
Implementation of Optical Music Recognition for a

Web-Based Common Music Notation Image Reader

Arleen Chrysantha Gunardi

School of Electrical Engineering and Informatics

Bandung Institute of Technology

Bandung, Indonesia

chrysantharleen@gmail.com

Rinaldi Munir

School of Electrical Engineering and Informatics

Bandung Institute of Technology

Bandung, Indonesia

rinaldi@staff.stei.itb.ac.id

Abstract—Music notation serves as a standardized visual

language for preserving musical works across generations.

Despite advances in digital technology, a significant number of

music scores remain in printed form, highlighting the need for

effective digitization methods to support documentation,

education, and distribution.

This study presents the implementation of Optical Music

Recognition (OMR) for a web-based application to convert

monophonic printed music notation images into digital formats:

MusicXML and MIDI. The system integrates image

preprocessing to enhance input quality and comprises image

segmentation, OMR model prediction, conversion and correction

to MusicXML, and subsequent conversion to MIDI. An existing

pretrained OMR model from Calvo-Zaragoza & Rizo (2018),

trained on the PrIMuS dataset, was adopted as the recognition

backbone. This model achieved a Character Error Rate (CER) of

3.88% and Sequence Error Rate (SER) of 58.22%. To further

improve performance, a voting mechanism adapted from

ROVER method was applied, generating five prediction variants

with a 0.1 dropout rate during inference, resulting in a reduced

CER of 2.99% and SER of 41.86%.

System evaluation shows that the voting mechanism

effectively corrects prediction errors, particularly in pitch

determination, but is less effective for images with thick, closely

spaced staff lines. With improved input image quality, the

proposed system shows strong potential as a reliable solution for

printed music score digitization.

Keywords—Optical Music Recognition (OMR), music score

digitization, MusicXML, MIDI

I. INTRODUCTION

Music notation serves as a universal visual representation
used to preserve and communicate musical ideas across
different cultures and historical periods. It is a medium
between composers and performers, conveying musical
interpretation and reproduction of musical works [1]. By
presenting musical elements into a standardized symbolic
language, music notation allows continuous appreciation,
study, and performance of musical compositions while
retaining their artistic and expressive intents envisioned by the
composers.

Historically, musical notation has been written on paper.
However, the advancement of digital technology has
introduced new methods for representing music in machine-
readable formats, which support further editing, sharing,
playback, and analysis. Among these, MusicXML became a
widely adopted standard due to its structured, flexible, and
interoperable design [2]. The digital representation of music
offers considerable advantages for modern musicians,
educators, and archivists, increasing the demand for efficient
methods to convert printed scores into digital formats.

Despite the growing need for digital music archives,
numerous existing musical works remain archived as printed
music sheets. The manual transcription of these scores into
digital form is often time-consuming and requires specialized
knowledge in music notation. To address this challenge,
Optical Music Recognition (OMR) technology has been
developed to automate the conversion process. OMR enables
computers to recognize and interpret musical symbols from
scanned images using pattern recognition, transforming them
into structured formats such as MusicXML or MIDI [3].

While OMR systems have shown considerable progress in
recent years, issues related to recognition accuracy and
usability persist. Many existing models struggle with noise,
dense notation, and low-quality scans, which can result in
misinterpretations. For example, Acedo and Josep [4] report
that their OMR system has difficulty processing scores with
high levels of visual noise. Similarly, Wel and Ullrich [5]
observed that their model's accuracy declines with dense or
overlapping notations, and the system developed by Alfaro-
Contreras et al. [6] demonstrates limited effectiveness on
distorted or degraded images.

To address these limitations, this research proposes a web-
based application that integrates an improved OMR model
tailored for printed monophonic music notation. The system
employs image preprocessing techniques to enhance input
quality and reduce detection errors. A voting-based inference
mechanism adapted from ROVER method is implemented to
increase prediction accuracy by aggregating multiple outputs.
The web-based application supports the generation of corrected
MusicXML and MIDI formats. In addition to its practical
functionality, the system is designed with accessibility in mind,
making it a useful educational tool for a broader audience. This
work contributes to the advancement of OMR systems by

mailto:chrysantharleen@gmail.com
mailto:rinaldi@staff.stei.itb.ac.id

offering a solution that is not only accurate and robust but also
user-friendly.

II. LITERATURE REVIEW

A. Common Music Notation

Common Music Notation (CMN) is a standardized visual
system for representing music, enabling communication of
musical ideas across cultures and eras [7] [8]. Originating
around 650 AD to record musical works [9], CMN has
developed into the modern notation system used worldwide. It
consists of interrelated graphical symbols whose meaning
depends on spatial placement and contextual relationships,
including notes—defined by pitch, duration, intensity, and
timbre [10]—with visual features such as noteheads, stems, and
flags indicating duration. Pitch is determined by vertical
placement on the staff lines, the use of clefs (treble, bass, alto,
tenor), and ledger lines for extended ranges. Accidentals
(sharp, flat, natural) alter pitch by semitone intervals, while key
signatures apply these alterations consistently throughout a
piece. Rhythm is conveyed through note values, rests, and
duration extensions such as dots or ties, with measures
grouping beats according to time signatures [10]. The
interpretation of each symbol depends on its relationship with
other symbols and the notational context, making CMN a
complex system compared to alternative notation systems.

