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Abstract— In recent years, the growing demand for intelligent 

and efficient surveillance systems has driven advancements in 

anomaly detection technology for video analysis. This study 

proposes a deep learning-based approach to detect and identify 

anomalous events in videos, integrating anomaly detection and 

classification modules into a simple simulation system with a 

graphical user interface. The anomaly detection module employs 

an Inflated 3D ConvNet (I3D) architecture, while two pre-trained 

YOLO models (YOLOv8 and YOLOv11) are compared for 

anomaly classification. Experiments were conducted on the UCF-

Crime dataset, using 10% for testing. Results show that the I3D 

model achieves a ROC-AUC of 0.73 for anomaly detection, while 

YOLOv11 outperforms YOLOv8 in classification across 13 

anomaly classes with an accuracy of 74.75%. Future 

improvements include training with higher-quality datasets and 

larger model architectures to enhance performance. 

Keywords— anomaly detection, anomaly type identification, 

deep learning, Inflated 3D ConvNet, YOLO 

I.  INTRODUCTION 

In recent years, the demand for intelligent surveillance 

systems capable of automatically detecting suspicious activities 

has increased significantly, particularly in public surveillance 

domains such as train stations, airports, shopping centers, and 

highways. Conventional video surveillance systems that rely on 

direct human monitoring have proven to be limited in both 

response speed and accuracy. These limitations highlight the 

need for automated approaches that can detect and classify 

anomalous events effectively. 

Deep learning-based anomaly detection has emerged as a 

promising solution, enabling systems to learn complex 

temporal and spatial patterns from large-scale video datasets. 

By leveraging such methods, surveillance systems can 

automatically detect unusual activities and identify the type of 

anomaly, thereby enhancing efficiency and reducing 

dependency on human operators. This research focuses on 

developing and integrating an anomaly detection module and 

an anomaly classification module into a unified system with a 

graphical user interface. The system aims to improve the 

accuracy and consistency of video-based anomaly detection and 

identification, providing a foundation for more advanced and 

scalable surveillance solutions in the future. 

II. THEORETICAL FOUNDATION 

A. Video 

A video, or moving image, is a medium for storing visual 

information composed of a sequence of still images called 

frames. These frames are displayed sequentially at a specific 

rate, creating the illusion of motion. The rate is measured in 

frames per second (fps), indicating the number of frames 

displayed in one second. 

In a video, object motion can be detected by observing 

changes in the position or color of the object within a frame and 

comparing them with subsequent frames. If significant changes 

in position or color are detected, the object can be labeled as 

moving. This principle forms the foundation for motion 

detection and analysis in computer vision applications, 

including anomaly detection in surveillance videos. 

B. UCF-Crime Dataset 

The UCF-Crime dataset is a large-scale dataset developed 

by the Center for Research in Computer Vision (CRCV) at the 

University of Central Florida for research in anomaly detection 

in surveillance videos. It contains 1,900 long-duration videos 

with a total length of approximately 128 hours, capturing real-

world footage from various public locations such as highways, 

shopping areas, and other public facilities. The dataset is 

divided into two main categories: anomalous event videos and 

normal videos. The anomalous events cover 13 classes, 

including Abuse, Arrest, Arson, Assault, Burglary, Explosion, 

Fighting, Road Accident, Robbery, Shooting, Stealing, 

Shoplifting, and Vandalism. Normal videos represent daily 

activities that do not involve criminal acts or suspicious 

incidents. 



A key strength of this dataset lies in its untrimmed and real-

world nature, which presents more complex challenges 

compared to datasets composed of short, pre-segmented clips. 

In anomaly detection research, this is highly relevant, as the 

model must not only recognize anomalous patterns but also 

distinguish critical event segments within lengthy videos that 

mostly contain normal activities. Additional challenges include 

class imbalance, where anomalous events are significantly less 

frequent than normal videos, as well as variations in video 

capture conditions such as lighting, camera angles, and crowd 

density. 

