
1

Completing Latin Square Puzzle
With Backtracking Algorithm

Revi Fajar Martha1, Yogie Adrisatria2, Syahrul Anwar3

Informatics Engineering, Institut Teknologi Bandung
Jl. Ganesha 10, Bandung

E-mail : if13005@students.if.itb.ac.id1,
if13035@students.if.itb.ac.id2, if13061@students.if.itb.ac.id3

Abstract

Many puzzles can we find in our daily life, they can be game, IQ test question, school subject or many kind of
their form. One of the ever popular puzzle is Latin Square Puzzle. Maybe without we realize that we have found
that puzzle in our live. It is a simple puzzle to understand, only completing the NxN table with N unique symbols
but no same symbol at one row or colum. But in the next level with big number of N we will got problem of it. To
solve that some of algorithm is used to completing the puzzle such as Brute Force Algorithm and BackTracking
Algorithm.

Keywords: backtracking algorithm, latin square, puzzle

1. Preface
Back Tracking Algorithm have used for many core
of computation problem solving, one of the problem
that excited to explore and completion is Latin
Square Puzzle. Many problem in our life that
without we realize we have used the concept of
completing that puzzle such as scheduling problem,
and management problem.With this article/jurnal we
hope we can solve problems that have the concept as
similar as the Latin Square Problem, especially for
software development.

2. History Of Latin Square Name

A grafitto from Roman times is shown at the above.
This was a kind of "Kilroy Was Here" message.
Until recently, only in the Graeco-Roman world was
the general public able to read and appreciate
grafitti. It has been found from Hadrian's Wall in
England to the desert wastes of Arabia. It says: "The
sower Arepo holds carefully the wheels" when read
in any direction. Pure nonsense, it was apparently
designed to excite the superstitious. It is in Latin,
and is a Square, but is not a Latin Square, at least not
in the strict sense, because the rows and columns
contain different letters, not simply the same letters
rearranged. However, it may have provided the
name Latin Square.

The table at the above contains the numbers 1, i, -1
and -i, where i is the imaginary unit (i×i = -1). It is a
multiplication table, giving the result C of the
product AB, where A is the first element in a row,
and B the first element in a column. The first row
and first column serve as labels as well as table
members here, since it is unnecessary to repeat them
for this purpose. This is also the "multiplication
table" for any group whose four members
correspond to 1, i, -1 and -i, though they may not be
numbers. In fact, group members are usually
transformations, and "multiplication" means
performing two transformations in a row. A group is
a set of elements that is closed under whatever
"multiplication" is defined for them. This means that
the result of any multiplication is again a member of
the group. Furthermore, the group must contain the
identity element (corresponding to 1) and the inverse
Y to any element X, such that XY = YX = 1. Y is
usually written X-1. Quite importantly, the
multiplication must be associative. That is, (AB)C =
A(BC) for any three members A, B, C of the group.
The requirements for the identity and the inverse
mean that no element is repeated in any row or
column, so that each row or column contains each
element once and once only. This is the strict
definition of a Latin Square.

2

3. Definition and History Of Latin Square
Completion

Latin square is a Latin rectangle with k = n.
Specifically, a Latin square consists of n sets of the
numbers 1 to n arranged in such a way that no
orthogonal (row or column) contains the same
number twice. For example, the two Latin squares of
order two are given by

(1)

the Latin squares of order three are given by

(
2
)

and two of the whopping 576 Latin squares of order
4 are given by

(3)

The numbers N(n,n) of Latin squares of order n = 1,
2, ... are 1, 2, 12, 576, 161280, ...[3]

 A pair of Latin squares is said to be orthogonal if
the pairs formed by juxtaposing the two arrays
are all distinct. For example, the two Latin squares

(4)

are orthogonal. The number of pairs of orthogonal
Latin squares of order n = 1, 2, ... are 0, 0, 36, 3456,
... [3]

A normalized, or reduced, Latin square is a Latin
square with the first row and column given by

. General formulas for the number
of normalized Latin squares L(n,n) are given by
Nechvatal (1981), Gessel (1987), and Shao and Wei

(1992). The total number of Latin squares N(n,n) of
order n can then be computed from

(5)

The numbers of normalized Latin squares of order n
= 1, 2, ..., are 1, 1, 1, 4, 56, 9408, ... [3]. McKay and
Rogoyski (1995) give the number of normalized
Latin rectangles L(k,n) for n = 1, ..., 10, as well as
estimates for L(n,n) with n = 11, 12, ..., 15.

n L(n,n)

11

12

13

14

15

.

