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Abstract—Music notation serves as a standardized visual 

language for preserving musical works across generations. 

Despite advances in digital technology, a significant number of 

music scores remain in printed form, highlighting the need for 

effective digitization methods to support documentation, 

education, and distribution. 

This study presents the implementation of Optical Music 

Recognition (OMR) for a web-based application to convert 

monophonic printed music notation images into digital formats: 

MusicXML and MIDI. The system integrates image 

preprocessing to enhance input quality and comprises image 

segmentation, OMR model prediction, conversion and correction 

to MusicXML, and subsequent conversion to MIDI. An existing 

pretrained OMR model from Calvo-Zaragoza & Rizo (2018), 

trained on the PrIMuS dataset, was adopted as the recognition 

backbone. This model achieved a Character Error Rate (CER) of 

3.88% and Sequence Error Rate (SER) of 58.22%. To further 

improve performance, a voting mechanism adapted from 

ROVER method was applied, generating five prediction variants 

with a 0.1 dropout rate during inference, resulting in a reduced 

CER of 2.99% and SER of 41.86%. 

System evaluation shows that the voting mechanism 

effectively corrects prediction errors, particularly in pitch 

determination, but is less effective for images with thick, closely 

spaced staff lines. With improved input image quality, the 

proposed system shows strong potential as a reliable solution for 

printed music score digitization. 

Keywords—Optical Music Recognition (OMR), music score 

digitization, MusicXML, MIDI 

I.  INTRODUCTION  

Music notation serves as a universal visual representation 
used to preserve and communicate musical ideas across 
different cultures and historical periods. It is a medium 
between composers and performers, conveying musical 
interpretation and reproduction of musical works [1]. By 
presenting musical elements into a standardized symbolic 
language, music notation allows continuous appreciation, 
study, and performance of musical compositions while 
retaining their artistic and expressive intents envisioned by the 
composers. 

Historically, musical notation has been written on paper. 
However, the advancement of digital technology has 
introduced new methods for representing music in machine-
readable formats, which support further editing, sharing, 
playback, and analysis. Among these, MusicXML became a 
widely adopted standard due to its structured, flexible, and 
interoperable design [2]. The digital representation of music 
offers considerable advantages for modern musicians, 
educators, and archivists, increasing the demand for efficient 
methods to convert printed scores into digital formats. 

Despite the growing need for digital music archives, 
numerous existing musical works remain archived as printed 
music sheets. The manual transcription of these scores into 
digital form is often time-consuming and requires specialized 
knowledge in music notation. To address this challenge, 
Optical Music Recognition (OMR) technology has been 
developed to automate the conversion process. OMR enables 
computers to recognize and interpret musical symbols from 
scanned images using pattern recognition, transforming them 
into structured formats such as MusicXML or MIDI [3]. 

While OMR systems have shown considerable progress in 
recent years, issues related to recognition accuracy and 
usability persist. Many existing models struggle with noise, 
dense notation, and low-quality scans, which can result in 
misinterpretations. For example, Acedo and Josep [4] report 
that their OMR system has difficulty processing scores with 
high levels of visual noise. Similarly, Wel and Ullrich [5] 
observed that their model's accuracy declines with dense or 
overlapping notations, and the system developed by Alfaro-
Contreras et al. [6] demonstrates limited effectiveness on 
distorted or degraded images. 

To address these limitations, this research proposes a web-
based application that integrates an improved OMR model 
tailored for printed monophonic music notation. The system 
employs image preprocessing techniques to enhance input 
quality and reduce detection errors. A voting-based inference 
mechanism adapted from ROVER method is implemented to 
increase prediction accuracy by aggregating multiple outputs. 
The web-based application supports the generation of corrected 
MusicXML and MIDI formats. In addition to its practical 
functionality, the system is designed with accessibility in mind, 
making it a useful educational tool for a broader audience. This 
work contributes to the advancement of OMR systems by 
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offering a solution that is not only accurate and robust but also 
user-friendly. 

