
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

From Algorithmic Notation to Program: Using

Regular Expression to convert ITB Algorithmic

Notation into basic C++ code

Aloisius Adrian Stevan Gunawan - 13523054

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Bandung Institute of Technology, Rd. Ganesha 10 Bandung

E-mail: kremix6767@gmail.com , 13523054@std.stei.itb.ac.id

Abstract—Learning ITB’s algorithmic notation is not an easy

feat, especially for students who has never learned anything

about programming. This paper introduces a new way to learn

about algorithmic notation, where students could also learn by

doing, testing their understanding about it. Due to the large

amount of syntax, the implementation would be restricted to just

the basic of C++ syntax. This however, serves as a proof of

concept that the continuation of this idea is possible, with the aim

to create a new way for students to learn.

Keywords—ITB’s algorithmic notation ; learning algorithmic

notation

I. INTRODUCTION

The ability to design algorithm proves to be fundamental in
the world of computer science. The solution to a problem is
often written in algorithmic notation, before being
implemented into code. This allows programmers to think of a
solution without worrying about the syntax. In ITB, students
are taught their version of algorithmic notation, and this
notation has logic that is similar to C/C++.

This paper explores a new way to learn notation
algorithmic by converting it into C/C++ code. To achieve this,
string matching techniques, especially regular expressions, is
used to design a code that could convert an algorithmic
notation into a C/C++ code.

Due to the large amount of syntax, the scope of the
converter for this paper is limited to just the basic syntax, such
as variable declaration, conditionals, and loops. This paper
contains experimental results and could be used as a stepping
stone for the other.

II. THEORETICAL BASIS

A. Algorithmic Notation

Algorithmic notation could differ based on where it is
taught. In this paper, the algorithmic notation that will be used
is the ITB’s algorithmic notation. In this section, we will
present the basic algorithmic notation that would be
implemented for this paper.

1) Variable Declaration

At the start of every algorithmic notation, if the

programmer were to use any kind of variables, then they

must declare it beforehand, just like in C++.

KAMUS
var : <varType>
…
ALGORITMA
… (codes)

<varType> is the variable type that would be used. It

can only be declared once, and could not be re-declared.

This means that a variable cannot hold more than one type.

The current available variable types right now are: string,

integer, char, bool, and float.

2) Input/Output

Interacting with the user would prove to be difficult

without input/output system. This syntax is used to ask for

user input, or to output that variable or string into the

terminal.

input(var)

output(var)

output("stringText")

3) Variable Assignment

Assigning a value to a variable does not require user

interaction. This would be done inside the program, so the

user could not tamper with it.

Var <- <value>

mailto:kremix6767@gmail.com
mailto:13523054@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The value that would be assigned must be compatible

with the variable type that has been declared before.

4) Conditional Statement

Conditional statement is fundamental to

programming.

if (condition) then
 trueCode
else
 falseCode

5) Iterative(Looping) Statement

In ITB’s algorithmic notation, there is an iterative

statement that is very similar to C++’s for statement. Other

than that, there are also three types of looping statement.

Those are while-do, do-while, and repeat-until. Each type

serves similar yet different purposes. While-do statement

would repeat the code written inside, until the condition is

no longer fulfilled. Do-while condition is similar to while-

do statement, but it ensures the code to execute at least

once. On the other hand, repeat-until statement is a little

different. It repeats the code until the condition to stop is

met.

var traversal[start..end]

 code

while (trueCondition) do:

 code

do:
 code
while (trueCondition)

repeat:
 code
until (stopCondition)

Considering the purpose of the paper, these algorithmic

notation is enough to serve as a proof of the concept. This

allows a more focused analysis on the conversion method,

rather than making the converter into C++ itself.

B. String Matching

String Matching is a fundamental problem to find a pattern
in a text. This would be the core part of the program. To do
this, we can use algorithm to find pattern within a text.
However, most of them uses brute-force approach to solve

string matching problem. This would make it not efficient,
especially for very similar pattern that could occur in a text.

C. Regular Expressions (Regex)

Regular expression is a sequence of characters that is used

as a search pattern. Although similar to string matching, it

serves a different purpose and could also be used to catch text

with similar pattern, but not exactly the same,

One of the most important feature in regex is the capturing

group. This allows future use of the caught pattern that

matches the capture group expression. The portion of the text

that were caught could be processed again, and this allows

nesting codes to be possible.