B. Digital Music Representations

Music notation can be represented digitally in several
formats, among which MusicXML and Musical Instrument
Digital Interface (MIDI) are widely used. MusicXML,
introduced in 2003, is a universal standard for representing
common music notation across various music software
applications [11]. Based on XML, it encodes semantic
information about how music is written and performed,
enabling both human and machine readability [11] [12].
MusicXML is primarily designed for the complete preservation
and exchange of digital sheet music.

MIDI, in contrast, is a communication protocol established
in 1983 for recording and controlling synthesizers and other
electronic instruments [13]. Rather than storing audio or full
notation, MIDI encodes performance instructions—such as
pitch, velocity, and duration—through discrete digital
messages [14]. These messages facilitate real-time interaction
between instruments and software, making MIDI particularly
suited for live performance and instrument control. Whereas
MusicXML serves as a comprehensive visual and semantic
representation of music for score distribution, MIDI focuses on
performative representation without written visual notation.

C. Digital Image Processing

Digital image processing refers to the use of digital
computers to process digital images, defined as continuous
functions over a two-dimensional field with intensity or gray-
level values [15]. It encompasses image acquisition, sampling,
quantization, transformation, and enhancement in both spatial
and frequency domains to improve image quality and facilitate
accurate interpretation. Specific techniques relevant to music

notation recognition include perspective transformation to
correct geometric distortion and align the viewpoint with the
target plane for improved object recognition and data
augmentation [16], denoising to remove visual artifacts (e.g.,
noises and uneven lighting) using filters such as mean, median,
or alpha-trimmed mean, and binarization to convert grayscale
or color images into binary form via global, local, or adaptive
thresholding methods, such as Otsu’s algorithm for bimodal
histograms [17].

D. Computer Vision

Computer vision, a subfield of artificial intelligence, aims
to extract meaningful information from visual components by
emulating the human brain’s perception and interpretation of
visual stimuli [18]. It integrates concepts from digital image
processing, pattern recognition, artificial intelligence, and
computer graphics, with specific techniques tailored to the
application domain and data type. Core processes in computer
vision include image acquisition, segmentation, understanding,
and feature extraction. Pattern recognition, a key branch of
computer vision, focuses on identifying objects by
transforming images to improve interpretability and quality,
often in conjunction with segmentation techniques that divide
images into homogeneous pixel regions based on attributes
such as color, intensity, and texture [19].

Deep learning, a subset of machine learning, models high-
level data abstractions using multiple layers of artificial
neurons [20]. Its effectiveness in large-scale visual object
recognition has been demonstrated through various
architectures, most notably Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and
Convolutional Recurrent Neural Networks (CRNNs). CNNs
are optimized for image-based tasks through convolutional
layers for local feature extraction, ReLU activation for non-
linearity, pooling for spatial downsampling, fully connected
layers for feature integration, and softmax for probabilistic
classification [21]. RNNs, in contrast, are suited for sequential
data by incorporating temporal dependencies through recurrent
connections and hidden layers [22]. CRNNs combine the
spatial feature extraction of CNNs with the temporal modeling
of RNNs, making them highly effective for tasks requiring both
spatial and sequential analysis, such as speech recognition, text
recognition, and Optical Music Recognition (OMR) [23].
While CRNNs offer superior representational power, they
demand greater computational resources and careful training
strategies.

E. Optical Music Recognition

Optical Music Recognition (OMR) is a research domain
focused on the reading of music notation computationally [10]
Definitions of OMR vary, ranging from task-specific
interpretations, such as converting musical scores into MIDI, to
broader views positioning OMR as a specialized form of
Optical Character Recognition (OCR) for music scores.
Traditional OMR pipelines involve preprocessing of sheet
music, staff line detection and removal, musical object
identification, classification, and reconstruction of the music
sheet [24]. Modern approaches utilize deep learning
architectures, including CNNs, RNNs and Sequence-to-

Sequence models, to address the translation of music notation
within its contextual framework [5].

The performance of OMR systems can be assessed using
various metrics, depending on the approach. For end-to-end or
string-based OMR systems, Character Error Rate (CER),
defined in (1), and Sequence Error Rate (SER), are common
metrics. CER measures the average proportion of symbol
edits—substitutions (), deletions (), and insertions ()—
transform a predicted sequence into the ground truth,
normalized by the total number of symbols (). Alternatively,
SER evaluates the proportion of predicted sequences that
contain at least one error (E) relative to the total number of
sequences (N) [25].

(1)

(2)

SER is considered more stringent, as it only counts
sequences as correct when they match the reference perfectly,
whereas CER evaluates symbol-level accuracy. This distinction
makes SER particularly suitable for semantic reconstruction
tasks, while CER remains valuable for low-level symbol
recognition.