II. LITERATURE REVIEW 

A. Common Music Notation 

Common Music Notation (CMN) is a standardized visual 
system for representing music, enabling communication of 
musical ideas across cultures and eras [7] [8]. Originating 
around 650 AD to record musical works [9], CMN has 
developed into the modern notation system used worldwide. It 
consists of interrelated graphical symbols whose meaning 
depends on spatial placement and contextual relationships, 
including notes—defined by pitch, duration, intensity, and 
timbre [10]—with visual features such as noteheads, stems, and 
flags indicating duration. Pitch is determined by vertical 
placement on the staff lines, the use of clefs (treble, bass, alto, 
tenor), and ledger lines for extended ranges. Accidentals 
(sharp, flat, natural) alter pitch by semitone intervals, while key 
signatures apply these alterations consistently throughout a 
piece. Rhythm is conveyed through note values, rests, and 
duration extensions such as dots or ties, with measures 
grouping beats according to time signatures [10]. The 
interpretation of each symbol depends on its relationship with 
other symbols and the notational context, making CMN a 
complex system compared to alternative notation systems. 

B. Digital Music Representations 

Music notation can be represented digitally in several 
formats, among which MusicXML and Musical Instrument 
Digital Interface (MIDI) are widely used. MusicXML, 
introduced in 2003, is a universal standard for representing 
common music notation across various music software 
applications [11]. Based on XML, it encodes semantic 
information about how music is written and performed, 
enabling both human and machine readability [11] [12]. 
MusicXML is primarily designed for the complete preservation 
and exchange of digital sheet music. 

MIDI, in contrast, is a communication protocol established 
in 1983 for recording and controlling synthesizers and other 
electronic instruments [13]. Rather than storing audio or full 
notation, MIDI encodes performance instructions—such as 
pitch, velocity, and duration—through discrete digital 
messages [14]. These messages facilitate real-time interaction 
between instruments and software, making MIDI particularly 
suited for live performance and instrument control. Whereas 
MusicXML serves as a comprehensive visual and semantic 
representation of music for score distribution, MIDI focuses on 
performative representation without written visual notation. 

C. Digital Image Processing 

Digital image processing refers to the use of digital 
computers to process digital images, defined as continuous 
functions over a two-dimensional field with intensity or gray-
level values [15]. It encompasses image acquisition, sampling, 
quantization, transformation, and enhancement in both spatial 
and frequency domains to improve image quality and facilitate 
accurate interpretation. Specific techniques relevant to music 

notation recognition include perspective transformation to 
correct geometric distortion and align the viewpoint with the 
target plane for improved object recognition and data 
augmentation [16], denoising to remove visual artifacts (e.g., 
noises and uneven lighting) using filters such as mean, median, 
or alpha-trimmed mean, and binarization to convert grayscale 
or color images into binary form via global, local, or adaptive 
thresholding methods, such as Otsu’s algorithm for bimodal 
histograms [17]. 

D. Computer Vision 

Computer vision, a subfield of artificial intelligence, aims 
to extract meaningful information from visual components by 
emulating the human brain’s perception and interpretation of 
visual stimuli [18]. It integrates concepts from digital image 
processing, pattern recognition, artificial intelligence, and 
computer graphics, with specific techniques tailored to the 
application domain and data type. Core processes in computer 
vision include image acquisition, segmentation, understanding, 
and feature extraction. Pattern recognition, a key branch of 
computer vision, focuses on identifying objects by 
transforming images to improve interpretability and quality, 
often in conjunction with segmentation techniques that divide 
images into homogeneous pixel regions based on attributes 
such as color, intensity, and texture [19]. 

Deep learning, a subset of machine learning, models high-
level data abstractions using multiple layers of artificial 
neurons [20]. Its effectiveness in large-scale visual object 
recognition has been demonstrated through various 
architectures, most notably Convolutional Neural Networks 
(CNNs), Recurrent Neural Networks (RNNs), and 
Convolutional Recurrent Neural Networks (CRNNs). CNNs 
are optimized for image-based tasks through convolutional 
layers for local feature extraction, ReLU activation for non-
linearity, pooling for spatial downsampling, fully connected 
layers for feature integration, and softmax for probabilistic 
classification [21]. RNNs, in contrast, are suited for sequential 
data by incorporating temporal dependencies through recurrent 
connections and hidden layers [22]. CRNNs combine the 
spatial feature extraction of CNNs with the temporal modeling 
of RNNs, making them highly effective for tasks requiring both 
spatial and sequential analysis, such as speech recognition, text 
recognition, and Optical Music Recognition (OMR) [23]. 
While CRNNs offer superior representational power, they 
demand greater computational resources and careful training 
strategies. 