C. Anomaly Detection and Identification 

According to Foorthuis, an anomaly is an event or a group 

of events considered unusual or deviating from a concept of 

normality. Anomalies are also referred to as outliers, novelties, 

deviants, or discords. These events are rare and differ from 

common situations, encompassing various phenomena, 

whether static entities or time-related occurrences, in both 

atomic (single-case) and aggregate forms, and whether 

desirable or undesirable. In general, anomalies represent any 

deviation from typical patterns or expectations, often drawing 

special attention due to their rarity and departure from 

established norms. 

Anomaly detection is typically formulated as an 

unsupervised one-class classification problem, aiming to learn 

the normal state of data during training and subsequently detect 

deviations without explicit anomaly labels. Many anomaly 

detection applications involve visual data, such as images or 

videos, and are often motivated by surveillance-related needs. 

Commonly evaluated datasets for visual anomaly detection are 

recorded using stationary cameras that observe a region where 

the background remains relatively static while foreground 

objects, such as pedestrians and vehicles, move. 

Beyond detecting the presence of anomalies, some scenarios 

also require anomaly type identification, the process of 

classifying the specific category of a detected anomalous event. 

This allows the system not only to determine that an event 

deviates from normality, but also to identify whether it belongs 

to categories such as fighting, theft, traffic accidents, or arson. 

This approach generally requires datasets with class-level 

annotations for each anomaly type, such as the UCF-Crime 

dataset, which contains 13 anomaly event categories. 

Consequently, anomaly type identification plays a crucial role 

in improving surveillance system responses by enabling 

prioritized handling based on the severity and nature of the 

detected event. 

D. Multiple Instance Learning 

Multiple Instance Learning (MIL) is a machine learning 

approach designed to handle problems where labels are 

provided only at the aggregate or bag level, rather than at the 

individual instance level. In traditional machine learning 

settings, each data sample, such as an image or a video frame, 

is explicitly labeled and used directly for model training. 

However, in MIL, labels are assigned only to bags, each 

containing multiple instances with unknown labels. 

A bag is labeled as positive if at least one instance within it 

belongs to the positive class, and negative if all instances belong 

to the negative class. This setup enables MIL to operate in 

scenarios where instance-level annotation is unavailable. The 

training process in MIL involves learning the relationship 

between a bag’s label and the patterns present within its 

individual instances. The model aims to predict the bag label by 

identifying discriminative features among the instances, even 

though instance-level labels are unknown. 

 

Fig 2.1. Illustration of Multiple Instance Learning Data 

Labeling (Fatima,S. et al, 2023) 

MIL is particularly effective for tasks with limited 

annotations, especially in situations where obtaining instance-

level labels is difficult or costly, such as large-scale video 

anomaly detection. 

E. Convolutional 3D 

Convolutional 3D (C3D) is a deep neural network 

architecture designed to process video data by leveraging three-

dimensional convolutions. Introduced by Tran et al. [8], C3D 

captures both spatial and temporal information simultaneously 

by applying 3D filters to video blocks, where the three 

dimensions correspond to height, width, and time. 

In C3D, a video clip is first converted into a 4D tensor 

representation with dimensions (number of frames × height × 

width × channels). A 3D convolution is then applied using a 

kernel/filter of size (𝑘𝑡 , 𝑘ℎ , 𝑘𝑤), where 𝑘𝑡 is the temporal size,  
kh is the height, and 𝑘ℎ is the width. The kernel slides across 

spatial and temporal positions, computing element-wise 

multiplications between the input pixels and kernel weights, 

followed by summation to produce the feature value at that 

position. A non-linear activation function, typically ReLU, is 

applied afterward to introduce non-linearity into the model. 