F. Error Reduction Methods in Recognition System

Error reduction in recognition systems has been approached
through both output-level and model-level techniques. One
prominent output-level method is Recognizer Output Voting
Error Reduction (ROVER), introduced by NIST in 1997,
which combines transcriptions from multiple recognizers and
applies a voting mechanism to select the most frequent word
choice, thereby reducing the Word Error Rate (WER)
compared to individual systems [26]. At the model level,
dropout regularization has been employed in neural
architectures such as Long Short-Term Memory (LSTM) and
Recurrent Neural Networks (RNN) to mitigate overfitting
during training. Past studies presented its effectiveness for
lowering error rates in speech recognition systems trained with
Connectionist Temporal Classification (CTC) [27].

III. SOLUTION DESIGN

This study proposes a web-based application for converting
printed monophonic common music notation image into
MusicXML, MIDI, and PDF formats. The system integrates
image preprocessing, a fine-tuned OMR model, post-
processing corrections, and a user-friendly web interface. Fig. 1
illustrates the overall workflow, begins with an input music
sheet image and proceeds through perspective transformation,
denoising, automatic rotation, and binarization. The processed
image is segmented into individual staff lines and passed
through a fine-tuned OMR model for symbol prediction. The
prediction output encoding is converted into MusicXML and

refined through a correction algorithm to comply with standard
common music notation rules and subsequently converted into
MIDI. The system outputs MusicXML, MIDI, and PDF files
that can be downloaded by the user.

Fig. 1. Gerenal architecture and workflow

To address the problem of reduced recognition accuracy in
challenging image conditions, the proposed solution integrates
an image preprocessing module directly into the web
application. This module enables users to enhance the captured
score image quality prior to OMR processing, including
correcting skews by perspective transformation and automatic
rotation, denoising with Gaussian filter, and binarization using
Otsu method or thresholding by value chosen by the user.
Automatic rotation is done after perspective transformation by
choosing the best angle, chosen by analyzing the pixel
distribution histogram to see which angle the staff lines aligned
horizontally the most. This step ensures that the input to the
recognition model is both visually clear and structurally
consistent.

To mitigate reduced recognition accuracy under
challenging input image conditions, the proposed solution
incorporates an image preprocessing module within the web
application. The module enhances the quality of the captured
score image before OMR processing by applying several
operations:

• perspective transformation to correct skewed images;

• automatic rotation to align staff lines horizontally,
performed after perspective correction by selecting the
orientation that maximizes horizontal alignment of staff
lines, as determined from the pixel distribution
histogram;

• denoising with Gaussian filtering; and

• binarization using either Otsu’s method or a fixed
threshold specified by the user.

These preprocessing steps ensure that the input to the
recognition model is visually clear and structurally consistent,
thereby improving subsequent symbol recognition.

Furthermore, staff line segmentation was performed to
divide the musical score image into individual lines images, as
the OMR model is limited to processing images containing a
single staff at a time. A standard staff consists of five
horizontal lines, with additional ledger lines appearing
optionally above or below them. The segmentation process
begins by projecting the pixel values of the binary image onto
the vertical axis to generate a distribution histogram. Peaks in
this histogram indicate the locations of staff lines, which are
used to determine segmentation boundaries. For potential
ledger lines, margins are added above and below each
identified region. The resulting segments contain isolated
staves suitable for OMR processing. An example of this
segmentation procedure is illustrated in Fig. 2.

(a)

(b)

Fig. 2. PrIMuS dataset example. (a) ideal image. (b) distorted image. (c)

semantic encoding. (d) agnostic encoding.

A. Dataset

The OMR model in this study was trained using the Printed
Images of Music Staves (PrIMuS) dataset [28], which contains
87,678 music score fragments. Each fragment consists of two
measures with clef, key signature, and time signature
information, and is provided in multiple forms: ideal images,
distorted images, Music Encoding Initiative (MEI) format,
Plaine and Easie (PAE) code, as well as semantic and agnostic
encoding. For training and evaluation, the dataset offers two
types of ground truth encodings: semantic and agnostic.
Semantic encoding represents the score as a sequence of music
symbols with musical meaning, while agnostic encoding treats

each notation element as an isolated graphical symbol without
contextual interpretation.

Fig. 3 visualizes an example of both encodings for a score

fragment containing three flats, corresponding to an E♭ major
key signature. In the semantic representation, this is encoded as
a single token (keySignature-EbM), while the agnostic
representation encodes each flat individually (accidental.flat-
L3, accidental.flat-S4, accidental.flat-S2). Although the
agnostic representation provides a finer level of granularity and
is useful for handling non-standard notations, it is generally
more verbose. For end-to-end OMR systems aimed at
producing structured digital music formats such as MusicXML
or MIDI, semantic encoding is more suitable, as it preserves
the contextual and sequential relationships necessary for
musical interpretation.