E. Optical Music Recognition 

Optical Music Recognition (OMR) is a research domain 
focused on the reading of music notation computationally [10] 
Definitions of OMR vary, ranging from task-specific 
interpretations, such as converting musical scores into MIDI, to 
broader views positioning OMR as a specialized form of 
Optical Character Recognition (OCR) for music scores. 
Traditional OMR pipelines involve preprocessing of sheet 
music, staff line detection and removal, musical object 
identification, classification, and reconstruction of the music 
sheet [24]. Modern approaches utilize deep learning 
architectures, including CNNs, RNNs and Sequence-to-



Sequence models, to address the translation of music notation 
within its contextual framework [5]. 

The performance of OMR systems can be assessed using 
various metrics, depending on the approach. For end-to-end or 
string-based OMR systems, Character Error Rate (CER), 
defined in (1), and Sequence Error Rate (SER), are common 
metrics. CER measures the average proportion of symbol 
edits—substitutions ( ), deletions ( ), and insertions ( )—
transform a predicted sequence into the ground truth, 
normalized by the total number of symbols ( ). Alternatively, 
SER evaluates the proportion of predicted sequences that 
contain at least one error (E) relative to the total number of 
sequences (N) [25].  
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SER is considered more stringent, as it only counts 
sequences as correct when they match the reference perfectly, 
whereas CER evaluates symbol-level accuracy. This distinction 
makes SER particularly suitable for semantic reconstruction 
tasks, while CER remains valuable for low-level symbol 
recognition. 

F. Error Reduction Methods in Recognition System 

Error reduction in recognition systems has been approached 
through both output-level and model-level techniques. One 
prominent output-level method is Recognizer Output Voting 
Error Reduction (ROVER), introduced by NIST in 1997, 
which combines transcriptions from multiple recognizers and 
applies a voting mechanism to select the most frequent word 
choice, thereby reducing the Word Error Rate (WER) 
compared to individual systems [26]. At the model level, 
dropout regularization has been employed in neural 
architectures such as Long Short-Term Memory (LSTM) and 
Recurrent Neural Networks (RNN) to mitigate overfitting 
during training. Past studies presented its effectiveness for 
lowering error rates in speech recognition systems trained with 
Connectionist Temporal Classification (CTC) [27]. 

III. SOLUTION DESIGN 

This study proposes a web-based application for converting 
printed monophonic common music notation image into 
MusicXML, MIDI, and PDF formats. The system integrates 
image preprocessing, a fine-tuned OMR model, post-
processing corrections, and a user-friendly web interface. Fig. 1 
illustrates the overall workflow, begins with an input music 
sheet image and proceeds through perspective transformation, 
denoising, automatic rotation, and binarization. The processed 
image is segmented into individual staff lines and passed 
through a fine-tuned OMR model for symbol prediction. The 
prediction output encoding is converted into MusicXML and 

refined through a correction algorithm to comply with standard 
common music notation rules and subsequently converted into 
MIDI. The system outputs MusicXML, MIDI, and PDF files 
that can be downloaded by the user.  

 

 

Fig. 1. Gerenal architecture and workflow  

 

To address the problem of reduced recognition accuracy in 
challenging image conditions, the proposed solution integrates 
an image preprocessing module directly into the web 
application. This module enables users to enhance the captured 
score image quality prior to OMR processing, including 
correcting skews by perspective transformation and automatic 
rotation, denoising with Gaussian filter, and binarization using 
Otsu method or thresholding by value chosen by the user. 
Automatic rotation is done after perspective transformation by 
choosing the best angle, chosen by analyzing the pixel 
distribution histogram to see which angle the staff lines aligned 
horizontally the most. This step ensures that the input to the 
recognition model is both visually clear and structurally 
consistent. 

