafted adversarial examples) 
has become a vital technique for enhancing model robustness. 

Early adversarial examples modified every pixel of an 
image, making them difficult to replicate in the physical 
world. To address this, Brown et al. introduced patch-based 
adversarial examples, where the perturbation is confined to a 
small, localized area, or "patch," of the input image[2]. This 
approach is more practical for real-world application, as 
patches can be physically created as stickers and applied to 
objects. However, these initial patches often lacked the 
robustness to withstand variations in the physical 
environment, such as changes in camera angle, distance, and 
lighting, limiting their effectiveness outside of controlled 
digital settings. 

Subsequent research sought to create more robust physical 
attacks. Eykholt et al. developed Robust Physical 
Perturbations (RP2), which produced graffiti-like adversarial 
patterns that successfully deceived TSRS by accounting for 
camera angles and distances[3]. Nevertheless, later 
benchmarks revealed that many existing adversarial patch 
attacks, including RP2, were not as effective in realistic 
scenarios as initially claimed. A further limitation is that most 
adversarial patches appear conspicuous and unnatural, making 
them easily identifiable by humans. To overcome this, 
researchers have explored using Generative Adversarial 
Networks (GANs) to generate more realistic and natural-
looking patches. For instance, [4] introduced the Perceptual-
Sensitive GAN (PS-GAN), which uses an attention 
mechanism to create patches that are better integrated with the 
image context while maintaining strong attack capabilities. 

 Motivated by these challenges and limitations, this 
research aims to develop a method for generating contextual 
and naturalistic adversarial patches using Generative AI that 
can be physically realized. This study focuses on designing a 
generative model to produce patches that are seamlessly 
integrated with the input image's context and are difficult for 



human observers to detect. The generated patches will be 
evaluated under simulated real-world conditions to ensure 
their attack efficacy and visual realism across various physical 
environments. Ultimately, this research is expected to 
contribute to enhancing the robustness of traffic sign 
recognition systems against adversarial attacks in autonomous 
vehicle applications. 

II. RELATED WORKS 

The study of adversarial attacks has evolved from purely 

digital manipulations to creating physically realizable threats, 

particularly for vision systems in autonomous vehicles. 

However, a significant challenge has been the development 

of effective real-world attacks and the methods to evaluate 

them, as physical testing is costly and simple synthetic data 

often fails to capture real-world complexities. Early research 

into physical threats focused on patch-based attacks, which 

proved to be a practical approach. For instance, [5] developed 

a location-independent patch attack that achieved over 90% 

success in deceiving digital Traffic Sign Recognition 

Systems (TSRS) and demonstrated a notable 72.2% success 

rate when physically printed and applied to signs. 

While effective, these patches often appeared artificial, 

prompting a new direction of research focused on creating 

more naturalistic and visually inconspicuous attacks. To 

address this, generative models became a key tool. [4] 

introduced the Perceptual-Sensitive GAN (PS-GAN), which 

utilized a visual attention mechanism to generate patches that 

were visually harmonious with the target image while 

maintaining high attack efficacy. Their method demonstrated 

strong performance and high transferability in both digital 

and real-world tests. More recently, [6] proposed 

AdvDenoise, which employed a denoising diffusion model to 

generate robust and universal patches with greater efficiency, 

achieving an 82.49% attack success rate in the CARLA 

simulator. 

Alongside the development of more sophisticated attacks, the 

research community has also focused on creating more 

realistic evaluation benchmarks. [7] introduced ImageNet-

Patch, a dataset designed to benchmark model robustness 

against patches that undergo physical transformations like 

rotation and translation. Critically, the work by [8] with their 

Realistic Adversarial Patch (REAP) benchmark revealed a 

crucial insight. By applying patches to real-world images 

with accurate geometric and lighting transformations, they 

demonstrated that the effectiveness of many adversarial 

attacks was significantly overestimated by simpler 

simulations. This finding highlights a persistent "sim-to-real 

gap" and underscores the necessity for developing attack 

generation methods that explicitly account for realistic 

physical conditions, which is a central motivation for our 

work. 