(a)

(b)

clef-G2, keySignature-EbM, timeSignature-3/4, note-
Bb5_quarter, note-Eb5_eighth, note-Bb5_eighth, note-
C6_eighth, note-Bb5_eighth, barline, note-Ab5_eighth,
note-Ab5_eighth, rest-sixteenth, note-Ab5_sixteenth,
note-G5_sixteenth, note-Ab5_sixteenth, note-
Bb5_sixteenth, note-Ab5_sixteenth, note-G5_sixteenth,
note-Ab5_sixteenth, barline

(c)
clef.G-L2, accidental.flat-L3, accidental.flat-S4,
accidental.flat-S2, digit.3-L4, digit.4-L2, note.quarter-
S6, note.beamedRight1-S4, note.beamedBoth1-S6,
note.beamedBoth1-L7, note.beamedLeft1-S6, barline-L1,
note.beamedRight1-L6, note.beamedLeft1-L6,
rest.sixteenth-L3, note.beamedRight2-L6,
note.beamedBoth2-S5, note.beamedLeft2-L6,
note.beamedRight2-S6, note.beamedBoth2-L6,
note.beamedBoth2-S5, note.beamedLeft2-L6, barline-L1

(d)

Fig. 3. PrIMuS dataset example. (a) ideal image. (b) distorted image. (c)

semantic encoding. (d) agnostic encoding.

B. OMR Model Experiment Design

The OMR model is based on a selected pretrained CRNN
architecture, chosen after comparative evaluation against
CNNs and RNNs individually. While CNNs effectively extract
spatial features and RNNs capture sequential dependencies, the
CRNN combines these advantages, enabling an end-to-end
recognition that can capture both the spatial and temporal
aspects of music notation. The CNN layers extract visual
features from individual notation symbols, then the RNN layers
process the sequential structure to reconstruct the musical
content.

The experiment began with dataset preparation, which
involved splitting the data into training and validation subsets.
Each image was normalized and resized to match the model’s
input requirements, followed by preprocessing to ensure the
data quality. Data augmentation was also applied, introducing
transformations such as blurring, contrast and brightness

adjustments, sharpening, and noise addition. This process
aimed to enhance the model’s robustness by increasing data
variability. After the dataset preparation, the pretrained OMR
model was loaded and fine-tuned to adapt to variations in
notation style and symbol representation. This transfer learning
strategy allowed the model to leverage previously learned
representations while significantly reducing training time and
computational cost. Upon completing training, the model was
evaluated using transcription quality metrics against the ground
truth: Character Error Rate (CER), defined in (1), and
Sequence Error Rate (SER), defined in (2). Finally, the trained
model weights and training checkpoints were stored to support
reproducibility and further experimentation.

C. Post-Processing with Voting Mechanism Design

To reduce error rates and enhance model performance,
postprocessing was applied using a voting-based mechanism
inspired by the Recognizer Output Voting Error Reduction
(ROVER) method [26]. This approach combines multiple
prediction outputs and selects the token with the highest
occurrence frequency as the final result. However, since the
underlying model is deterministic and produces identical
outputs for the same input image, prediction variability was
generated by enabling dropout during inference. This
technique, commonly referred to as Monte Carlo dropout,
allows stochastic variations in predictions and has been shown
to improve ensemble robustness [27].

Experiments were conducted by varying the number of
aggregated predictions 𝑁 and the dropout rate . Following

prior work [27], a baseline configuration of 𝑁 = 4 and = 0.2
was adopted, while additional combinations were also tested
with 𝑁 ∈ {4, 5} and ∈ {0.2, 0.1, 0.05}. Each input image

was processed 𝑁 times according to the chosen parameters, and
the final output sequence was obtained by majority voting at
the token level.

D. MusicXML Conversion and Correction Algorithm Design

The semantic encoding predictions produced by the OMR
model were converted into MusicXML through a parsing
process that mapped each semantic token to its corresponding
XML representation, as illustrated in Fig. 4. This step enabled
the output of the recognition model to be transformed into a
widely supported digital notation format, consistent with
existing standards.

Fig. 4. Semantic encoding to MusicXML mapping example.

To ensure the generated MusicXML adhered to common
music notation rules, a correction algorithm was implemented:

• clef adjustment by matching the predicted clef with
typical instrument ranges (e.g., G2 for violin or flute, F4
for cello or tuba), preventing octave misalignments
caused by incorrect clef predictions;

• measure duration validation to enforce rhythmic
consistency by computing note and rest durations
relative to the time signature; overfilled measures were
automatically split using barlines with tied notes applied
when durations exceeded the remaining capacity; and

• key signature-based pitch alteration to ensure that
sharps and flats were consistently applied across the
score according to the predicted key signature (e.g., F♯
and C♯ in D major), unless explicitly modified by
accidentals.

These corrections preserved both the structural and tonal
integrity of the transcribed score, serving more accurate
interpretation in downstream applications.

E. Web Application Design

The proposed web-based application consists of the
frontend and the backend, as illustrated in Fig. 1. The frontend
provides user interaction through four modules: image upload,
image preprocessing, MusicXML viewer, and PDF generator
from MusicXML. The front end communicates with the
backend via APIs for computational processing. The backend
is composed of four modules: image (staff line) segmentation,
music notation prediction using the OMR model, conversion of
semantic encoding into MusicXML with an integrated
correction function, and generation of MIDI files from
MusicXML.

