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Abstract 

Many puzzles can we find in our daily life, they can be game, IQ test question, school subject or many kind of 
their form. One of the ever popular puzzle is Latin Square Puzzle. Maybe without we realize that we have found 
that puzzle in our live. It is a simple puzzle to understand, only completing  the NxN table with N unique symbols 
but no same symbol at one row or colum. But in the next level with big number of N we will got problem of it. To 
solve that some of algorithm is used to completing the puzzle such as Brute Force Algorithm and BackTracking 
Algorithm.  
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1. Preface 
Back Tracking Algorithm have used for many core 
of computation problem solving, one of the problem 
that excited to explore and completion is Latin 
Square Puzzle. Many problem in our life that 
without we realize we have used the concept of 
completing that puzzle such as scheduling problem, 
and management problem.With this article/jurnal we 
hope we can solve problems that have the concept as 
similar as the Latin Square Problem, especially for 
software development. 

2. History Of Latin Square Name 

 

A grafitto from Roman times is shown at the above. 
This was a kind of "Kilroy Was Here" message. 
Until recently, only in the Graeco-Roman world was 
the general public able to read and appreciate 
grafitti. It has been found from Hadrian's Wall in 
England to the desert wastes of Arabia. It says: "The 
sower Arepo holds carefully the wheels" when read 
in any direction. Pure nonsense, it was apparently 
designed to excite the superstitious. It is in Latin, 
and is a Square, but is not a Latin Square, at least not 
in the strict sense, because the rows and columns 
contain different letters, not simply the same letters 
rearranged. However, it may have provided the 
name Latin Square. 

 

The table at the above contains the numbers 1, i, -1 
and -i, where i is the imaginary unit (i×i = -1). It is a 
multiplication table, giving the result C of the 
product AB, where A is the first element in a row, 
and B the first element in a column. The first row 
and first column serve as labels as well as table 
members here, since it is unnecessary to repeat them 
for this purpose. This is also the "multiplication 
table" for any group whose four members 
correspond to 1, i, -1 and -i, though they may not be 
numbers. In fact, group members are usually 
transformations, and "multiplication" means 
performing two transformations in a row. A group is 
a set of elements that is closed under whatever 
"multiplication" is defined for them. This means that 
the result of any multiplication is again a member of 
the group. Furthermore, the group must contain the 
identity element (corresponding to 1) and the inverse 
Y to any element X, such that XY = YX = 1. Y is 
usually written X-1. Quite importantly, the 
multiplication must be associative. That is, (AB)C = 
A(BC) for any three members A, B, C of the group. 
The requirements for the identity and the inverse 
mean that no element is repeated in any row or 
column, so that each row or column contains each 
element once and once only. This is the strict 
definition of a Latin Square. 
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3. Definition and History Of Latin Square 
Completion 

Latin square is a Latin rectangle with k = n. 
Specifically, a Latin square consists of n sets of the 
numbers 1 to n arranged in such a way that no 
orthogonal (row or column) contains the same 
number twice. For example, the two Latin squares of 
order two are given by  

 
(1)

 
 

the  Latin squares of order three are given by  

 
(
2
)

and two of the whopping 576 Latin squares of order 
4 are given by  

 

(3)

 
 

The numbers N(n,n) of Latin squares of order n = 1, 
2, ... are 1, 2, 12, 576, 161280, ...[3] 

 A pair of Latin squares is said to be orthogonal if 
the pairs formed by juxtaposing the two arrays 
are all distinct. For example, the two Latin squares  

 

(4)

 
 

are orthogonal. The number of pairs of orthogonal 
Latin squares of order n = 1, 2, ... are 0, 0, 36, 3456, 
... [3] 

A normalized, or reduced, Latin square is a Latin 
square with the first row and column given by 

. General formulas for the number 
of normalized  Latin squares L(n,n) are given by 
Nechvatal (1981), Gessel (1987), and Shao and Wei 

(1992). The total number of Latin squares N(n,n) of 
order n can then be computed from  

 
(5)

 
 

The numbers of normalized Latin squares of order n 
= 1, 2, ..., are 1, 1, 1, 4, 56, 9408, ... [3]. McKay and 
Rogoyski (1995) give the number of normalized 
Latin rectangles L(k,n) for n = 1, ..., 10, as well as 
estimates for L(n,n) with n = 11, 12, ..., 15.  

n L(n,n) 

11 
 

12 
 

13 
 

14 
 

15 
 

. 