III. PROPOSED METHOD 

Previous research has shown that existing adversarial 
patches often fail in real-world scenarios due to three primary 
shortcomings: 1) the use of unnatural, noise-like patterns that 
are easily spotted by humans; 2) digital placement that ignores 
the physical boundaries of the target object; and 3) 
inconsistent lighting that makes the patch appear digitally 
pasted onto the image. To address these issues, we propose a 
hybrid framework that integrates the generative power of a 

Generative Adversarial Network (GAN) with realistic, 
physically-informed constraints. Our approach adapts the 
Perceptual-Sensitive GAN (PS-GAN) architecture and 
incorporates simulation principles from the Realistic 
Adversarial Patch (REAP) benchmark to generate patches that 
are both effective and naturalistic. 

The proposed solution, illustrated in Fig. 1, is designed to 
generate adversarial patches that are effective against modern 
object detection models and are visually coherent with their 
environment. The process begins with a seed patch, a simple 
hand-drawn sketch, which is fed into a Generator (G). The 
Generator's task is to transform this seed into an adversarial 
patch optimized for an attack. Unlike the original PS-GAN, 
which targeted image classifiers, our framework is designed 
to attack a more complex Target Model (F) that is YOLOv8 
object detector. The generated adversarial patch is not applied 
directly; instead, it is processed by a novel Transformation 
Module (T). This module realistically places the patch onto a 
ground-truth traffic sign image by simulating geometric 
perspective, conforming to the sign's physical boundaries, and 
adjusting its lighting to match the scene. The resulting 
adversarial image is then used in a dual-objective training 
process. First, it is fed to the Target Model (F) to calculate an 
adversarial loss, which pushes the Generator to create more 
effective attacks. Second, it is passed to a Discriminator (D), 
which is trained to distinguish between real traffic sign images 
and those containing our generated patches, compelling the 
Generator to produce more visually realistic and seamlessly 
integrated patches. This entire process creates a balanced 
training dynamic that optimizes for both attack potency and 
visual stealth. 

A. Module Architecture 

Our framework consists of four primary modules: the 
Generator, the Discriminator, the Transformation Module, 
and the Target Model. 

Generator. The Generator employs a U-Net architecture, 
inspired by PS-GAN and image-to-image translation work. It 
features a symmetric encoder-decoder structure with skip 
connections between corresponding layers, which allows low-
level spatial information from the input patch to be preserved 
in the final output. To enhance generalization and prevent 
mode collapse, dropout layers are utilized in the decoder and 
remain active during both training and inference. 

Discriminator. The Discriminator is a multi-layered 
convolutional neural network tasked with classifying its input 
image as either real or containing a fake patch. Each 
convolutional layer uses a LeakyReLU activation function 
and batch normalization to ensure training stability, 
concluding with a sigmoid activation layer that outputs the 
probability of visual realism. 

Transformation Module. This module is crucial for 
bridging the sim-to-real gap by digitally simulating the 
physical application of a patch onto a traffic sign. The process 
involves three sequential steps as shown in Fig. 2: 

• Masking. A pre-trained Mask R-CNN model first 
segments the traffic sign from the background image. 
We then apply contour detection and a convex hull 
algorithm to the resulting mask to produce a clean, 
geometrically precise shape (e.g., circle, octagon) that 
accurately represents the sign's physical boundaries. 



This refined mask provides keypoints for subsequent 
patch placement. 

• Attentive Region Identification. To maximize the 
attack's effectiveness, the patch is placed on the most 
visually important region of the sign. We use High-
Resolution Class Activation Mapping (HiResCAM), a 
faithful interpretability method, on the target YOLOv8 
model to generate a heatmap that identifies the areas 
most critical to its prediction. The patch is then 
centered on the peak activation point within this 
heatmap. 