The system does not require a permanent database, since
both the input image and OMR results are processed within a
single session and discarded afterward. All data are stored
temporarily in memory during processing and are deleted once
the output has been displayed or downloaded. This design
minimizes storage requirements while ensuring efficient,
session-based processing.

IV. IMPLEMENTATION AND RESULTS

The implementation is divided into two main stages: model
development and web application development. The model
development stage includes dataset preparation, model training
and evaluation, as well as post-processing. The experiments
were conducted in a Kaggle notebook environment with a P100
GPU, using Python and several supporting libraries, including
Tensorflow, OpenCV Python, Supervision, and NumPy. The
implemented OMR model was limited to predicting only a
subset of musical symbols, including clefs, time signatures, key
signatures, barlines, notes, rests, rhythmical symbols, and
accidentals. Other musical notations, such as ornaments,
dynamics, and textual annotations, were not included in the
scope of this work.

A. Dataset Preparation

The dataset preparation stage ensured that the data were
suitable for training the model. This experiment uses PrIMuS
dataset, consisting of 87,678 image snippets of music scores
with ground-truth semantic labels. Semantic labels were first
validated against a predefined vocabulary, which mapped each
symbol into a numerical index and vice versa. The vocabulary
was restricted to clefs, time signatures, key signatures, barlines,
notes, rhythmic symbols, and accidentals, excluding
ornaments, articulations, text, and other musical elements.

The dataset was then randomly split into 90% for training
and 10% for validation. Each score image was converted to
grayscale, normalized, and resized before preprocessing, which
included brightness and contrast adjustment, sharpening,
blurring, and noise injection to enhance variability. To improve
efficiency, data were loaded in batches and folds, enabling
staged training without exceeding memory capacity.
Additionally, multithreading was applied to accelerate the
loading of images and labels.

B. Model Training and Evaluation

In this study, we adopted the OMR model proposed by
Calvo-Zaragoza & Rizo [25], which achieved strong
recognition performance of 3.88% CER and 58.22% SER on
the evaluation dataset. Preliminary experiments with training
from scratch using EfficientNetB0 and fine-tuning approaches
were conducted, but these models exhibited significantly
higher error rates compared to the pretrained model.
Consequently, the pretrained model was selected and integrated
into the proposed system.

C. Model Post-Processing

As described in Section III-C, a voting mechanism with
stochastic prediction generation was designed to enhance
recognition performance. Table I summarizes the experimental
results obtained by varying the number of aggregated
predictions (𝑁) and dropout rates () on the inference. The

configuration with 𝑁 = 5 and = 0.1 achieved the best
performance, reducing the Sequence Error Rate (SER) from
58.22% to 41.86% and the Character Error Rate (CER) from
3.88% to 2.99%. This demonstrates that the proposed voting
strategy substantially improves recognition robustness by
reducing both sequence-level and symbol-level errors by
finding consistency across multiple prediction variants.

TABLE I. POST-PROCESSING EXPERIMENT RESULT

Model Configuration Evaluation

𝑁 CER SER

Baseline (without voting) 3.8843% 58.2183%

4 0.2 3.2243% 43.8120%

4 0.1 3.0655% 42.5915%

4 0.05 3.0698% 42.7512%

5 0.2 3.1459% 42.4204%

5 0.1 2.9928% 41.8615%

5 0.05 2.9990% 42.3178%

It can be observed that the error rates decrease as the
dropout rate is reduced from = 0.2 to = 0.1, indicating
that a moderate level of stochasticity provides sufficient
variability to generate complementary prediction variants while
maintaining prediction reliability. However, when the dropout
rate is further reduced to = 0.05, the performance slightly
degrades compared to = 0.1. This behavior indicates the
reduced diversity of predictions: with too little dropout, the
prediction variants become overly similar, limiting the
effectiveness of the voting mechanism. In contrast, a higher
dropout rate such as 0.2 introduces excessive noise, which
negatively affects the quality of individual predictions. Hence,

 = 0.1 offers the best trade-off between diversity and
reliability of predictions, resulting in the most effective voting
mechanism configuration.

D. Web Application

The web application described in Section II-E was
implemented using a client-server architecture. The frontend
was developed with Next.js, providing modules for image
upload, preprocessing preview, MusicXML visualization, and
PDF generation, along with download functionality for
MusicXML, MIDI, and PDF outputs. The frontend was
implemented in TypeScript, supported by libraries including
Tailwind CSS and Shadcn UI for user interface styling,
OpenCV.js for client-side image processing,
OpenSheetMusicDisplay for MusicXML rendering, and jsPDF
with svg2pdf.js for score export.

The backend was implemented with FastAPI, which uses
RESTful APIs to handle computational tasks such as staff-line
segmentation, OMR model inference, semantic encoding
conversion to MusicXML with correction, and MIDI
generation. The backend was developed in Python with
supporting libraries, including TensorFlow and Keras for
model inference, and Music21 for MIDI file generation.