To mitigate reduced recognition accuracy under 
challenging input image conditions, the proposed solution 
incorporates an image preprocessing module within the web 
application. The module enhances the quality of the captured 
score image before OMR processing by applying several 
operations:  

• perspective transformation to correct skewed images; 

• automatic rotation to align staff lines horizontally, 
performed after perspective correction by selecting the 
orientation that maximizes horizontal alignment of staff 
lines, as determined from the pixel distribution 
histogram; 

• denoising with Gaussian filtering; and 



• binarization using either Otsu’s method or a fixed 
threshold specified by the user.  

These preprocessing steps ensure that the input to the 
recognition model is visually clear and structurally consistent, 
thereby improving subsequent symbol recognition. 

Furthermore, staff line segmentation was performed to 
divide the musical score image into individual lines images, as 
the OMR model is limited to processing images containing a 
single staff at a time. A standard staff consists of five 
horizontal lines, with additional ledger lines appearing 
optionally above or below them. The segmentation process 
begins by projecting the pixel values of the binary image onto 
the vertical axis to generate a distribution histogram. Peaks in 
this histogram indicate the locations of staff lines, which are 
used to determine segmentation boundaries. For potential 
ledger lines, margins are added above and below each 
identified region. The resulting segments contain isolated 
staves suitable for OMR processing. An example of this 
segmentation procedure is illustrated in Fig. 2. 

 

 

(a) 

 

(b) 

Fig. 2. PrIMuS dataset example. (a) ideal image. (b) distorted image. (c) 

semantic encoding. (d) agnostic encoding. 

A. Dataset 

The OMR model in this study was trained using the Printed 
Images of Music Staves (PrIMuS) dataset [28], which contains 
87,678 music score fragments. Each fragment consists of two 
measures with clef, key signature, and time signature 
information, and is provided in multiple forms: ideal images, 
distorted images, Music Encoding Initiative (MEI) format, 
Plaine and Easie (PAE) code, as well as semantic and agnostic 
encoding. For training and evaluation, the dataset offers two 
types of ground truth encodings: semantic and agnostic. 
Semantic encoding represents the score as a sequence of music 
symbols with musical meaning, while agnostic encoding treats 

each notation element as an isolated graphical symbol without 
contextual interpretation. 

Fig. 3 visualizes an example of both encodings for a score 

fragment containing three flats, corresponding to an E♭ major 
key signature. In the semantic representation, this is encoded as 
a single token (keySignature-EbM), while the agnostic 
representation encodes each flat individually (accidental.flat-
L3, accidental.flat-S4, accidental.flat-S2). Although the 
agnostic representation provides a finer level of granularity and 
is useful for handling non-standard notations, it is generally 
more verbose. For end-to-end OMR systems aimed at 
producing structured digital music formats such as MusicXML 
or MIDI, semantic encoding is more suitable, as it preserves 
the contextual and sequential relationships necessary for 
musical interpretation. 

 
(a) 

 
(b) 

clef-G2, keySignature-EbM, timeSignature-3/4, note-
Bb5_quarter, note-Eb5_eighth, note-Bb5_eighth, note-
C6_eighth, note-Bb5_eighth, barline, note-Ab5_eighth, 
note-Ab5_eighth, rest-sixteenth, note-Ab5_sixteenth, 
note-G5_sixteenth, note-Ab5_sixteenth, note-
Bb5_sixteenth, note-Ab5_sixteenth, note-G5_sixteenth, 
note-Ab5_sixteenth, barline  

(c) 
clef.G-L2, accidental.flat-L3, accidental.flat-S4, 
accidental.flat-S2, digit.3-L4, digit.4-L2, note.quarter-
S6, note.beamedRight1-S4, note.beamedBoth1-S6, 
note.beamedBoth1-L7, note.beamedLeft1-S6, barline-L1, 
note.beamedRight1-L6, note.beamedLeft1-L6, 
rest.sixteenth-L3, note.beamedRight2-L6, 
note.beamedBoth2-S5, note.beamedLeft2-L6, 
note.beamedRight2-S6, note.beamedBoth2-L6, 
note.beamedBoth2-S5, note.beamedLeft2-L6, barline-L1  

(d) 

Fig. 3. PrIMuS dataset example. (a) ideal image. (b) distorted image. (c) 

semantic encoding. (d) agnostic encoding. 