Although it might be a little confusing at first, regex is still

a powerful tool to consider to use. The following table are the

definition for the widely-known regex syntax[1].

TABLE I. REGEX SYNTAX DEFINITION

No
Regex-Syntax definition

Syntax Definition

1. . Any character except ‘\n’

2. ^ Start of string

3. $ End of string

4. \d, \w, \s A digit, a word character, or a whitespace

5. \D, \W, \S
Not a digit, not a word character, or not a

whitespace

6. [abc] Character a or b or c

7. [a-z] Character between(inclusive) a and z

8. [^abc] Not a nor b nor c

9. a|b a or b

10. ? Zero or one of the preceding element

11. * Zero or more of the preceding element(s)

12. + One or more of the preceding element(s)

13. (expr) Catches expression

14. (?:expr) Does not catch expression

15.
\., *, \?, \+, \(,

\), \[, \], \\
Literal character (\. Is dot)

Using Table I., capturing texts in-between specific pattern

would be much easier. This would be the foundation to make
the converter program from algorithmic notation into C++.

III. METHODOLOGY

This section offers a more detailed explanation on how the
program works, and serve as a foundation before
implementation and testing. This explanation focuses more on
the regex pattern that would be used, and the workflow of the
program that allows it to work.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

A. General Design

The program works by converting text inside a .notal file
into a C++ syntax, then inserting it into output.cpp file. Inside
the program, it will take a text-based algorithmic notation, that
would then be converted into a C++ syntax file by using
several regex notation.

B. Regex Pattern Design

This section will discuss about the regex pattern that would

be used to capture algorithmic notation.

1) Variable Declaration

The regex used to catch variable declaration needs to

make sure of all variable types that are going to be

implemented.

(\w+)\s*:\s*(integer|string|char|bool|float)

2) Input/Output

Input/Output regex only needs to make sure that it

starts with “input” or “output”, followed by brackets.

input\((.+)\)

output\((.+)\)

3) Variable Assignment

Assigning a value to a variable might be simple, but

there are also case where programmer needs to use ‘+’ or

‘-‘ to do looping or conditional statement.

(\w+)\s+<-\s+(.+)

4) Conditional Statement

Conditional statement only needs the if and then to be

caught. The else would be handled separately.

if\s*\((.+)\)\s*then

5) Iterative(Looping) Statement

These are the four different types of iterative statement.

(\w+)\s+traversal\s+\[(.+)\.\.(.+)\]:

while\s*\((.+)\)\s*do:

^do:$

^while\s*\((.+)\)$

^repeat:$

^until\s*\((.+)\)$

IV. IMPLEMENTATION AND TESTING

A. Testing Environment

The program is made to be able to handle both

Windows and Linux environment. This approach aims to

make it easier for beginner that wants to learn from

windows or linux.

 For testing purposes, the program would be run on

Windows-Subsystem-Linux(WSL), using Visual Studio

Code.

B. Test cases

1) Variable Declaration

TABLE II. VARIABLE DECLARATION TESTCASE

Algorithmic Notation C++

KAMUS
var : string
var1 : integer
var2 : string
var3 : char
var4 : bool
var5 : float
var6 : integer

ALGORITMA

#include <iostream>
#include <string>
using namespace std;

int main() {
 std::string var;
 int var1;
 std::string var2;
 char var3;
 bool var4;
 float var5;
 int var6;
 return 0;
}

2) Input/Output

TABLE III. INPUT/OUTPUT TESTCASE

Algorithmic Notation C++

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

KAMUS
var : string

ALGORITMA
input(var)
output(var)

#include <iostream>
#include <string>
using namespace std;

int main() {
 std::string var;
 std::cin >> var;
 std::cout << var <<
std::endl;
 return 0;
}

3) Variable Assignment

TABLE IV. INPUT/OUTPUT TESTCASE

Algorithmic Notation C++

KAMUS
var : string
var2 : integer

ALGORITMA
var <- "3"
var2 <- 3

#include <iostream>
#include <string>
using namespace std;

int main() {
 std::string var;
 int var2;
 var = "3";
 var2 = 3;
 return 0;
}

4) Conditional Statement

TABLE V. IF-ELSE TESTCASE

Algorithmic Notation C++

KAMUS
var : integer

ALGORITMA
input(var)
if (var < 3) then
 output(var)
else
 var <- var-1
 output(var)