To ensure efficient processing, the system employs session-
based data management, where all input and output data are
handled in memory during execution and discarded upon
completion. This eliminates the need for persistent storage and
minimizes computation overhead.

The application was tested using a set of monophonic
music notation images (with details presented in Section V).
The implementation demonstrates that the system is capable of
generating MusicXML, MIDI, and PDF outputs in real time,
confirming its effectiveness as an accessible OMR tool through
a web interface.

V. TESTING AND EVALUATION

The proposed OMR system was evaluated using the CER
and SER as metrics, computed according to (1) and (2). The
evaluation employed four test images consisting of short
musical notation sequence captured with a mobile phone
camera and uploaded via the web application. Each input was
processed through preprocessing, staff-line segmentation,
OMR prediction, and conversion to MusicXML, followed by
application of the correction algorithm. Reference labels were
defined in semantic encoding form, enabling a direct
comparison with both the raw model predictions and the

TABLE II. TESTING RESULTS

Test Case

ID

Evaluation

Image Characteristics CER (No

Voting)

CER

(Voting)
CER

SER (No

Voting)

SER

(Voting)

T01 82.5% 60% -22.5% 100% 100%

Quarter notes, wide spacing; original image straight with uneven lighting

(right side darker), good print; preprocessed image straight with

enhanced contrast, though staff-line thickness remains inconsistent.

T02 61.25% 45.15% -16.39% 100% 100%

Quarter and eighth notes, tighter spacing, with ignored text; original

image slightly skewed, uneven lighting, inconsistent staff printing;

preprocessed image straight with improved contrast, staff lines partly
broken or uneven but better than T01.

T03 65% 52.5% -12.5% 100% 100%

Quarter and eighth notes, dense first sequence and sparse second with

multirest; original image slightly skewed, uneven lighting, good print;
preprocessed image straight with enhanced contrast, staff thickness more

consistent.

T04 63.49% 61.9% -1.59% 100% 100%
Predominantly eighth notes, very tight spacing, thicker and denser staff
lines; original image slightly skewed, uneven lighting, good print;

preprocessed image straight with consistent but thicker staff lines.

Average 68.13% 54.89% -13.24% 100% 100% -

corrected outputs. The test cases were selected to cover diverse
conditions in terms of staff density, note types, and image
quality (lighting, noise, and staff-line thickness). The summary
of the characteristics of the test images can be seen in Table II.

The system performance on each test case is summarized in
Table II, presenting average CER and SER with and without
the voting mechanism. Overall, voting improved performance
substantially, reducing mean CER from 68.13% to 54.89%
across the four cases. This indicates that dropout-based
prediction ensembles successfully mitigate inconsistent
character recognition.

For further qualitative analysis, the comparison between
results with and without voting highlights distinct error
patterns, the corrective impact of voting, and the corresponding
changes in CER. In the first case (T01), errors were dominated
by incorrect key signatures, occasional pitch misclassifications
(e.g., C5 recognized as C#5), and clef misplacements. Voting
substantially improved pitch consistency by aligning notes with
the correct key signature, reducing the CER by 22.5%.
However, mismatches in note duration and beat values
remained unresolved. In the second case (T02), dense note
spacing caused frequent pitch inaccuracies, accidental
misinterpretations, and inconsistent durations. Voting
improved pitch accuracy, particularly with accidentals, and
reduced CER by 16.39%, though errors in rhythm persisted due
to difficulties in symbol separation under dense notation.

In the third case (T03), the system frequently misclassified
multirests as whole rests and struggled with dense note
sequences. Voting led to slight improvements in pitch
recognition, lowering CER by 12.5%, but multirest detection
remained problematic, as their elongated shapes with
embedded numbers closely resemble staff elements. Finally, in
the fourth case (T04), most pitches were initially recognized
correctly, but rhythm errors were common, such as
misclassifying eighth notes as sixteenth notes, compounded by
thick staff lines that obscured flags and beams. Voting
corrected accidentals and reinforced pitch accuracy but failed
to address rhythm errors, resulting in only marginal CER
improvement of 1.59%. Overall, these findings indicate that

voting significantly enhances pitch recognition by mitigating
key-related ambiguities, while rhythm and duration recognition
remain vulnerable to errors stemming from dense notation and
degraded staff-line quality.

Despite improvements, error rates remain high. SER
reached 100% in all cases, since any single-character error
causes a sequence to be counted as incorrect. However,
qualitative analysis indicates most errors are minor—often
pitch deviations within one staff line—arising from noise or
staff thickness inconsistencies. Rhythm errors, in contrast,
caused by visual similarity of note stems and flags. Thus,
although quantitative error rates are high, most mistakes fall
within ranges that could be corrected by improved
preprocessing, noise handling, or user’s intervention by manual
correction. Future work should therefore emphasize robustness
against noise and staff-line variability.