B. OMR Model Experiment Design 

The OMR model is based on a selected pretrained CRNN 
architecture, chosen after comparative evaluation against 
CNNs and RNNs individually. While CNNs effectively extract 
spatial features and RNNs capture sequential dependencies, the 
CRNN combines these advantages, enabling an end-to-end 
recognition that can capture both the spatial and temporal 
aspects of music notation. The CNN layers extract visual 
features from individual notation symbols, then the RNN layers 
process the sequential structure to reconstruct the musical 
content. 

The experiment began with dataset preparation, which 
involved splitting the data into training and validation subsets. 
Each image was normalized and resized to match the model’s 
input requirements, followed by preprocessing to ensure the 
data quality. Data augmentation was also applied, introducing 
transformations such as blurring, contrast and brightness 



adjustments, sharpening, and noise addition. This process 
aimed to enhance the model’s robustness by increasing data 
variability. After the dataset preparation, the pretrained OMR 
model was loaded and fine-tuned to adapt to variations in 
notation style and symbol representation. This transfer learning 
strategy allowed the model to leverage previously learned 
representations while significantly reducing training time and 
computational cost. Upon completing training, the model was 
evaluated using transcription quality metrics against the ground 
truth: Character Error Rate (CER), defined in (1), and 
Sequence Error Rate (SER), defined in (2). Finally, the trained 
model weights and training checkpoints were stored to support 
reproducibility and further experimentation. 

C. Post-Processing with Voting Mechanism Design 

To reduce error rates and enhance model performance, 
postprocessing was applied using a voting-based mechanism 
inspired by the Recognizer Output Voting Error Reduction 
(ROVER) method [26]. This approach combines multiple 
prediction outputs and selects the token with the highest 
occurrence frequency as the final result. However, since the 
underlying model is deterministic and produces identical 
outputs for the same input image, prediction variability was 
generated by enabling dropout during inference. This 
technique, commonly referred to as Monte Carlo dropout, 
allows stochastic variations in predictions and has been shown 
to improve ensemble robustness [27]. 

Experiments were conducted by varying the number of 
aggregated predictions 𝑁 and the dropout rate . Following 

prior work [27], a baseline configuration of 𝑁 = 4 and  = 0.2 
was adopted, while additional combinations were also tested 
with 𝑁 ∈ {4, 5} and  ∈ {0.2, 0.1, 0.05}. Each input image 

was processed 𝑁 times according to the chosen parameters, and 
the final output sequence was obtained by majority voting at 
the token level. 

D. MusicXML Conversion and Correction Algorithm Design 

The semantic encoding predictions produced by the OMR 
model were converted into MusicXML through a parsing 
process that mapped each semantic token to its corresponding 
XML representation, as illustrated in Fig. 4. This step enabled 
the output of the recognition model to be transformed into a 
widely supported digital notation format, consistent with 
existing standards. 

 

 

Fig. 4. Semantic encoding to MusicXML mapping example. 

 

To ensure the generated MusicXML adhered to common 
music notation rules, a correction algorithm was implemented: 

• clef adjustment by matching the predicted clef with 
typical instrument ranges (e.g., G2 for violin or flute, F4 
for cello or tuba), preventing octave misalignments 
caused by incorrect clef predictions; 

• measure duration validation to enforce rhythmic 
consistency by computing note and rest durations 
relative to the time signature; overfilled measures were 
automatically split using barlines with tied notes applied 
when durations exceeded the remaining capacity; and 

• key signature-based pitch alteration to ensure that 
sharps and flats were consistently applied across the 
score according to the predicted key signature (e.g., F♯ 
and C♯ in D major), unless explicitly modified by 
accidentals. 

These corrections preserved both the structural and tonal 
integrity of the transcribed score, serving more accurate 
interpretation in downstream applications. 