 

Fig 2.2. Illustration of C3D Process (Li, G. et al, 2022) 

In the context of C3D, a kernel is a three-dimensional 

weight matrix that extracts patterns from video data, capturing 

both spatial and temporal features. These kernels are learned 

automatically during training to detect relevant features at 

multiple spatial and temporal scales. Following convolution, 

3D pooling, commonly max pooling, is applied to reduce data 

dimensions while retaining key features. Pooling operates over 

small 3D blocks in time, height, and width, improving the 

model’s robustness to small shifts and local variations. The 

general C3D process can be summarized as follows: 

1. Convert the input video into a 4D tensor (Time, 

Height, Width, Channel). 

2. Perform 3D convolution with kernels (𝑘𝑡 , 𝑘ℎ , 𝑘𝑤) to 

extract spatial-temporal features. 

3. Apply non-linear activation (ReLU). 

4. Perform 3D pooling to reduce dimensionality and 

generalize features. 

5. Apply subsequent layers (convolution, pooling, fully 

connected) until classification or detection output. 

C3D typically processes short video clips to learn motion 

changes and visual patterns effectively. Its main advantages are 

architectural simplicity and inference efficiency. However, due 

to its relatively shallow depth, its ability to capture complex 

motion patterns remains limited. 

F. Inflated 3D ConvNet 

The Inflated 3D ConvNet (I3D), introduced by Carreira and 

Zisserman, extends the 2D kernels and pooling operations of 

the Inception architecture into three dimensions, a process 

referred to as “inflation.” This approach enables the use of pre-

trained weights from large-scale image datasets, such as 

ImageNet, and subsequently fine-tunes them on video datasets. 

By inflating 2D filters into 3D, I3D can capture both spatial and 

temporal representations in a richer and more structured 

manner. 

 

Fig 2.3. I3D Architecture (Carriera, J. & Zisserman, A., 

2017) 

The I3D architecture divides processing into multiple 

branches within each Inception module, each employing 

different 3D kernel sizes to extract features at varying spatial-

temporal scales. The outputs of these branches are concatenated 

to form a richer feature representation. Batch normalization and 

ReLU activation are applied after each convolution to maintain 

training stability. Dimensionality reduction is performed 

progressively using 3D pooling, which compresses both spatial 

resolution and temporal information. 

Compared to C3D, I3D generally achieves superior 

performance in video activity recognition tasks due to its ability 

to model more complex inter-frame relationships. However, 

this advantage comes at the cost of higher computational 

complexity and memory requirements. Prior studies have 

reported that I3D achieves a ROC-AUC of 0.8403, 

outperforming the C3D Two-Stream model (0.7541). 

Furthermore, the Two-Stream I3D variant achieves an even 

higher ROC-AUC of 0.8445, demonstrating that combining 

information from both RGB and optical flow streams yields 

richer spatial-temporal representations, albeit with further 

increases in computational cost. 

In the context of video anomaly detection, I3D can be 

integrated with Multiple Instance Learning (MIL) to handle 

cases where only video-level labels are available without 

precise temporal annotations. In this scenario, a video is treated 

as a bag containing multiple instances, represented as short 

temporal segments. I3D is used to extract spatial-temporal 

features from each segment, while MIL identifies which 

segments contribute most to the anomaly classification. This 

integration enables weakly supervised learning of anomaly 

patterns, maintaining effectiveness even in the absence of 

detailed temporal segmentation labels. 

G. YOLO 

YOLO (You Only Look Once) is a computer vision method 

for real-time object detection based on deep learning. 

According to Redmon et al., YOLO formulates the object 

detection task as a single regression problem, directly mapping 

the entire input image to bounding box coordinates and class 

probabilities, enabling object detection in a single inference 

pass. 

 



Fig 2.4. YOLO General Architecture (Redmon, J. et al, 

2015) 

The YOLO architecture divides the input image into a grid, 

with each grid cell responsible for predicting the presence of an 

object and its associated bounding box parameters. This design 

results in a fast and efficient end-to-end convolutional network. 

Later developments, as described by Redmon and Farhadi, such 

as YOLOv3, introduced multi-scale detection and residual 

connections to improve accuracy for small objects without 

sacrificing speed. 