4. Back Tracking Implementation and 
Source Sample 

One of  source  that use backtracking to solve 9x9 
Latin Square: 

---------------------source begin------------------------ 
#include <stdio.h> 
#define SIZE 20 
 
int sq[SIZE][SIZE]; 
int allowed[SIZE][SIZE]; 
int row[SIZE]; 
int col[SIZE]; 
int n; 
int allvec; 
 
int nrbitset(int x) 
{ 
 int r = 0; 
 for (int i = 0; i < n; i++) 
  if ((1 << i) & x) 
   r++; 
 return r; 
} 
 
void set(int i, int j, int k) 
{ 
 if (sq[i][j] != 0) 
 { 
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  printf("%d %d %d %d\n", 
i, j, sq[i][j], k); 
  exit(1); 
 } 
 sq[i][j] = k+1; 
 row[i] &= ~(1 << k); 
 col[j] &= ~(1 << k); 
} 
void iset(int i, int j, int k) 
{ set(i-1,j-1,k-1); 
} 
void reset(int i, int j) 
{ 
 int k = sq[i][j]-1; 
 sq[i][j] = 0; 
 row[i] |= (1 << k); 
 col[j] |= (1 << k); 
} 
int possiblemoves() 
{ 
 int p = 0; 
  
 for (int i = 0; i < n; i++) 
  for (int j = 0; j < n; 
j++) 
   if (sq[i][j] == 
0) 
   { 
    int v = 
nrbitset(row[i] & col[j] & 
allowed[i][j]); 
    if (v == 0) 
    
 return 0; 
    p += v; // 
v*v - (v < 2 ? 0 : v-2); 
   } 
    
 return p; 
} 
 
int count = 0; 
 
bool solve(int depth) 
{ 
 //printf("%*.*s%d\n", depth, 
depth, "", possiblemoves()); 
 struct 
 { int pm; 
  int i; 
  int j; 
  int k; 
 } sols; 
 
 sols.pm = 0; 
  
 int v; 
 for (int i = 0; i < n; i++) 
  for (int j = 0; j < n; 
j++) 

   if (sq[i][j] == 0 
&& nrbitset(v = row[i] & col[j] & 
allowed[i][j]) == 1) 
   { 
    for (int k 
= 0; k < n; k++) 
     if 
((1 << k) & v) 
     { 
     
 set(i,j,k); 
     
 if (solve(depth+1)) 
     
  return true; 
     
 reset(i,j); 
     
  
     
 return false; 
     } 
   } 
  
 int o = 0;  
 for (int i = 0; i < n; i++) 
  for (int j = 0; j < n; 
j++) 
   if (sq[i][j] == 
0) 
   { 
    o++; 
    int x = 
row[i] & col[j] & allowed[i][j]; 
    for (int k 
= 0; k < n; k++) 
     if 
((1 << k) & x) 
     { 
     
 set(i,j,k); 
     
 int pm = possiblemoves(); 
     
 reset(i,j); 
  
     
 if (pm > sols.pm) 
     
 {    
  
     
  sols.pm = pm; 
     
  sols.i = i; 
     
  sols.j = j; 
     
  sols.k = k; 
     
 } 



4 

     } 
   } 
 
 //printf("nrsols = %d\n", o);
  
 if (o == 0) 
 { 
#if 0  
  for (int j = n-1; j >= 
0; j--) 
  { 
   for (int i = 0; i 
< n; i++) 
   
 printf("%3d", sq[i][j]); 
   printf("\n"); 
  } 
#else 
  for (int j = n-1; j >= 
0; j--) 
  { 
   for (int i = 0; i 
< n; i++) 
   
 printf("%1d", sq[i][j]); 
  } 
  printf("\n"); 
#endif 
  if (count++ > 100000) 
   return true; 
  //return true; 
 } 
 
 if (sols.pm > 0) 
 { 
  set(sols.i, sols.j, 
sols.k); 
  if (solve(depth+1)) 
   return true; 
  reset(sols.i, sols.j); 
  allowed[sols.i][sols.j] 
&= ~(1 << sols.k); 
  if (solve(depth+1)) 
   return true; 
  allowed[sols.i][sols.j] 
|= (1 << sols.k); 
 } 
  
 return false; 
} 
 
int main() 
{ 
 n = 9; 
 allvec = (2 << n) - 1; 
 for (int i = 0; i < n; i++) 
 { 
  row[i] = allvec; 
  col[i] = allvec; 
  for (int j = 0; j < n; 
j++) 

  { 
   sq[i][j] = 0; 
   allowed[i][j] = 
allvec; 
  } 
 } 
  
 iset(1,1,1); 
 iset(2,3,1); 
 iset(4,3,4); 
 iset(4,5,1); 
 iset(4,8,5); 
 iset(6,4,2); 
 iset(6,7,6); 
 iset(7,6,2); 
 iset(8,3,3); 
 solve(9); 
    
 return 0; 
} 

------------end of source--------------------------- 

There is a good demo of this puzzle completion, its 
called Quasigroup completion : 

a. completion with deterministic step 

start from first row and column and end at last 
cell. 
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b. completion with stochastic step 

ramdomize the first cell and next completion 

 

 

5. Conclusion 

Back Tracking Algorithm is one of the most popular 
algorithm for many problem solving, so does for 
Ltin Square completion, if we use brute force it will 
spend more time  because each component will be 
tried for all cell so if we use the backtrack we can 
decrease a large of step because every a stuck step it 
only goes back to last valid step. 
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