E. Web Application Design 

The proposed web-based application consists of the 
frontend and the backend, as illustrated in Fig. 1. The frontend 
provides user interaction through four modules: image upload, 
image preprocessing, MusicXML viewer, and PDF generator 
from MusicXML. The front end communicates with the 
backend via APIs for computational processing. The backend 
is composed of four modules: image (staff line) segmentation, 
music notation prediction using the OMR model, conversion of 
semantic encoding into MusicXML with an integrated 
correction function, and generation of MIDI files from 
MusicXML. 

The system does not require a permanent database, since 
both the input image and OMR results are processed within a 
single session and discarded afterward. All data are stored 
temporarily in memory during processing and are deleted once 
the output has been displayed or downloaded. This design 
minimizes storage requirements while ensuring efficient, 
session-based processing. 

IV. IMPLEMENTATION AND RESULTS 

The implementation is divided into two main stages: model 
development and web application development. The model 
development stage includes dataset preparation, model training 
and evaluation, as well as post-processing. The experiments 
were conducted in a Kaggle notebook environment with a P100 
GPU, using Python and several supporting libraries, including 
Tensorflow, OpenCV Python, Supervision, and NumPy. The 
implemented OMR model was limited to predicting only a 
subset of musical symbols, including clefs, time signatures, key 
signatures, barlines, notes, rests, rhythmical symbols, and 
accidentals. Other musical notations, such as ornaments, 
dynamics, and textual annotations, were not included in the 
scope of this work. 



A. Dataset Preparation 

The dataset preparation stage ensured that the data were 
suitable for training the model. This experiment uses PrIMuS 
dataset, consisting of 87,678 image snippets of music scores 
with ground-truth semantic labels. Semantic labels were first 
validated against a predefined vocabulary, which mapped each 
symbol into a numerical index and vice versa. The vocabulary 
was restricted to clefs, time signatures, key signatures, barlines, 
notes, rhythmic symbols, and accidentals, excluding 
ornaments, articulations, text, and other musical elements. 

The dataset was then randomly split into 90% for training 
and 10% for validation. Each score image was converted to 
grayscale, normalized, and resized before preprocessing, which 
included brightness and contrast adjustment, sharpening, 
blurring, and noise injection to enhance variability. To improve 
efficiency, data were loaded in batches and folds, enabling 
staged training without exceeding memory capacity. 
Additionally, multithreading was applied to accelerate the 
loading of images and labels. 

B. Model Training and Evaluation 

In this study, we adopted the OMR model proposed by 
Calvo-Zaragoza & Rizo [25], which achieved strong 
recognition performance of 3.88% CER and 58.22% SER on 
the evaluation dataset. Preliminary experiments with training 
from scratch using EfficientNetB0 and fine-tuning approaches 
were conducted, but these models exhibited significantly 
higher error rates compared to the pretrained model. 
Consequently, the pretrained model was selected and integrated 
into the proposed system. 

C. Model Post-Processing 

As described in Section III-C, a voting mechanism with 
stochastic prediction generation was designed to enhance 
recognition performance. Table I summarizes the experimental 
results obtained by varying the number of aggregated 
predictions (𝑁) and dropout rates ( ) on the inference. The 

configuration with 𝑁 = 5 and  = 0.1 achieved the best 
performance, reducing the Sequence Error Rate (SER) from 
58.22% to 41.86% and the Character Error Rate (CER) from 
3.88% to 2.99%. This demonstrates that the proposed voting 
strategy substantially improves recognition robustness by 
reducing both sequence-level and symbol-level errors by 
finding consistency across multiple prediction variants. 

TABLE I.  POST-PROCESSING EXPERIMENT RESULT 

Model Configuration Evaluation 

𝑁  CER SER 

Baseline (without voting) 3.8843% 58.2183% 

4 0.2 3.2243% 43.8120% 

4 0.1 3.0655% 42.5915% 

4 0.05 3.0698% 42.7512% 

5 0.2 3.1459% 42.4204% 

5 0.1 2.9928% 41.8615% 

5 0.05 2.9990% 42.3178% 

 