4. Back Tracking Implementation and
Source Sample

One of source that use backtracking to solve 9x9
Latin Square:

---------------------source begin------------------------
#include <stdio.h>
#define SIZE 20

int sq[SIZE][SIZE];
int allowed[SIZE][SIZE];
int row[SIZE];
int col[SIZE];
int n;
int allvec;

int nrbitset(int x)
{
 int r = 0;
 for (int i = 0; i < n; i++)
 if ((1 << i) & x)
 r++;
 return r;
}

void set(int i, int j, int k)
{
 if (sq[i][j] != 0)
 {

3

 printf("%d %d %d %d\n",
i, j, sq[i][j], k);
 exit(1);
 }
 sq[i][j] = k+1;
 row[i] &= ~(1 << k);
 col[j] &= ~(1 << k);
}
void iset(int i, int j, int k)
{ set(i-1,j-1,k-1);
}
void reset(int i, int j)
{
 int k = sq[i][j]-1;
 sq[i][j] = 0;
 row[i] |= (1 << k);
 col[j] |= (1 << k);
}
int possiblemoves()
{
 int p = 0;

 for (int i = 0; i < n; i++)
 for (int j = 0; j < n;
j++)
 if (sq[i][j] ==
0)
 {
 int v =
nrbitset(row[i] & col[j] &
allowed[i][j]);
 if (v == 0)

 return 0;
 p += v; //
v*v - (v < 2 ? 0 : v-2);
 }

 return p;
}

int count = 0;

bool solve(int depth)
{
 //printf("%*.*s%d\n", depth,
depth, "", possiblemoves());
 struct
 { int pm;
 int i;
 int j;
 int k;
 } sols;

 sols.pm = 0;

 int v;
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n;
j++)

 if (sq[i][j] == 0
&& nrbitset(v = row[i] & col[j] &
allowed[i][j]) == 1)
 {
 for (int k
= 0; k < n; k++)
 if
((1 << k) & v)
 {

 set(i,j,k);

 if (solve(depth+1))

 return true;

 reset(i,j);

 return false;
 }
 }

 int o = 0;
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n;
j++)
 if (sq[i][j] ==
0)
 {
 o++;
 int x =
row[i] & col[j] & allowed[i][j];
 for (int k
= 0; k < n; k++)
 if
((1 << k) & x)
 {

 set(i,j,k);

 int pm = possiblemoves();

 reset(i,j);

 if (pm > sols.pm)

 {

 sols.pm = pm;

 sols.i = i;

 sols.j = j;

 sols.k = k;

 }

4

 }
 }

 //printf("nrsols = %d\n", o);

 if (o == 0)
 {
#if 0
 for (int j = n-1; j >=
0; j--)
 {
 for (int i = 0; i
< n; i++)

 printf("%3d", sq[i][j]);
 printf("\n");
 }
#else
 for (int j = n-1; j >=
0; j--)
 {
 for (int i = 0; i
< n; i++)

 printf("%1d", sq[i][j]);
 }
 printf("\n");
#endif
 if (count++ > 100000)
 return true;
 //return true;
 }

 if (sols.pm > 0)
 {
 set(sols.i, sols.j,
sols.k);
 if (solve(depth+1))
 return true;
 reset(sols.i, sols.j);
 allowed[sols.i][sols.j]
&= ~(1 << sols.k);
 if (solve(depth+1))
 return true;
 allowed[sols.i][sols.j]
|= (1 << sols.k);
 }

 return false;
}

int main()
{
 n = 9;
 allvec = (2 << n) - 1;
 for (int i = 0; i < n; i++)
 {
 row[i] = allvec;
 col[i] = allvec;
 for (int j = 0; j < n;
j++)

 {
 sq[i][j] = 0;
 allowed[i][j] =
allvec;
 }
 }

 iset(1,1,1);
 iset(2,3,1);
 iset(4,3,4);
 iset(4,5,1);
 iset(4,8,5);
 iset(6,4,2);
 iset(6,7,6);
 iset(7,6,2);
 iset(8,3,3);
 solve(9);

 return 0;
}

------------end of source---------------------------

There is a good demo of this puzzle completion, its
called Quasigroup completion :

a. completion with deterministic step

start from first row and column and end at last
cell.

5

b. completion with stochastic step

ramdomize the first cell and next completion

5. Conclusion

Back Tracking Algorithm is one of the most popular
algorithm for many problem solving, so does for
Ltin Square completion, if we use brute force it will
spend more time because each component will be
tried for all cell so if we use the backtrack we can
decrease a large of step because every a stuck step it
only goes back to last valid step.

References

1. C. E. Weatherburn, A First Course in
Mathmatical Statistics (Cambridge: C.U.P.,
1968), Chapter XI. One of the best of many
texts in statistics.

2. R. S. Burington and D. C. May, Handbook of
Probability and Statistics with Tables
(Sandusky, Ohio: Handbook Publishers, Inc.,
1958), pp. 276-279. There are many books of
statistical tables; all contain the F-test.

3. mathworld.wolfram.com
4. iwriteit.com