VI. CONCLUSION

This study presented the development of a web-based
application integrating Optical Music Recognition (OMR) to
convert printed common music notation into digital formats
such as MusicXML, MIDI, and PDF. The system employed a
pretrained CRNN-based OMR model by Calvo-Zaragoza &
Rizo (2018) [25], enhanced with a voting mechanism adapted
from ROVER by aggregating multiple dropout-based
predictions. This approach improved overall recognition
performance, reducing the Character Error Rate (CER) from
3.88% to 2.99% and the Sequence Error Rate (SER) from
58.22% to 41.86%.

The system was implemented end-to-end, including
preprocessing, staff-line segmentation, symbol prediction,
MusicXML generation, post-correction, and MIDI rendering.
Experimental evaluation demonstrated that the application
successfully supports all processing stages and provides an
accessible interface for users to digitize and utilize music
scores. Qualitative analysis further revealed that most
recognition errors were minor, primarily involving pitch or
rhythm misclassification due to staff-line inconsistencies,
symbol similarities, or image noise. The voting mechanism

proved effective in mitigating pitch-related errors, though
rhythm recognition remains a challenge.

Future work should focus on enhancing robustness against
noise and staff variability by employing more diverse training
datasets and experimenting with alternative architectures.
Additional development can be done by providing interactive
manual correction tools, incorporating user feedback into
retraining, and advancing the MusicXML correction algorithms
to cover a broader set of notation rules. Integrating other
features such as MIDI playback and automated score cropping
would further improve usability.

ACKNOWLEDGMENT

The authors would like to express their gratitude to God for
His blessings. The authors would also like to acknowledge Mr.
Dr. Ir. Rinaldi Munir, M.T., for his valuable guidance and
feedback throughout the research. The authors also wish to
recognize the contributors of prior works in Optical Music
Recognition, which provided the foundation and inspiration for
this study. Finally, sincere thanks are given to family, friends,
and colleagues for their continuous support and encouragement
during the research.

REFERENCES

[1] S. T. Pope, “Music Notations and the Representation of Musical
Structure and Knowledge,” Perspectives of New Music, vol. 24, no. 2, p.
156, 1986, doi: https://doi.org/10.2307/833219.

[2] M. Good and G. Actor, “Using MusicXML for file interchange,”
Proceedings Third International Conference on WEB Delivering of
Music, p. 153, doi: https://doi.org/10.1109/wdm.2003.1233890.

[3] J. Calvo-Zaragoza, J. H. Jr., and A. Pacha, “Understanding Optical
Music Recognition,” ACM Computing Surveys, vol. 53, no. 4, pp. 1–35,
Sep. 2020, doi: https://doi.org/10.1145/3397499.

[4] A. Acedo and A. Josep, “From image to MIDI: Implementing a
complete OMR system for sheet music,” Dipòsit Digital de Documents
de la UAB, 2023. https://ddd.uab.cat/record/272800 (accessed Aug. 04,
2025).

[5] E. van der Wel and K. Ullrich, “Optical Music Recognition with
Convolutional Sequence-to-Sequence Models.,” Proceedings of the 18th
ISMIR Conference (Cornell University), pp. 731–737, Oct. 2017, doi:
https://doi.org/10.5072/zenodo.243774.

[6] M. Alfaro-Contreras, J. Calvo-Zaragoza, and J. M. Iñesta, “Approaching
End-to-End Optical Music Recognition for Homophonic Scores,”
Pattern Recognition and Image Analysis, pp. 147–158, Jan. 2019, doi:
https://doi.org/10.1007/978-3-030-31321-0_13.

[7] Prince George’s Community College. “PGCC Open Music Theory-
Fundamentals,” March 2024. Humanities LibreTexts,
https://human.libretexts.org/Courses/Prince_Georges_Community_Colle
ge/PGCC_Open_Music_Theory-Fundamentals

[8] K. Lassfolk. “Music Notation as Objects: An Object-Oriented Analysis
of the Common Western Music Notation System,” University of
Helsinki, Nov. 2004,
https://helda.helsinki.fi/bitstream/10138/19386/2/musicnot.pdf.

[9] Classic FM, “How did music notation begin?,” Classic FM, Aug. 07,
2024. https://www.classicfm.com/discover-music/music-theory/origins-
music-notation/

[10] J. Calvo-Zaragoza, J. H. Jr., and A. Pacha, “Understanding Optical
Music Recognition,” ACM Computing Surveys, vol. 53, no. 4, pp. 1–35,
Sep. 2020, doi: https://doi.org/10.1145/3397499.

[11] M. Good and G. Actor, “Using MusicXML for file interchange,”
Proceedings Third International Conference on WEB Delivering of
Music, p. 153, doi: https://doi.org/10.1109/wdm.2003.1233890.

[12] M. Good and MakeMusic, “MusicXML 4.0,” W3C Community Group,
2021. https://www.w3.org/2021/06/musicxml40/ (accessed Aug. 15,
2025).

[13] G. Loy, “A critical overview,” The Journal of the Acoustical Society of
America, vol. 77, no. S1, pp. S74–S74, Apr. 1985, doi:
https://doi.org/10.1121/1.2022489.

