
Indonesian Sign Language (BISINDO) Alphabet
Detection Through a Mobile-Based Approach

Based on YOLO Algorithm Version 11
Jeremya Dharmawan Raharjo

School of Electrical Engineering and Informatics
Institut Teknologi Bandung

Bandung, Indonesia
jeremyadraharjo@gmail.com

Rinaldi Munir
School of Electrical Engineering and Informatics

Institut Teknologi Bandung
Bandung, Indonesia

rinaldi@staff.stei.itb.ac.id

Abstract—Individuals who are Deaf or hard of hearing depend
significantly on sign language, a visual mode of communi-
cation that employs bodily movements, facial emotions, and
hand gestures. Advances in deep-learning methodologies offer
substantial potential for automating the recognition of Bahasa
Isyarat Indonesia (BISINDO), thereby enhancing the language’s
accessibility to a broader range of users. This paper proposes a
BISINDO alphabet recognition system based on You Only Look
Once (YOLO), a state-of-the-art real-time object detection model,
with the latest YOLOv11 version used to recognize hand gestures
corresponding to each alphabet letter. The suggested system uses
an effective and portable detection architecture that minimizes
latency while preserving high precision in mobile environment.
Comparative training of several YOLO variants yielded a peak
mean average precision (mAP) of 82.3 % and a minimum latency
of 10 frames per second, demonstrating the system’s viability for
real-time BISINDO recognition on mobile platforms.

Keywords—BISINDO, YOLOv11, Real-Time Object Detection,
Alphabet Recognition, Mobile Environment

I. INTRODUCTION

Sign language conveys meaning visually through coordi-
nated hand shapes, bodily movement, body posture, and facial
expression. It serves as an effective communication medium
for individuals who are deaf or hard of hearing, enabling them
to share their ideas and engage with others [1]. The World
Health Organization reported in 2024 that approximately 430
million people worldwide—about 34 million of them chil-
dren—experience hearing loss, and this figure is projected to
rise to over 700 million, or roughly one in ten people, by
2050 [2]. The development of precise and extensively used
sign-language recognition systems that close communication
gaps and promote inclusion has also emerged as a key research
priority in the current period due to the rapid advancement of
information technology.

Deaf populations in Indonesia employ Bahasa Isyarat In-
donesia (BISINDO), a naturally developed two-handed signing
system that is now only maintained by one official training
provider, the Indonesian Sign Language Center (Pusbisindo).
Although BISINDO is expressive and community-driven, its
range of vocabulary, nuanced gestures, and regional variation
mean that relatively few people, aside from specially trained

interpreters, can use it fluently. This shortage of proficient
signers limits Deaf Indonesians’ access to public events and
everyday interaction [3].

Modern computer vision drives applications in medicine,
sports, media, and autonomous systems, achieving robust
image classification, detection, localization, and identification
through deep convolutional neural networks [4]. Building on
these advances, this study introduces a real-time BISINDO
alphabet-detection system built on the latest YOLOv11 deep
learning architecture. The purpose of this study is to achieve
real-time BISINDO alphabet recognition on mobile device
environment while delivering high precision and low latency.

The remainder of this paper is structured as follows: Section
II reviews prior research pertinent to the study; Section III
details the proposed method; Section IV presents the experi-
mental results and their analysis; and Section V presents the
concluding remarks.

II. RELATED WORK

Treating ASL (American Sign Language) recognition as
an object-detection task, Imran et al. (2024) [5] proposed a
real-time detection system using the YOLOv9 architecture.
Their approach integrates Programmable Gradient Information
(PGI) and a Generalized Efficient Layer Aggregation Network
(GELAN) to maintain feature integrity. While the YOLOv9e
variant achieved a mean average precision of 69.38% at
IoU thresholds 0.5–0.95 (mAP@0.5:0.95), this performance
came with a significant trade-off. The inference latency was
impractically high for real-time use, averaging approximately
1300-2700 ms per frame.

Focusing on a different application of pose estimation, Arlin
et al. (2023) [6] developed an application for counting push-up
movements. The system employed the MediaPipe library for
pose estimation and a K-Nearest Neighbors (KNN) algorithm
for classification. Across 176 test cases involving both direct
user interaction and video analysis, the system achieved an
overall accuracy of 84.7%. Although effective for a repetitive
action, the study demonstrates a simpler classification task and

jeremyadraharjo@gmail.com
rinaldi@staff.stei.itb.ac.id


does not address the complexities of recognizing diverse sign
language gestures.

Peling et al. (2024) [7] developed an ASL detection sys-
tem for personal computers using MediaPipe for hand pose
detection and TensorFlow Lite for classification. The model
achieved 81% accuracy on a 10-word dataset and 73% on a
26-letter alphabet dataset. The authors reported technical chal-
lenges, including webcam stability issues with larger datasets
and the need for more adequate training data to improve
model performance, indicating limitations in its robustness and
scalability.

III. PROPOSED METHODOLOGY

A. Sign-Language Model Development Workflow

In Figure 1, we present the entire proposed-model de-
velopment pipeline. The first step is to collect the dataset,
which consists of images of BISINDO alphabet signs. Next,
preprocessing in the dataset is performed, by annotating the
images with bounding boxes and image augmentation for
producing various images from the original dataset.

Figure 1. Proposed model pipeline development

Afterward, we prepare the development notebook by in-
stalling the required libraries and packages. For experiment
tracking and management, we rely on ClearML, a machine
learning operations oriented platform that streamlines model
versioning, deployment, and performance monitoring [8]. The
hyperparameter tuning is performed when configuration of
the training environment is ready. This step is to determine
the right hyperparameters for each model, because the model
behaves differently with different hyperparameters on the
datasets.

Next, we train the model using the YOLOv11 architec-
ture, and evaluate its performance on the validation and
test datasets. After that, we perform postprocessing on the
trained model by applying quantization and adjustment in the
input size. Finally, we deploy the model to a mobile device
and evaluate its performance in real-time BISINDO alphabet
detection.

B. YOLO (You Only Look Once) Version 11 Object Detector

The YOLO (You Only Look Once) framework is a cutting-
edge approach to real-time object detection. It recasts detec-
tion as a single regression job that simultaneously predicts

Figure 2. YOLOv11 architecture.

bounding-box coordinates and class probabilities, in contrast
to previous classifier-based pipelines. The entire image is
processed by a single network in a single pass, allowing for
end-to-end performance optimization [9]. Many improvements
have been made to YOLO since its inception, the most
recent being YOLOv11. Figure 2 illustrates the three primary
components of the YOLOv11 model: the head, neck, and
backbone. The head generates the final predictions, the neck
accumulates and refines these characteristics across scales, and
the backbone extracts key feature representations.

In terms of module implementation, the YOLOv11 archi-
tecture offers a number of improvements over its predecessors
[10]. To extend YOLOv8’s capabilities, the standard C2f block
is replaced with a custom C3K2 CSP bottleneck that breaks the
original large convolution into two smaller kernels, reducing
compute and memory demands and thus accelerating inference
while maintaining expressive power. Moreover, the effective
SPPF pooling layer is kept in place to expand the receptive
field; however, a recently added C2PSA module takes its
place. This module sharpens feature maps for downstream
detection by fusing channel-wise and spatial-wise information
via a multi-head attention mechanism. Lastly, YOLOv11 uses
an adaptive anchor-frame approach that automatically adjusts
anchor sizes and aspect ratios based on real-time dataset
characteristics. This work used three variants of the YOLOv11
model: nano (n), small (s), and medium (m), to evaluate the
trade-offs among performance metrics, latency, and model
complexity under different resource situations.

C. Datasets

There are 26 classes in the dataset used in this experiment,
one for each static letter of the BISINDO alphabet. The data
was collected from a variety of sources, including frames in
YouTube videos, open-source photos on Roboflow Universe,
and Pusbisindo community café sessions. Each image was
manually annotated with bounding boxes, and the dataset was
further expanded through targeted augmentations to oversam-
ple minority classes. The augmentation strategy include rota-
tion, shearing, and noise injection, which improve robustness



of the model against variations in the input data, especially
handle for noisy input and the smaller object detection [11].
Our dataset comprises 2912 images with equal distribution
across the 26 classes, ensuring a balanced representation of
each letter. This dataset is split into training, validation, and
test sets, with 80% for training, 10% for validation, and 10%
for testing.

Figure 3. Example of dataset.

D. Hyperparameter Tuning Approach

Training the neural networks is also dependent on unchange-
able parameters called hyperparameters. These hyperparam-
eters are set before the main training process and remain
constant during the training [12]. Determining appropriate
hyperparameters is crucial for achieving optimal performance
of the model. Ultralytics YOLO provides hyperparameter
tuning by utilizing genetic algorithm, resulting an increase
in mAP@0.5 by 11.8 % for 700 iterations in COCO dataset
[13]. Tuning the hyperparameters requires a lot of resources
and time, therefore, it is important to provide a systematic
way to tuning the hyperparameters in this experiment. This
experiment will utilize an initial random search instead of
genetic algorithm to find the best hyperparameters.

E. Model Quantization

Post-training quantization reduces the memory footprint
and speeds up inference without retraining in deep learning
by converting models that were initially trained with 32-bit
floating-point weights into lower-precision forms. In order to
reduce multiply-accumulate operations and cut model size, this
compression typically uses 16-bit floating-point (FP16) or 8-
bit integer (INT8) formats. This allows the network to operate
on hardware with significantly smaller memory and processing
power budgets. Such FP16/INT8 post-training quantization,
when applied to YOLO models using TensorFlow Lite format
[14], reduces latency and energy consumption while maintain-
ing nearly the same accuracy as the original FP32 network,
allowing for real-time inference on edge devices [15].

F. Hardware and Computing Resources
All model training and hyper-parameter searches were

carried out on Google Colab, which provides a virtualized
Intel Xeon CPU, 13 GB RAM, and an NVIDIA Tesla T4
GPU (16 GB VRAM). Therefore, real-time inference was
deployed and evaluated on a Vivo V50 Lite device powered
by a MediaTek Dimensity 6300 CPU, 16 GB RAM, and a
Mali-G57 MC2 GPU. Deploying the model in TensorFlow
Lite format provides a lightweight runtime environment that
supports quantization, enabling efficient inference on edge and
mobile devices [14].

IV. EXPERIMENT AND ANALYSIS

Due to limitations in the dataset, specifically the number
of images available for each class, as well as constraints on
computing resources, the experiments will be conducted at
both the module level and the architecture level. This approach
aims to ensure a thorough evaluation of the model while
maintaining feasible computational costs.

Figure 4. Sample images and detection results from YOLOv11 model
inference on validation set.

To evaluate the performance of object detection models,
several key metrics are employed to measure prediction quality
and generalization. These metrics include Precision, Recall,
F1-score, mean Average Precision (mAP), and training loss. In
contrast, accuracy is unsuitable metric for object detection task
because the true negatives are undefined, making it misleading
due to the large number of uncounted background regions [15].

a) Precision: Precision quantifies the proportion of cor-
rectly predicted positive samples (true positives) out of all
predicted positives:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

TP means True Positive, and FP means False Positive. A
higher precision indicates fewer false positives in predictions.

b) Recall: Recall measures the proportion of actual pos-
itive samples that are correctly identified:

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

TP means True Positive, and FN means False Negative. A
higher recall means the model is able to detect most of the
actual objects.



c) F1-score: The F1-score is the harmonic mean of
precision and recall, providing a balanced metric between the
two:

F1-score = 2× Precision × Recall
Precision + Recall

(3)

This metric is useful when there is an uneven class distribution.
d) Mean Average Precision (mAP): mAP measures the

average precision across all classes and serves as a comprehen-
sive indicator of object detection performance. It is calculated
based on the precision-recall curve for each class. In this
study, mAP is evaluated using two thresholds: IoU@0.5 and
IoU@0.5:0.95, where IoU (Intersection over Union) quantifies
the overlap between the predicted bounding box and the
ground truth bounding box:

IoU =
Area of Overlap
Area of Union

(4)

A higher IoU indicates a more accurate prediction. The metric
mAP@0.5 considers a prediction correct if IoU exceeds 0.5,
while mAP@0.5:0.95 averages the mAP scores over multiple
IoU thresholds from 0.5 to 0.95 with a step of 0.05:

mAP =
1

𝑁

𝑁∑︁
𝑖=1

𝐴𝑃𝑖 (5)

where 𝐴𝑃𝑖 is the Average Precision for class 𝑖, and 𝑁 is the
number of object classes.

e) Loss Function:

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑐𝑙𝑠 + ℒ𝑙𝑜𝑐 + ℒ𝑑𝑓𝑙 (6)

The overall loss function, composed of three fundamental
components, serves both to guide model parameter optimiza-
tion and to monitor training convergence: ℒ𝑐𝑙𝑠, the class proba-
bility loss based on cross-entropy that quantifies the divergence
between predicted and ground truth class probabilities to im-
prove classification accuracy; ℒ𝑏𝑜𝑥, the bounding box regres-
sion loss that enhances localization precision by minimizing
the discrepancy between predicted and actual bounding boxes
using Intersection over Union (IoU); and ℒ𝑑𝑓𝑙, distributed focal
loss that enables the model to identify and prioritize difficult
samples, thus improving detection robustness in challenging
scenarios [10].

A. Hyperparameter Tuning Experiments and Results

In order to achieve optimal model performance, several
hyperparameters are adjusted first before the main training
experiment. The custom hyperparameters to be tuned include
initial learning rate (lr0), final learning rate factor (lrf), and
batch size. The evaluation metric based on the mAP@0.5:0.95,
as a standard evaluation metric for YOLO model performance
for COCO dataset, in validation set is used to determine
the best custom hyperparameters. To limit computational re-
sources, the custom hyperparameter search is conducted over
15 epochs before proceeding to the full training stage. Each
model variant (n, s, m) is trained with different combinations
of custom hyperparameters, and the results are summarized in
Table I.

Table I
EXPERIMENT RESULTS ON HYPERPARAMETER TUNING

Model lr0 lrf Batch mAP@0.5:0.95 (%)
YOLOv11n 0.01* 0.01* 32* 79.8

0.01 0.01 8 78.2
0.005 0.1 16 78.7
0.001 0.01 8 78.2

YOLOv11s 0.01* 0.01* 16* 81.2
0.01 0.01 8 80.2

0.005 0.1 16 80.5
0.001 0.01 8 80.8

YOLOv11m 0.01 0.01 8 79.6
0.01* 0.01* 16* 80.9
0.005 0.1 16 80.0
0.001 0.01 8 79.6

* Hyperparameters selected for the main training experiment.

B. Model Training and Evaluation

Table II
MAIN HYPERPARAMETERS FOR TRAINING YOLOV11 MODELS

Hyperparameter Value

Maximum Epochs 200
Optimizer AdamW
Patience 50
IoU Threshold 0.7
Image Size 640
Momentum 0.937

The main training experiment utilize custom hyperparameter
that selected from the prior hyperparameter tuning process.
The selected best-performing hyperparameters, listed in Ta-
ble I, were subsequently used in combination with a fixed set
of common training hyperparameters [16], as listed in Table II.
Other common hyperparameters not listed in Table II are set
to their default configurations. This experiment experiment
uses the validation set to monitor per-epoch metrics, with final
evaluation performed on the test set.

Table III
EVALUATION METRICS FOR MAIN TRAINING EXPERIMENT ON THREE

YOLOV11 MODEL VARIANTS

Metrics YOLOv11n YOLOv11s YOLOv11m
Validation-Precision (%) 98.3 98.2 97.0
Validation-Recall (%) 98.4 99.0 99.1
Validation-F1-Score (%) 98.3 98.6 98.0
Validation-mAP@0.5:0.95 (%) 82.7 83.1 83.0
Validation-mAP@0.5 (%) 99.0 99.2 99.3
Test-Precision (%) 97.77 98.14 99.2
Test-Recall (%) 98.40 98.58 99.3
Test-F1-Score (%) 98.1 98.4 99.2
Test-mAP@0.5:0.95 (%) 81.7 81.5 82.3
Test-mAP@0.5 (%) 99.5 99.5 99.5
Size (MB) 5.3 18.3 38.7
Loss 1.344 1.813 1.505



As shown in Table III, the YOLOv11s variant achieves
the highest validation performance with a mAP@0.5:0.95 of
83.1%. YOLOv11m exhibits the best generalization capabil-
ities on the test set, achieving a mAP@0.5:0.95 of 82.3%,
suggesting greater detection performance on unseen samples.

C. Model Postprocessing

Postprocessing techniques are applied to the trained models
primarily to reduce model size and accelerate inference speed.
In this experiment, two main postprocessing methods are
used: model quantization and input image resolution resizing.
The original input images captured from the camera have a
native resolution of 640×480 pixels, which does not match
the square input shape expected by the YOLOv11 model.
Therefore, before being passed into the model, each image
undergoes a preprocessing step that involves center-cropping
to a square aspect ratio (e.g., 480×480), followed by resizing to
the target input dimensions. Thus, each square-cropped frame
is resized to correspond with the YOLOv11 model’s Image
Size parameter (224, 352, or 480) before to inputting into the
network.

Table IV
PERFORMANCE METRICS OF YOLOV11 VARIANTS ACROSS

RESOLUTIONS AND MODEL FORMATS.

Model Metric (%) float16 int8
224 352 480 224 352 480

YOLOv11n

mAP@0.5 95.6 99.5 99.5 89.8 99.5 99.4
mAP@0.5:0.95 66.5 79.7 81.2 60.0 77.7 79.5
Precision 94.3 98.9 98.7 89.5 98.1 98.0
Recall 86.3 99.0 99.1 80.0 98.7 98.8
F1 89.4 98.9 98.9 83.2 98.3 98.4
Size(MB) 5.1 5.2 5.3 2.7 2.7 2.9

YOLOv11s

mAP@0.5 96.9 99.5 99.5 95.2 99.5 99.4
mAP@0.5:0.95 68.9 79.8 80.5 64.1 76.7 78.3
Precision 95.0 98.6 98.6 89.2 98.4 98.6
Recall 91.7 99.2 99.3 91.3 99.1 99.5
F1 93.0 98.9 99.0 89.6 98.7 99.1
Size(MB) 18.1 18.1 18.5 9.2 9.2 9.6

YOLOv11m

mAP@0.5 97.2 99.5 99.5 95.3 99.3 99.5
mAP@0.5:0.95 71.0 80.7 81.2 66.5 77.6 78.9
Precision 93.8 98.9 99.0 94.0 98.9 98.5
Recall 93.4 99.1 99.1 88.0 99.1 99.2
F1 93.2 99.0 99.1 89.9 99.0 98.8
Size(MB) 38.4 38.6 38.5 19.4 19.6 19.5

Table IV shows that applying quantization (from float32
to int8) effectively reduces the model size of YOLOv11
variants by approximately 50%, which significantly benefits
deployment scenarios with limited storage or computational
resources. The performance that indicated by evaluation met-
rics shows only minor degradation at higher image resolutions
(352 and 480 pixels) despite the notable reduction in model
size. At the lower resolution of 224 pixels, the YOLOv11

models experience a noticeable drop in performance, particu-
larly in mAP@0.5:0.95, which is not intended for use in the
real-time experiment.

D. Real Time Experiment

To evaluate the practical deployment capabilities of our
BISINDO alphabet detection system, we conducted compre-
hensive real-time performance experiments on mobile devices
utilizing GPU acceleration through TensorFlow Lite [17].
The experiments focused on assessing the trade-offs between
model complexity, quantization techniques, and inference per-
formance across different input resolutions, leveraging the
GPU capabilities mentioned in the previous section to optimize
inference in mobile environment.

Table V
LOAD AND INFERENCE TIME ACROSS QUANTIZATION FORMATS AND

INPUT SIZES

Model Quantization Input
Size

Load
Time (s)

Frame per
Second (FPS)

YOLOv11n

float16 352 8.1 10.2
480 13.5 5.2

int8 352 6.9 10.2
480 12.7 5.2

YOLOv11s

float16 352 6.7 5.1
480 17.6 3.2

int8 352 6.5 5.0
480 19.57 3.5

YOLOv11m

float16 352 11.5 3.5
480 11.9 2.5

int8 352 12.3 3.5
480 9.7 2.5

The performance measurements displayed in Table V offer
critical insights into the viability of real-time implementation.
All values reported are averaged over multiple trials to en-
sure consistency. Notably, YOLOv11n with an input size of
352×352 achieves the highest inference speed, maintaining
10 frames per second (FPS) across both float16 and int8
quantization formats. This outcome identifies YOLOv11n-352
as the most suitable option for real-time applications when
throughput is the foremost priority.

While quantization exerts a negligible influence on inference
and loading durations, it presents a performance trade-off
that merits consideration. Empirical findings from prior trials
demonstrate that although quantization reduces model size,
it may also marginally impair detection performance, as evi-
denced by the mean Average Precision (mAP). Nevertheless,
for this specific deployment scenario, the trade-off remains
acceptable. The real-time interface, as shown in Figure 5,
displays detection results by overlaying bounding boxes and
composing recognized letters into words, while also providing
configurable settings such as confidence threshold and camera
configuration adjustment.



Figure 5. Mobile Interface for BISINDO Alphabet Real-time Detection

V. CONCLUSION

This paper proposes and implements a mobile-based ap-
proach to BISINDO alphabetic sign-language recognition
based on the YOLOv11 (You Only Look Once) object-
detection algorithm, detailing a comprehensive methodology
that combines optimized object-detection networks to de-
liver reliable real-time performance on GPU-powered hand-
held devices. The trained YOLOV11 models exhibit robust
object-detection performance. Specifically, the medium-sized
variant, YOLOV11M, attains a mean average precision of
mAP0.5:0.95 = 82.3% and a precision of 99.2%, while the
more compact YOLOV11S and YOLOV11N variants each
maintain mAP0.5:0.95 > 80%. In addition, post-training
quantisation and the adoption of reduced input resolutions
(352 × 352 and 480 × 480 pixels) lower both model size
and inference latency with negligible performance loss. These
optimisations ensure that alphabetic BISINDO recognition
remains reliable and responsive on mobile environment, sus-
taining throughput in the range of 2–10 fps.

REFERENCES

[1] N. Tarigopula, S. Tornay, S. Muralidhar, and M. Magimai.-Doss,
“Towards accessible sign language assessment and learning,” in
Proceedings of the 24th ACM International Conference on Multimodal
Interaction (ICMI ’22), ser. ICMI ’22. New York, NY, USA:
Association for Computing Machinery, Nov. 2022, p. 1. [Online].
Available: https://doi.org/10.1145/3536221.3556623

[2] World Health Organization, “Deafness and hearing loss,” https://www.
who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss, 2024,
accessed: July 1, 2025.