• Relighting. To ensure the patch appears naturally 
integrated with the sign, its lighting is adjusted to 
match the ambient conditions. Following the percentile 
method from the REAP benchmark, we analyze the 
pixel intensity distribution within the masked sign area 
to calculate a base brightness (β) and a contrast range 
( α ). The patch's pixel values (P) are then linearly 
transformed according to (1), which aligns its color 
histogram with that of the target sign. 

 Prelighted = αP +  β  () 

•  

Fig. 2. Transform Module Architecture 

 

 Target Model. The target for our adversarial attack is 
YOLOv8, a state-of-the-art one-stage object detector. To 
create a realistic and consistent evaluation scenario, the 
YOLOv8 model was specifically fine-tuned on the custom 
Indonesian traffic sign dataset used throughout the 
experiments. 

B. Problem Formulation 

 The generation of naturalistic adversarial patches is 
formulated as an optimization problem involving a Generator 
(G) and a Discriminator (D). The Generator aims to minimize 
a composite loss function as shown in (2), while the 
Discriminator works to maximize its ability to identify 
generated patches as expressed in (3). In these equations, λ 
and γ are hyperparameters that balance the trade-off between 
visual realism and attack strength. 

 ℒ𝐺 = min ℒ𝐺𝐴𝑁 + 𝜆ℒ𝑝𝑎𝑡𝑐ℎ + 𝛾ℒ𝑎𝑑𝑣  () 

 ℒ𝐷 = max ℒ𝐺𝐴𝑁  () 

 Visual Fidelity (𝓛𝐺𝐴𝑁). The foundation of the framework 
is the standard generative adversarial loss, which is defined in 
(4). This loss trains the Discriminator D to distinguish 
authentic images from the adversarial images (𝑥̃) containing 
patches from the Generator G, while simultaneously training 
G to produce patches that D cannot distinguish from reality. 

 ℒ𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑥[log 𝐷(𝛿, 𝑥)] + 𝔼𝑥[log(1 − 𝐷(𝛿, 𝑥̃)]  () 

Natural Consistency (𝓛𝒑𝒂𝒕𝒄𝒉): To ensure the generated 

patch retains a natural, scribble-like appearance, a patch loss 
is defined in (5) as the ℓ2 𝑛𝑜𝑟𝑚  between the generated 
adversarial patch 𝐺(𝛿)  and the original seed patch 𝛿 . This 
regularizer in (5) prevents the generator from producing 
overly complex, artificial patterns that would be easily 
detectable by a human observer.  

 ℒ𝑝𝑎𝑡𝑐ℎ = 𝔼𝛿‖ 𝐺(𝛿) − 𝛿‖2   () 

Fig 1.  The proposed framework for generating naturalistic adversarial patches 



Attacking Ability ( 𝓛𝒂𝒅𝒗 ) . The adversarial loss is 
designed to maximize the error of the target model F. The 
formula shown in (6) where the objective is to maximize the 
class confidence score F for predictions j that have a high 
Intersection over Union (IoU) with the ground truth. This 
effectively suppresses correct detections It is calculated as the 
maximum objectness score for the ground-truth class within 
the predictions, thereby training the generator to produce 
patches that cause the target model to either misclassify the 
traffic sign or fail to detect it altogether. 

 ℒ𝑎𝑑𝑣 =
1

𝑁
∑ max

𝑗,   𝐼𝑜𝑈>𝜏
𝐹𝑐𝑙𝑠

𝑗 (𝑥̃𝑖)
𝑁
𝑖=1   () 

C. Threat Model 

The attack scenario for this research is defined by the 
following threat model:  

• Adversary's Knowledge. We assume a white-box 
attack, where the adversary has complete access to the 
target model's architecture, parameters, and loss 
function. This allows for the direct calculation of 
gradients to efficiently optimize the adversarial patch. 

• Adversary's Goal. The goal is an untargeted attack. 
The objective is to cause the TSRS to fail in its 
detection or classification task, rather than forcing it to 
predict a specific incorrect class. This reflects a more 
general and practical real-world attack scenario. 