[14] MIDI Manufacturers Association, “MIDI 2.0 Core Specification
Collection,” MIDI.org, Jan. 17, 2024. https://midi.org/midi-2-0-core-
specification-collection

[15] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed.
New York, Ny: Pearson, 2018.

[16] K. Wang, B. Fang, J. Qian, S. Yang, X. Zhou, and J. Zhou, “Perspective
Transformation Data Augmentation for Object Detection,” IEEE Access,
vol. 8, pp. 4935–4943, 2020, doi:
https://doi.org/10.1109/access.2019.2962572.

[17] X. Xu, S. Xu, L. Jin, and E. Song, “Characteristic analysis of Otsu
threshold and its applications,” Pattern Recognition Letters, vol. 32, no.
7, pp. 956–961, May 2011, doi:
https://doi.org/10.1016/j.patrec.2011.01.021.

[18] [1]F. Alsakka, I. El-Chami, H. Yu, and M. Al-Hussein, “Computer
vision-based process time data acquisition for offsite construction,”
Automation in Construction, vol. 149, p. 104803, May 2023, doi:
https://doi.org/10.1016/j.autcon.2023.104803.

[19] A. Gharipour and A. W.-C. Liew, “Segmentation of cell nuclei in
fluorescence microscopy images: An integrated framework using level
set segmentation and touching-cell splitting,” Pattern Recognition, vol.
58, pp. 1–11, Oct. 2016, doi:
https://doi.org/10.1016/j.patcog.2016.03.030.

[20] X. Hao, G. Zhang, and S. Ma, “Deep Learning,” International Journal
of Semantic Computing, vol. 10, no. 03, pp. 417–439, Sep. 2016, doi:
https://doi.org/10.1142/s1793351x16500045.

[21] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
Convolutional Neural Network,” 2017 International Conference on
Engineering and Technology (ICET), pp. 1–6, Aug. 2017, doi:
https://doi.org/10.1109/icengtechnol.2017.8308186.

[22] A. Subasi, “Machine learning techniques,” Practical Machine Learning
for Data Analysis Using Python, pp. 91–202, 2020, doi:
https://doi.org/10.1016/b978-0-12-821379-7.00003-5.

[23] X. Li and X. Wu, “Long Short-Term Memory based Convolutional
Recurrent Neural Networks for Large Vocabulary Speech
Recognition,” arXiv (Cornell University), Jan. 2016, doi:
https://doi.org/10.48550/arxiv.1610.03165.

[24] A. Rebelo, I. Fujinaga, F. Paszkiewicz, A. R. S. Marcal, C. Guedes, and
J. S. Cardoso, “Optical music recognition: state-of-the-art and open
issues,” International Journal of Multimedia Information Retrieval, vol.
1, no. 3, pp. 173–190, Mar. 2012, doi: https://doi.org/10.1007/s13735-
012-0004-6.

[25] J. Calvo-Zaragoza and D. Rizo, “End-to-End Neural Optical Music
Recognition of Monophonic Scores,” Applied Sciences, vol. 8, no. 4, p.
606, Apr. 2018, doi: https://doi.org/10.3390/app8040606.

[26] H. Schwenk and J. Gauvain, “Improved ROVER using Language Model
Information,” 2017, Automatic Speech Recognition: Challenges for the
New Millenium, 47-52, 2000,
https://api.semanticscholar.org/CorpusID:18390942.

[27] A. Vyas, P. Dighe, S. Tong, and H. Bourlard, “Analyzing Uncertainties
in Speech Recognition Using Dropout,” ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6730–6734, May 2019, doi:
https://doi.org/10.1109/icassp.2019.8683086.

[28] “PrIMuS dataset,” Dlsi.ua.es, 2018. https://grfia.dlsi.ua.es/primus/
(accessed Aug. 15, 2025).

https://doi.org/10.2307/833219
https://doi.org/10.1109/wdm.2003.1233890
https://doi.org/10.1145/3397499
https://ddd.uab.cat/record/272800
https://doi.org/10.5072/zenodo.243774
https://doi.org/10.1007/978-3-030-31321-0_13
https://human.libretexts.org/Courses/Prince_Georges_Community_College/PGCC_Open_Music_Theory-Fundamentals
https://human.libretexts.org/Courses/Prince_Georges_Community_College/PGCC_Open_Music_Theory-Fundamentals
https://helda.helsinki.fi/bitstream/10138/19386/2/musicnot.pdf
https://www.classicfm.com/discover-music/music-theory/origins-music-notation/
https://www.classicfm.com/discover-music/music-theory/origins-music-notation/
https://doi.org/10.1145/3397499
https://doi.org/10.1109/wdm.2003.1233890
https://www.w3.org/2021/06/musicxml40/
https://doi.org/10.1121/1.2022489
https://midi.org/midi-2-0-core-specification-collection
https://midi.org/midi-2-0-core-specification-collection
https://doi.org/10.1109/access.2019.2962572
https://doi.org/10.1016/j.patrec.2011.01.021