It can be observed that the error rates decrease as the 
dropout rate is reduced from  = 0.2 to  = 0.1, indicating 
that a moderate level of stochasticity provides sufficient 
variability to generate complementary prediction variants while 
maintaining prediction reliability. However, when the dropout 
rate is further reduced to  = 0.05, the performance slightly 
degrades compared to  = 0.1. This behavior indicates the 
reduced diversity of predictions: with too little dropout, the 
prediction variants become overly similar, limiting the 
effectiveness of the voting mechanism. In contrast, a higher 
dropout rate such as 0.2 introduces excessive noise, which 
negatively affects the quality of individual predictions. Hence, 

 = 0.1 offers the best trade-off between diversity and 
reliability of predictions, resulting in the most effective voting 
mechanism configuration. 

D. Web Application 

The web application described in Section II-E was 
implemented using a client-server architecture. The frontend 
was developed with Next.js, providing modules for image 
upload, preprocessing preview, MusicXML visualization, and 
PDF generation, along with download functionality for 
MusicXML, MIDI, and PDF outputs. The frontend was 
implemented in TypeScript, supported by libraries including 
Tailwind CSS and Shadcn UI for user interface styling, 
OpenCV.js for client-side image processing, 
OpenSheetMusicDisplay for MusicXML rendering, and jsPDF 
with svg2pdf.js for score export. 

The backend was implemented with FastAPI, which uses  
RESTful APIs to handle computational tasks such as staff-line 
segmentation, OMR model inference, semantic encoding 
conversion to MusicXML with correction, and MIDI 
generation. The backend was developed in Python with 
supporting libraries, including TensorFlow and Keras for 
model inference, and Music21 for MIDI file generation. 

To ensure efficient processing, the system employs session-
based data management, where all input and output data are 
handled in memory during execution and discarded upon 
completion. This eliminates the need for persistent storage and 
minimizes computation overhead. 

The application was tested using a set of monophonic 
music notation images (with details presented in Section V). 
The implementation demonstrates that the system is capable of 
generating MusicXML, MIDI, and PDF outputs in real time, 
confirming its effectiveness as an accessible OMR tool through 
a web interface. 

V. TESTING AND EVALUATION 

The proposed OMR system was evaluated using the CER 
and SER as metrics, computed according to (1) and (2). The 
evaluation employed four test images consisting of short 
musical notation sequence captured with a mobile phone 
camera and uploaded via the web application. Each input was 
processed through preprocessing, staff-line segmentation, 
OMR prediction, and conversion to MusicXML, followed by 
application of the correction algorithm. Reference labels were 
defined in semantic encoding form, enabling a direct 
comparison with both the raw model predictions and the  



TABLE II.  TESTING RESULTS 

Test Case 

ID 

Evaluation 

Image Characteristics CER (No 

Voting) 

CER 

(Voting) 
CER 

SER (No 

Voting) 

SER 

(Voting) 

T01 82.5% 60% -22.5% 100% 100% 

Quarter notes, wide spacing; original image straight with uneven lighting 

(right side darker), good print; preprocessed image straight with 

enhanced contrast, though staff-line thickness remains inconsistent. 

T02 61.25% 45.15% -16.39% 100% 100% 

Quarter and eighth notes, tighter spacing, with ignored text; original 

image slightly skewed, uneven lighting, inconsistent staff printing; 

preprocessed image straight with improved contrast, staff lines partly 
broken or uneven but better than T01. 

T03 65% 52.5% -12.5% 100% 100% 

Quarter and eighth notes, dense first sequence and sparse second with 

multirest; original image slightly skewed, uneven lighting, good print; 
preprocessed image straight with enhanced contrast, staff thickness more 

consistent. 

T04 63.49% 61.9% -1.59% 100% 100% 
Predominantly eighth notes, very tight spacing, thicker and denser staff 
lines; original image slightly skewed, uneven lighting, good print; 

preprocessed image straight with consistent but thicker staff lines. 

Average 68.13% 54.89% -13.24% 100% 100% - 

 

corrected outputs. The test cases were selected to cover diverse 
conditions in terms of staff density, note types, and image 
quality (lighting, noise, and staff-line thickness). The summary 
of the characteristics of the test images can be seen in Table II. 