Multi-scale detection allows predictions at multiple feature 

resolutions, for example, large feature maps for small objects 

and smaller feature maps for large objects, enhancing the 

model’s ability to capture information at various spatial detail 

levels. Residual connections directly link the output of earlier 

layers to deeper layers, facilitating gradient flow during training 

and reducing the risk of vanishing gradients. This mechanism 

enables the network to learn more complex representations 

without performance degradation in deeper architectures. 

For anomaly type identification tasks, recent publicly 

available YOLO variants such as YOLOv8 and YOLOv11 can 

be employed due to their improved detection accuracy, 

scalability, and computational efficiency. 

III. PROBLEM ANALYSIS AND SOLUTION 

A. Problem Identification 

Anomalous event detection in videos is a critical challenge 

in various applications, including security monitoring, 

behavioral analysis, and automated surveillance systems. 

Anomalous events refer to unusual or suspicious motion 

patterns in videos that deviate from normal activities. In video 

processing, traditional approaches such as statistical analysis or 

template matching are often insufficient to address the 

complexity of motion dynamics. These methods typically rely 

solely on spatial information and fail to capture temporal 

dependencies across frames. 

Deep learning technologies, particularly convolutional 

neural networks (CNNs) and recurrent neural networks 

(RNNs), have shown great potential in video analysis for tasks 

such as object detection and event recognition. However, their 

application to anomalous event detection still faces significant 

challenges, including data imbalance and limited availability of 

accurately labeled datasets. Data imbalance is a major obstacle, 

as normal samples often far outnumber anomalous ones, 

causing models to favor normal pattern recognition while 

struggling to detect rare anomalies. Furthermore, accurate 

annotation of anomalous events is challenging due to high 

variability in motion patterns across diverse scenarios. 

In this context, weakly supervised or unsupervised 

approaches are highly relevant, as they reduce the dependency 

on time-consuming manual annotations. Deep learning-based 

anomaly detection offers a promising solution by enabling 

models to automatically learn normal motion patterns and 

detect deviations that signify anomalous events. Although prior 

studies have applied deep learning to video anomaly detection, 

many still rely heavily on labeled data and do not fully exploit 

the potential of anomaly detection for visually subtle anomalies. 

From the above problem identification, three main 

conclusions can be drawn. First, anomalous event detection in 

videos continues to face significant challenges in handling data 

imbalance and complex motion patterns. Second, traditional 

anomaly detection methods are less effective for dynamic and 

complex video data. Third, while deep learning holds great 

potential, weakly supervised or unsupervised approaches are 

essential to reduce reliance on extensive manual annotations. 

Therefore, a deep learning-based anomaly detection method 

that can detect anomalous events automatically, efficiently, and 

accurately is required to enhance the capabilities of automated 

surveillance systems across various applications. 

B. Solution 

Based on the problem analysis, the proposed solution is the 

development of a deep learning–based anomaly detection 

system for surveillance videos. The system aims to 

automatically detect unusual or suspicious movements with 

high accuracy, leveraging methods capable of handling the 

variability and complexity of real-world video data. By utilizing 

deep learning, the solution addresses the limitations of 

conventional methods that rely on manual monitoring, while 

improving both efficiency and detection accuracy in 

surveillance contexts. 

The proposed system tackles key challenges such as the 

difficulty of detecting rare anomalies, the need for robust model 

generalization across various surveillance scenarios, and the 

limitations of models that fail to capture both spatial and 

temporal relationships in video data. To address these 

challenges, the system integrates advanced video understanding 

architectures, namely Inflated 3D ConvNets (I3D), which have 

proven effective in modelling temporal and spatial dynamics in 

surveillance footage. 

The system architecture consists of several primary stages: 

1. Preprocessing: Surveillance videos are resized and 

adjusted to meet the input requirements of the deep 

learning models. 