• Adversary's Capabilities. The adversary is capable of 
physically placing a patch within the legitimate 
boundaries of a traffic sign. This is simulated through 
the realistic geometric and lighting transformations in 
our framework. The adversary cannot, however, 
modify the internal weights or architecture of the target 
model. 

IV. IMPLEMENTATIONS 

This section details the datasets, environment, and specific 
implementation parameters used to conduct the research, 
ensuring the experiments are reproducible. 

A. Datasets 

Two distinct datasets were utilized: one for the traffic sign 
images to be attacked and another to provide the initial 
patterns for the adversarial patches.  

1) Indonesian Traffic Sign Dataset 

To ensure real-world relevance for the target 

environment, a custom dataset of Indonesian traffic signs was 

prepared. 

• The initial data was sourced from a public repository 
by Adhy Wiranto, which contained 2100 images 
across 21 classes collected from various sources like 
Google Maps and smartphone captures 

• A data cleaning process was performed to remove 
three classes corresponding to traffic lights (red, 
yellow, and green traffic light) as they were not static 
signs, resulting in a dataset of 18 classes. 

• The data was augmented to improve model 
generalization and simulate real-world variations. 
Augmentations included rotation (±15°), shearing 
(±10°), exposure changes (±10%), and blur (up to 2.5 
pixels). 

• After augmentation, the final dataset consisted of 4294 
images, split into training (3780 images), validation 
(338 images), and test (176 images) sets. 

2) Seed Patch Dataset 
The initial patterns for the adversarial patches were 

sourced from the Quick, Draw! dataset. 

• This dataset was chosen because its vast collection of 
simple, hand-drawn sketches resembles the type of 
vandalism (graffiti or stickers) commonly found on 
public signs, providing a naturalistic foundation for the 
adversarial patches. 

• A subset of 11 classes with simple shapes relevant to 
the traffic sign context was selected, including 
"airplane," "circle," "star," and "car" 

• Since the data is stored in a vector format, a conversion 
function was implemented to transform the sketches 
into 56×56 raster images suitable for input to the 
generator model. 

B. Experimental Environment 

All experiments were conducted on the DGX server at the 
ITB AI Center. The specific hardware and software 
environment is detailed below: 

• Ubuntu 18.04.6 LTS. 

• 8x Tesla V100-SXM2-32GB 

• Python 3.11.3 managed with Miniconda 

C. Implementation Details 

The training process followed the conceptual framework 
outlined in the Proposed Method. 

• The Generator and Discriminator were trained using 
different optimizers to maintain stability; the 
Generator used the Adam optimizer with β1 = 0.5 
and β2 = 0.999, while the Discriminator used SGD 
with a momentum of 0.9. 

• The models were trained for 250 epochs with a batch 
size of 16. The learning rates were initially set and 
then reduced by 10% every 20 epochs. 

• For the patch generation, the patch-to-image area ratio 
was set to 0.1, with the generator taking a 32×32 patch 
as input and applying it to a 256×256 image. 

V. EXPERIMENTS 

 This section presents the experimental evaluation of the 
proposed framework. The experiments were designed to 
assess the effectiveness, transferability, and visual realism of 
the generated adversarial patches. All evaluations were 
conducted under controlled digital settings, simulating 
realistic physical conditions through the transformation 
module described in Section III. 

A. Hyperparameter Tuning 

Due to the known training instability of Generative 

Adversarial Networks (GANs), a manual and iterative 

hyperparameter tuning process was conducted. This approach 

was chosen over automated methods like grid search to allow 

for careful observation of the complex training dynamics 

between the generator and discriminator. The process 

focused on finding an optimal balance by adjusting five key 



parameters: the number of generator optimization steps (k), 

the coefficient for patch loss (λ), the coefficient for 

adversarial loss (γ), and the learning rates for both the 

generator and the discriminator. The final optimal 

configuration was determined to be λ=0.0025, γ=2.0, k=6, a 

generator learning rate of 0.001, and a discriminator learning 

rate of 0.00002. 

B. Attack Effectiveness 

This experiment measured the direct impact of the 
adversarial patches on the model they were trained against, 
YOLOv8x, in a white-box scenario. The model's performance 
was measured on three versions of the test set: the original 
clean data, the data with unmodified seed patches applied, and 
the data with the final generated adversarial patches. The seed 
patch test was crucial to validate that performance degradation 
was due to the patch's adversarial nature, not merely visual 
occlusion. 

As shown in TABLE I, the YOLOv8x model achieved an 

mAP50-95 of 0.885 on clean data. When the adversarial 

patches were applied, the performance dropped to 0.814. This 

degradation resulted in an Attack Success Rate (ASR) of 

8.02% on the mAP50-95 metric. In contrast, the unmodified 

seed patches only caused a marginal performance drop to 

0.86, demonstrating that the optimized adversarial nature of 

the generated patches was the primary cause of the model's 

failure. 

 
TABLE I. The Effectiveness of Adversarial Patch Attacks on YOLOv8x 

Data Precision Recall mAP50 mAP50-95 

Clean 0.988 0.986 0.993 0.885 

Seed patch 0.955 0.936 0.98 0.86 

Adversarial patch 0.82 0.889 0.943 0.814 

   ASR: 
5.04% 

ASR: 
8.02% 

C. Attack Transferability 

To assess the real-world viability of the patches in black-

box scenarios, their ability to deceive models they were not 

trained on was tested. The attacks were transferred to other 

YOLO variants with different capacities (YOLOv8n, 

YOLOv8m) and different architectures (YOLOv11x, 

YOLOv12x). 

 

 

Fig. 3.  Comparison of ASR for adversarial patches generated across 

YOLO model variants 

The results, detailed in TABLE II, TABLE III, TABLE 

IV, and TABLE V, and summarized in Fig. 3, show strong 

transferability. The attack was highly effective against the 

smaller YOLOv8n model, achieving an ASR of 12.08%. It 

also successfully transferred to models with fundamentally 

different architectures, reaching an ASR of 9.85% against 

YOLOv12x. This indicates that the patches exploit a more 

general vulnerability in object detection models rather than a 

weakness specific to the YOLOv8x architecture, highlighting 

their practical threat potential. 
TABLE II. The Effectiveness of Adversarial Patch Attacks on YOLOv8n 

Data Precision Recall mAP50 mAP50-95 

Clean 0.981 0.977 0.992 0.861 

Seed patch 0.928 0.892 0.951 0.807 

Adversarial patch 0.881 0.849 0.905 0.757 

   ASR: 

8.77% 

ASR: 

12.08% 

 
TABLE III. The Effectiveness of Adversarial Patch Attacks on YOLOv8m 

Data Precision Recall mAP50 mAP50-95 

Clean 0.989 0.975 0.989 0.88 

Seed patch 0.964 0.920 0.975 0.856 

Adversarial patch 0.903 0.859 0.954 0.820 

   ASR: 
3.54% 

ASR: 
6.82% 

 
TABLE IV. The Effectiveness of Adversarial Patch Attacks on YOLO11x 

Data Precision Recall mAP50 mAP50-95 

Clean 0.978 0.972 0.993 0.877 

Seed patch 0.918 0.946 0.976 0.856 

Adversarial patch 0.876 0.911 0.961 0.839 

   ASR: 
3.22% 

ASR: 
4.33% 

 
TABLE V. The Effectiveness of Adversarial Patch Attacks on YOLO12x 

Data Precision Recall mAP50 mAP50-95 

Clean 0.976 0.991 0.991 0.873 

Seed patch 0.82 0.938 0.969 0.834 

Adversarial patch 0.834 0.836 0.926 0.787 

   ASR: 

6.56% 

ASR: 

9.85% 

D. Attack Naturalness 

To quantify the perceived visual naturalness of the 

patches, a subjective survey was conducted with 24 

participants, following a methodology adapted from related 

studies. The survey was designed to determine if the 

generated patches were inconspicuous and resembled 

common vandalism. Participants were asked to rate and rank 

images with the original seed patches and the final adversarial 

patches. 

The results revealed a fundamental trade-off between 

attack effectiveness and visual realism. The average 

naturalness score for the generated adversarial patches 

(32.6%) was significantly lower than that of the original seed 

0

2

4

6

8

10

12

14

YOLOv8n YOLOv8m YOLOv8x YOLO11x YOLO12x

ASR on YOLO model variants

ASR (%)



patches (43.1%). Furthermore, as illustrated in Fig. 4, there 

was a clear inverse correlation: patches that were most 

effective at degrading the model's performance (lowest 

mAP50-95) were consistently ranked as the least natural by 

human observers. This finding underscores the core 

challenge in generating attacks that are both potent and 

visually stealthy. 

 

 

VI. DISCUSSIONS 

The experimental results provide several key insights into 

the effectiveness, transferability, and inherent limitations of 

generating naturalistic adversarial patches. This section 

analyzes these findings in detail. 

Attack Effectiveness and Behavior. The quantitative 

results confirm that the proposed method can significantly 

degrade the performance of a target object detection model. 

In the white-box scenario against YOLOv8x, the attack 

achieved an 8.02% ASR on the mAP50-95 metric. A deeper 

analysis reveals the attack's dual impact on the Traffic Sign 

Recognition System (TSRS). The sharp drop in precision 

from 0.988 to 0.82 indicates a surge in False Positives, 

meaning the model correctly located traffic signs but assigned 

them the wrong class label. Simultaneously, the decrease in 

recall from 0.986 to 0.889 points to an increase in False 

Negatives, where the model failed to detect some traffic signs 

altogether. This demonstrates that the patch successfully 

induces both misclassification and detection failures. 

Crucially, the comparison with the unmodified seed 

patches validates that this performance degradation is a direct 

result of the adversarial optimization, not merely visual 

occlusion. The seed patches caused only a marginal 2.82% 

drop in mAP50-95, whereas the optimized adversarial 

patches caused a nearly threefold greater reduction of 8.02%. 

This significant difference empirically proves that the 

adversarial patterns are the dominant factor behind the 

model's failure. 

Attack Transferability and Architectural Robustness. 

The investigation into attack transferability revealed a 

complex relationship between model architecture and 

vulnerability. Generally, the patches demonstrated the ability 

to affect models they were not trained on, but the degree of 

success varied significantly. 

When attacking models of the same family, the smaller 

YOLOv8n proved highly susceptible, with an ASR of 

12.08%. However, this high rate was partly attributed to the 

model's inherent fragility to any visual disruption, as even the 

non-adversarial seed patch caused a significant performance 

drop. This aligns with the understanding that models with 

smaller capacity have less robust feature representations. 

Transferability to models with different architectures 

depended heavily on their specific feature extraction and 

processing mechanisms. The YOLOv11x model, which 

incorporates advanced attention modules to focus on 

important image regions, showed high resilience with a very 

low ASR of 4.33%. This suggests its architecture is effective 

at filtering out the irrelevant noise introduced by the patch. 

Conversely, the YOLOv12x, which uses a transformer-based 

architecture, was surprisingly vulnerable, with an ASR of 

9.85%. A possible explanation is that its global attention 

mechanism, while powerful, may be sensitive to the salient, 

high-frequency patterns of the adversarial patch, 

misinterpreting them as important signals. 

These findings suggest that while transferability is 

possible, its success is governed by the similarity of feature 

representations between models and the specific defense 

mechanisms, like attention, built into the target's architecture. 