[3] R. Sutjiadi, “Android-based application for real-time indonesian sign
language recognition using convolutional neural network,” TEM Journal,
vol. 12, pp. 1541–1549, 08 2023.

[4] A. Karn, “Artificial intelligence in computer vision,” International
Journal of Engineering Applied Sciences and Technology, vol. 6, pp.
249–254, 07 2021.

[5] A. Imran, M. Shashishekhara Hulikal, and H. A. A. Gardi, “Real time
american sign language detection using yolo-v9,” 2024.

[6] R. Arlin and R. Munir, “The development of push up counter android
application with computer vision,” 2023.

[7] I. B. A. Peling, I. M. P. A. Ariawan, and G. B. Subiksa, “Deteksi bahasa
isyarat menggunakan tensorflow lite dan american sign language (asl),”
Jurnal Krisnadana, vol. 3, pp. 198–205, 2024.

[8] ClearML, “Clearml research report: Mlops in 2023,”
https://6165398.fs1.hubspotusercontent-na1.net/hubfs/6165398/
ClearML%20Research%20Report_%20MLOps%20in%202023.pdf,
2023, accessed: July 7, 2025.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” arXiv:1506.02640 [cs.CV],
2016.

[10] Z. He, K. Wang, T. Fang, L. Su, R. Chen, and X. Fei, “Comprehensive
performance evaluation of yolov11, yolov10, yolov9, yolov8 and yolov5
on object detection of power equipment,” arXiv:2407.15904 [cs.CV],
2024.

[11] M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, and K. Cho, “Aug-
mentation for small object detection,” arXiv:1902.07296 [cs.CV], 2019.

[12] T. Yu and H. Zhu, “Hyper-parameter optimization: A review of algo-
rithms and applications,” arXiv:2003.05689, 2020.

[13] R. Sharma and J. Hough, “Hyperparameter optimization on yolov8
model for training costs reduction,” pp. 25–30, Jan. 2025, accessed via
ResearchGate.

[14] I. L. Orăşan, C. Seiculescu, and C. D. Caleanu, “Benchmarking
tensorflow lite quantization algorithms for deep neural networks,” in
Proceedings of the 2022 IEEE 16th International Symposium on Applied
Computational Intelligence and Informatics (SACI), 2022, pp. 221–226.

[15] A. Saxena, A. K. Bishwas, A. A. Mishra, and R. Armstrong, “Com-
prehensive study on performance evaluation and optimization of model
compression: Bridging traditional deep learning and large language
models,” arXiv:2407.15904 [cs.LG], 2024.

[16] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv:1609.04747 [cs.LG], 2017.

[17] J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi,
R. Sarokin, A. Kulik, and M. Grundmann, “On-device neural net
inference with mobile gpus,” in Proceedings of the Efficient Deep
Learning for Computer Vision Workshop (ECV), CVPR 2019, 2019,
workshop on Computer Vision and Pattern Recognition (CVPR).

https://doi.org/10.1145/3536221.3556623
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://6165398.fs1.hubspotusercontent-na1.net/hubfs/6165398/ClearML%20Research%20Report_%20MLOps%20in%202023.pdf
https://6165398.fs1.hubspotusercontent-na1.net/hubfs/6165398/ClearML%20Research%20Report_%20MLOps%20in%202023.pdf

	Introduction
	Related Work
	Proposed Methodology
	Sign-Language Model Development Workflow
	YOLO (You Only Look Once) Version 11 Object Detector
	Datasets
	Hyperparameter Tuning Approach
	Model Quantization
	Hardware and Computing Resources

	Experiment and Analysis
	Hyperparameter Tuning Experiments and Results
	Model Training and Evaluation
	Model Postprocessing
	Real Time Experiment

	Conclusion