2. Feature Extraction: When using I3D, the system 

benefits from deeper 3D ConvNet architectures with 

inflated filters and transfer learning from large-scale 

video datasets such as Kinetics, enhancing anomaly 

detection accuracy. 

3. Anomaly Detection: The extracted features are 

analysed to identify deviations from learned normal 

motion patterns. Significant deviations trigger 



anomaly detection, producing a binary output 

(True/False) indicating the presence of suspicious 

activity. 

4. Anomaly Classification: For frames flagged as 

anomalous, a fine-tuned YOLO classification model is 

employed to identify the specific type of anomaly 

within the detected frame. 

By combining the strengths of I3D for anomaly detection and 

YOLO for anomaly classification, the proposed solution is 

expected to outperform traditional approaches in both detection 

accuracy and robustness. The system’s ability to jointly capture 

spatial and temporal patterns, while accurately classifying 

detected anomalies, enables a more efficient, automated, and 

reliable surveillance solution applicable to domains such as 

public security, behavioral analysis, and industrial monitoring. 

IV. EVALUATION 

A. Anomaly Detection 

The performance evaluation of the anomaly detection 

module was conducted by measuring the True Positive Rate 

(TPR) and False Positive Rate (FPR) obtained from the 

detection results of the implemented model. These two 

variables were then used to construct a Receiver Operating 

Characteristic (ROC) curve. Subsequently, the Area Under the 

Curve (AUC) was calculated from the constructed ROC curve, 

which serves as a key performance metric for this module. 

The anomaly detection performance was evaluated using 

the Inflated 3D ConvNet (I3D) model, which had been trained 

with the dataset. The testing was performed on a test dataset 

consisting of 150 videos labeled as Normal and 140 videos 

labeled as Anomalous (non-Normal). 

 

Fig 4.1. I3D ROC-AUC Graph 

Fig. 4.1 presents the ROC curve generated from the evaluation 

of the I3D model. The resulting AUC value is 0.73, indicating 

that the model demonstrates a reasonably good capability in 

detecting the presence of anomalous events. However, this 

performance is lower than the result reported in previous 

studies, where an AUC value of 0.8403 was achieved. 

B. Anomaly Identification 

The performance evaluation of the anomaly type 
identification module was conducted by measuring the 
classification accuracy for each anomaly class as well as the 
overall accuracy. The evaluation was performed on an annotated 
dataset in which frames containing anomalies were labeled. The 
dataset consisted of 140 videos and included 13 anomaly classes 
with varying numbers of frames per class. The accuracy was 
calculated by dividing the number of correctly identified frames 
by the total number of frames tested, thus providing a 
quantitative measure of the module’s performance. 

Two classification models were evaluated: YOLOv8s-cls 
and YOLO11s-cls. The results of both models were compared 
to determine the model with the best performance for integration 
into the system. 

1. YOLO11s-cls Model Testing 

 

Fig 4.2. YOLO11s-cls Testing Results 

The YOLO11s-cls model achieved an overall accuracy of 
74.75%, correctly identifying 6,390 out of 8,548 tested frames. 
This performance indicates that the model is highly capable of 
identifying anomaly types from incoming frames. Further 
analysis per class accuracy is required to better understand 
strengths and weaknesses. 

2. YOLOv8s-cls Model Testing 

 

Fig 4.3. YOLOv8s-cls Testing Results 

The YOLOv8s-cls model achieved an overall accuracy of 
69.63%, correctly identifying 5,952 out of 8,548 tested frames. 
The model showed good capability in identifying classes such 



as Abuse, Arrest, Arson, Assault, Road Accidents, Shooting, 
Stealing, Shoplifting, and Vandalism, and reasonable 
performance for Burglary, Explosion, and Robbery. However, 
its performance on Fighting was notably poor, with an accuracy 
of 0.22%. 