The system performance on each test case is summarized in 
Table II, presenting average CER and SER with and without 
the voting mechanism. Overall, voting improved performance 
substantially, reducing mean CER from 68.13% to 54.89% 
across the four cases. This indicates that dropout-based 
prediction ensembles successfully mitigate inconsistent 
character recognition. 

For further qualitative analysis, the comparison between 
results with and without voting highlights distinct error 
patterns, the corrective impact of voting, and the corresponding 
changes in CER. In the first case (T01), errors were dominated 
by incorrect key signatures, occasional pitch misclassifications 
(e.g., C5 recognized as C#5), and clef misplacements. Voting 
substantially improved pitch consistency by aligning notes with 
the correct key signature, reducing the CER by 22.5%. 
However, mismatches in note duration and beat values 
remained unresolved. In the second case (T02), dense note 
spacing caused frequent pitch inaccuracies, accidental 
misinterpretations, and inconsistent durations. Voting 
improved pitch accuracy, particularly with accidentals, and 
reduced CER by 16.39%, though errors in rhythm persisted due 
to difficulties in symbol separation under dense notation.  

In the third case (T03), the system frequently misclassified 
multirests as whole rests and struggled with dense note 
sequences. Voting led to slight improvements in pitch 
recognition, lowering CER by 12.5%, but multirest detection 
remained problematic, as their elongated shapes with 
embedded numbers closely resemble staff elements. Finally, in 
the fourth case (T04), most pitches were initially recognized 
correctly, but rhythm errors were common, such as 
misclassifying eighth notes as sixteenth notes, compounded by 
thick staff lines that obscured flags and beams. Voting 
corrected accidentals and reinforced pitch accuracy but failed 
to address rhythm errors, resulting in only marginal CER 
improvement of 1.59%. Overall, these findings indicate that 

voting significantly enhances pitch recognition by mitigating 
key-related ambiguities, while rhythm and duration recognition 
remain vulnerable to errors stemming from dense notation and 
degraded staff-line quality. 

Despite improvements, error rates remain high. SER 
reached 100% in all cases, since any single-character error 
causes a sequence to be counted as incorrect. However, 
qualitative analysis indicates most errors are minor—often 
pitch deviations within one staff line—arising from noise or 
staff thickness inconsistencies. Rhythm errors, in contrast, 
caused by visual similarity of note stems and flags. Thus, 
although quantitative error rates are high, most mistakes fall 
within ranges that could be corrected by improved 
preprocessing, noise handling, or user’s intervention by manual 
correction. Future work should therefore emphasize robustness 
against noise and staff-line variability. 

VI. CONCLUSION 

This study presented the development of a web-based 
application integrating Optical Music Recognition (OMR) to 
convert printed common music notation into digital formats 
such as MusicXML, MIDI, and PDF. The system employed a 
pretrained CRNN-based OMR model by Calvo-Zaragoza & 
Rizo (2018) [25], enhanced with a voting mechanism adapted 
from ROVER by aggregating multiple dropout-based 
predictions. This approach improved overall recognition 
performance, reducing the Character Error Rate (CER) from 
3.88% to 2.99% and the Sequence Error Rate (SER) from 
58.22% to 41.86%. 

The system was implemented end-to-end, including 
preprocessing, staff-line segmentation, symbol prediction, 
MusicXML generation, post-correction, and MIDI rendering. 
Experimental evaluation demonstrated that the application 
successfully supports all processing stages and provides an 
accessible interface for users to digitize and utilize music 
scores. Qualitative analysis further revealed that most 
recognition errors were minor, primarily involving pitch or 
rhythm misclassification due to staff-line inconsistencies, 
symbol similarities, or image noise. The voting mechanism 



proved effective in mitigating pitch-related errors, though 
rhythm recognition remains a challenge. 

Future work should focus on enhancing robustness against 
noise and staff variability by employing more diverse training 
datasets and experimenting with alternative architectures. 
Additional development can be done by providing interactive 
manual correction tools, incorporating user feedback into 
retraining, and advancing the MusicXML correction algorithms 
to cover a broader set of notation rules. Integrating other 
features such as MIDI playback and automated score cropping 
would further improve usability. 
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