The Trade-off between Naturalness and Efficacy. A 

fundamental finding of this research is the quantifiable trade-

off between a patch's adversarial strength and its visual 

naturalness. This conflict arises because the optimization 

process that minimizes adversarial loss ( ℒ𝑎𝑑𝑣 ) inherently 

pushes the generator to create high-frequency visual artifacts 

that are highly effective at disrupting convolutional filters but 

appear unnatural to the human eye. The patch loss (ℒ𝑝𝑎𝑡𝑐ℎ) 

acts as a regularizer to counteract this tendency. 

This dynamic is visually represented in the training loss 

graphs, as seen in Fig. 5 While the adversarial loss steadily 

decreases, indicating the patch is becoming more potent, the 

patch loss slowly increases after an initial drop. This 

empirically shows that to enhance its attacking ability, the 

generator is forced to create patterns that deviate further from 

the original seed patch, thereby increasing distortion and 

reducing naturalness. The subjective survey results 

quantitatively confirmed this, as the most effective patches 

consistently received the lowest naturalness rankings from 

human participants. 

 

Fig. 5.  Patch ratio variations after application to traffic signs 

Limitations of Digital Simulation and GAN Training. 

While the transformation module was designed to enhance 

realism, it has inherent limitations in replicating complex 

Fig. 4. Correlation Between Subjective Survey Rankings and Attack 

Effectiveness 



physical phenomena. The percentile-based relighting is a 

linear approximation and cannot model non-linear light 

interactions like specular glare or dynamic shadows. 

Furthermore, the module's reliance on an automated 

segmentation model, without ground-truth segmentation 

masks, sometimes led to imperfect masking. This inaccuracy 

caused inconsistencies in the final patch-to-sign ratio, as 

illustrated in, where some patches appear disproportionately 

large or small. These factors contribute to a "sim-to-real gap," 

suggesting that the attack's measured effectiveness in a digital 

environment may be attenuated in a true physical 

implementation. 

Finally, the training process itself highlighted the 

challenge of mode collapse in GANs. During hyperparameter 

tuning, certain suboptimal configurations caused the 

generator to converge on a few effective but monotonous 

patterns, ceasing to produce diverse outputs. This 

phenomenon limits the variety of potential attacks and makes 

them easier to defend against, underscoring the critical 

importance of careful, iterative tuning to achieve a stable and 

productive generator. 

VII. CONCLUSIONS 

The experimental results provide several key insights into 

the effectiveness, transferability, and inherent limitations of 

generating naturalistic adversarial patches. This section 

analyzes these findings in detail. This research successfully 

developed and evaluated a framework for generating 

naturalistic adversarial patches to test the robustness of 

Traffic Sign Recognition Systems (TSRS). Our method 

integrates a Generative Adversarial Network (GAN) with a 

realistic transformation module that simulates physical 

placement and lighting conditions, producing patches that are 

inherently more robust for real-world scenarios. The 

experiments demonstrate that the generated patches are 

effective at deceiving modern object detectors. In a white-box 

scenario, the attack degraded the performance of the target 

YOLOv8x model with an Attack Success Rate (ASR) of 

8.02% on the mAP50-95 metric. More importantly, the 

patches exhibited strong transferability in black-box 

scenarios, achieving an even higher ASR of 9.85% against 

the architecturally different YOLOv12x model, proving the 

exploited vulnerability is general rather than model-specific. 

However, the study also uncovered a fundamental trade-

off between attack effectiveness and visual realism. A 

subjective survey revealed that the most potent adversarial 

patches were consistently rated as the least natural by human 

observers. The average naturalness score for the final 

adversarial patches (32.6%) was notably lower than for the 

original seed patches (43.1%), highlighting the challenge of 

creating attacks that are both powerful and imperceptible. 

Future work should focus on bridging the "sim-to-real 

gap" through physical validation of the printed patches. 

Further refinement could be achieved by employing more 

sophisticated 3D rendering engines for simulation and 

exploring advanced generative models, such as Denoising 

Diffusion Probabilistic Models (DDPMs), to improve 

training stability and output diversity. Finally, investigating 

alternative perceptual loss functions may help to better 

balance the crucial trade-off between adversarial strength and 

naturalness. 
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