 

C. Prototype 

The prototype testing aimed to verify the successful 

integration of the anomaly detection module and the anomaly 

type identification module into the application interface. The 

complete interface of the application during the testing process 

is shown in Fig. IV.5. 

 

Fig. 4.4. Graphical User Interface of the Prototype 

As illustrated in Fig. 4.4, the application accepts a video 

input for anomaly detection and identification. Once the video 

is loaded, the application provides a built-in media player to 

display the input video. The user can initiate the main process 

by selecting the "Detect Anomalous Activity" button. Upon 

completion, the resulting processed video is displayed in a 

separate media player, accompanied by a probability graph 

showing the likelihood of anomaly occurrence throughout the 

video. 

D. Analysis 

As shown in Fig. 4.2 and 4.3, the identification performance 
varied significantly across classes. The trained models 
demonstrated excellent identification capability for classes such 
as Arrest, Arson, Assault, Stealing, and Vandalism, and good 
performance for Abuse, Burglary, Explosion, Road Accidents, 
Shooting, and Shoplifting. However, the models performed 
poorly for Fighting and Robbery. 

The results show that both models can identify anomaly 
types effectively; however, both struggle with certain classes, 
particularly Fighting and Robbery. Overall, YOLO11s-cls 
outperformed YOLOv8s-cls and was therefore selected as the 
anomaly type identification model for the proposed anomaly 
detection and identification system. 

Based on the evaluation of the anomaly detection module, 
anomaly type identification module, and the prototype 
application, the developed system exhibits certain limitations in 
accurately detecting and identifying anomalies. The system is 
still unable to correctly detect and classify certain types of 
anomalous events, indicating that the implemented modules are 
not yet fully optimized and require further training. 

The system also experiences a decline in performance when 
processing videos with very long durations. This is due to the 
anomaly detection model’s reliance on temporal context to 
determine the presence of anomalies within a video. While 
incorporating temporal information allows the model to more 
accurately determine the presence of anomalies in specific 
frames, it also increases the processing time for long input 
videos. 

Considering the implications of these results and the 
identified limitations, several potential improvements can be 
made to the proposed system. For the anomaly detection 
module, training the model with a larger and more diverse 
dataset could enhance its performance. For the anomaly type 
identification module, higher-quality datasets and classification 
models that leverage temporal context for frame-level 
classification are recommended. Furthermore, improving the 
dataset to achieve a more balanced class distribution could 
enhance the performance of both modules. 

V. CONCLUSION AND FUTURE WORKS 

A. Conclusion 

An anomaly detection and identification system was 

developed to identify the presence of anomalous events in 

videos and determine their specific types using deep learning-

based methods. Based on the implementation and evaluation 

results, the following conclusions can be drawn: 

1.  Anomaly detection in videos was performed using an 

Inflated 3D ConvNet model integrated into the 

anomaly detection module. The developed module 

achieved good detection performance, with an ROC-

AUC score of 0.73 on the test dataset. However, the 

model’s accuracy can be further improved through 

additional training, and its computational time remains 

relatively high. 

2. Anomaly type identification was conducted using a 

pre-trained YOLOv11 classification variant integrated 

into the anomaly classification module. This module 

achieved a classification accuracy of 0.7475 on the test 

dataset. Nevertheless, the model still faces challenges 

in identifying certain anomaly types accurately. 

B. Future Works 

The developed anomaly detection and classification system 

successfully identified anomalous events in input videos using 

deep learning-based anomaly detection. However, several 

improvements can be pursued in future research: 

1. Increasing both the quantity and quality of anomaly 

data in the datasets used for training the anomaly 

detection and classification models. Enhancing dataset 



quality and diversity can help improve model 

performance, which in this study remains suboptimal 

for certain anomaly cases. 

2. Employing deep learning models that incorporate 

temporal context for the anomaly classification 

module, such as integrating YOLO with Long Short-

Term Memory (LSTM) networks. Utilizing models 

capable of processing temporal information can 

enhance the accuracy of anomaly type classification. 
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