#include <iostream>
#include <string>
using namespace std;

int main() {
 int var;
 std::cin >> var;
 if (var < 3) {
 std::cout << var
<< std::endl;
 } else {
 var = var – 1
 std::cout << var
<< std::endl;
 }
 return 0;
}

TABLE VI. NESTED IF-ELSE TESTCASE

Algorithmic Notation C++

KAMUS
bensin : integer
status : string

ALGORITMA
input(bensin)
if (bensin>0) then
 bensin <- bensin-1
 status <- "berjalan"
else
 if (bensin == 0) then
 status <- "bensin
habis"
 else
 status <- "input
bensin tidak valid!"
output(status)

#include <iostream>
#include <string>
using namespace std;

int main() {
 int bensin;
 std::string status;
 std::cin >> bensin;
 if (bensin>0) {
 bensin = bensin-
1;
 status =
"berjalan";
 } else {
 if (bensin == 0)
{
 status =
"bensin habis";
 } else {
 status =
"input bensin tidak
valid!";
 }
 }
 std::cout << status
<< std::endl;
 return 0;
}

5) Iterative(Looping) Statement

TABLE VII. WHILE-DO TESTCASE

Algorithmic Notation C++

KAMUS
num : integer

ALGORITMA
input(num)

while (num>0) do:
 num <- num - 1

 Output(“Halo”)

#include <iostream>
#include <string>
using namespace std;

int main() {
 int num;
 std::cin >> num;
 while (num>0) {
 num = num - 1;
 std::cout <<
"Halo" << std::endl;
 }
 return 0;
}

TABLE VIII. DO-WHILE TESTCASE

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Algorithmic Notation C++

KAMUS
num : integer

ALGORITMA
input(num)
do:
 output("Halo")
 num <- num - 1
while (num>0)

#include <iostream>
#include <string>
using namespace std;

int main() {
 int num;
 std::cin >> num;
 do {
 std::cout <<
"Halo" << std::endl;
 num = num - 1;
 } while (num>0);
 return 0;
}

TABLE IX. REPEAT-UNTIL TESTCASE

Algorithmic Notation C++

KAMUS
num : integer

ALGORITMA
input(num)
repeat:
 output("Halo")
 num <- num - 1
until (num==0)

// Generated C++ code
#include <iostream>
#include <string>
using namespace std;

int main() {
 int num;
 std::cin >> num;
 do {
 std::cout <<
"Halo" << std::endl;
 num = num - 1;
 } while (!(num==0));
 return 0;
}

V. CONCLUSION

This paper has shown that it is possible to make a converter
from ITB’s algorithmic notation into C++ code. Using regular
expression, this function could recognize algorithmic notation

and then understands how to convert it according to the desired
syntax.

Albeit functional, this program still has its own limitation
and could always be improved. One of the most obvious
improvement is that the current implementation is limited to
only the basic notation. More advanced syntax like function,
lambda, procedure, and more complex data types is not yet
handled and thus could be another topic on its own. This paper
is just a foundation to show that it is possible to achieve this
feat.

APPENDIX

[1] Repository: https://github.com/mimiCrai/LangITB/tree/v1.0

REFERENCES

[1] Khodra, Masayu Leila, “String Matching dengan Regular Expression,”
Rinaldi Munir Website. [online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-
String-Matching-dengan-Regex-(2025).pdf. Accessed: 24-June-2025.

[2] Munir, R., “Pencocokan String (String/Pattern Matching),” Rinaldi
Munir Website. [online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-
Pencocokan-string-(2025).pdf. Accessed: 24-June-2025.

STATEMENT

I declare that this paper is my own work. I have not

plagiarized, adapted, nor translated the work of others. If any

violation were to be found in the future, I am prepared to

accept sanction in accordance with the current applicable

regulations.

Bandung, 24 June 2025

Aloisius Adrian Stevan Gunawan, 13523054

https://github.com/mimiCrai/LangITB/tree/v1.0
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf

