
Design and Implementation of a Minimax-Based AI
Agent in the Chain Reaction Game

Ahmad Syafiq - 13523135
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: ahmad.syafiq2005@gmail.com , 13523135@std.stei.itb.ac.id

Abstract—This paper presents the design and implementation
of a Minimax-based AI agent for the two-player Chain Reaction
game, adapted from JindoBlu’s mobile version. The game is
modeled on a 5×5 grid with uniform critical mass and strict
ownership rules, resulting in a reactive environment where a
single move can trigger complex cascading explosions. The AI
agent employs the Minimax algorithm with alpha-beta pruning,
enhanced through game state cloning, transposition caching, and
parallel move evaluation to ensure both correctness and
efficiency. Two purely quantitative evaluation strategies are
explored: one based on total orb count and another based on the
number of owned cells . Although CellEvalStrategy is
computationally simpler, it consistently enables more flexible and
resilient gameplay by promoting spatial control and preserving
legal move options. Experimental results across human, random,
and AI-versus-AI matchups show that the agent performs
competitively, even with a shallow search depth of five.
Furthermore, the inherent advantage of playing second—due to
the game’s asymmetric opening rules—is shown to significantly
affect outcomes, reinforcing the importance of turn order
alongside evaluation design. These findings confirm that classical
adversarial search, when paired with domain-aware heuristics,
remains highly effective for dynamic, deterministic games like
Chain Reaction.

Keywords—Artificial Intelligence, Minimax, Alpha-Beta
Pruning, Chain Reaction, Game AI, Evaluation Function,
Heuristic Strategy, Turn-Based Game

I.​ INTRODUCTION
Artificial Intelligence (AI) has long played a pivotal role in

games, both as a benchmark for AI research and in creating
challenging opponents for human players. A landmark
achievement in game AI was IBM’s Deep Blue defeating
world chess champion Garry Kasparov in 1997. This victory –
the first time a computer beat a reigning world champion
under tournament conditions – marked an inflection point in
computing, heralding a future where machines could rival
human experts in strategic thinking. Such milestones illustrate
the impact of AI in games and validate game-playing as a
fertile ground for developing and evaluating AI techniques.

Many classical games can be modeled as two-player
zero-sum competitions, where one player’s gain is the other’s
loss. Game-theoretic AI agents for these domains commonly

rely on the minimax search algorithm, which assumes both
players act optimally to minimize the opponent’s payoff. The
minimax approach exhaustively explores game state trees to
identify optimal moves, but its brute-force application is
computationally expensive due to the exponential growth of
possibilities. A crucial enhancement is alpha-beta pruning,
which eliminates branches that cannot influence the final
decision, thereby significantly reducing the search space.
Alpha-beta pruning is known to effectively double the
achievable search depth compared to naive minimax search
given the same computational resources. These techniques
(minimax and alpha-beta) have become standard in AI for
sequential perfect-information games such as Chess and
Checkers [1]. We leverage this rich theoretical foundation as
the basis for our AI agent’s decision-making (detailed in
Section II).

Fig 1.1 JindoBlu’s Chain Reaction​
(source: JindoBlu’s 2 Player games)

One modern game that presents an interesting challenge
for such AI methods is JindoBlu’s 2 Player games’ version of
Chain Reaction, a strategic board game developed as an
Android app. This version of Chain Reaction is a
deterministic, turn-based game played on a 5x5 grid where
players alternately place their colored “orbs” in cells they
already control. When a cell’s orb count reaches its critical
mass, which is 4, it explodes, sending one orb into each
adjacent cell and taking over those cells for the exploding

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

mailto:ahmad.syafiq2005@gmail.com
mailto:13523135@std.stei.itb.ac.id

player. This chain reaction can cascade – an explosion may
overload neighboring cells and trigger further explosions –
and it continues until the board stabilizes. If an explosion hits
an opponent’s orb, that cell is captured (converted to the
exploding player’s color). The goal is to eliminate the
opponent by eventually causing all of their orbs to be removed
or converted. Despite its simple rules, Chain Reaction exhibits
complex and unpredictable dynamics: a position that appears
dominant can quickly collapse after a well-timed chain of
explosions Naive heuristics (such as “having more orbs is
always better”) often fail, as dramatic comebacks are possible
when a critical mass is reached. These properties make the
game an excellent testbed for AI – it is a perfect-information
zero-sum game like chess, but with explosive state transitions
that pose a significant search and evaluation challenge.

In this paper, we present the design and implementation of
a minimax-based AI agent for the two-player Chain Reaction
game. The remainder of the paper is organized as follows:
Section II provides background theory on zero-sum games and
the minimax search algorithm with alpha-beta pruning.
Section III describes the mapping of the Minimax Algorithm
for Chain Reaction. Section IV details the experimental setup
and results, evaluating the AI’s performance against human
players and other AI. Finally, Section V offers concluding
remarks and discusses potential improvements and future
work in extending the AI agent’s capabilities.

II.​ THEORETICAL FOUNDATIONS

A.​ Zero-Sum Game
Merriam-Webster defines zero-sum games as a situation in

which one person or group can win something only by causing
another person or group to lose it. In game theory, a zero-sum
game is one in which one player's gain is exactly balanced by
the other player's loss. Formally, the sum of payoffs to all
players remains constant (often zero) for any outcome. In the
context of two-player deterministic games (with no chance
elements and perfect information), this means the interests of
the two opponents are strictly opposed – a win for one player
implies an equivalent loss for the other. Classic board games
like chess or tic-tac-toe are well-modeled as zero-sum: both
players have opposing goals and every advantage for one side
comes at the expense of the other. Such two-player
deterministic zero-sum settings provide a foundation for
adversarial search algorithms, as optimal play by one player is
directly aimed at minimizing the payoff of the opponent.

B.​ Minimax Algorithm
The minimax algorithm is a fundamental decision-making

strategy for two-player zero-sum games under adversarial
conditions. It assumes that one player (Max) attempts to
maximize the outcome value while the opponent (Min) tries to
minimize it. The algorithm explores the game’s decision tree,
evaluating terminal outcomes (or using a heuristic evaluation
for non-terminal states at a depth limit) to propagate values
backward. At a Max node (a state where the maximizing
player is to move), the highest value among the child states is
chosen; at a Min node (opponent’s turn), the lowest child
value is chosen. This backward induction models optimal play
by both sides, effectively planning for the worst-case opponent

response. Given enough time and space to search the full game
tree, minimax will converge on the optimal move for the
maximizing player. Formally, let be the minimax value of 𝑉(𝑠)
a game state (from Max’s perspective). If 𝑠 is terminal, 𝑠

 is the utility (payoff) for that terminal outcome. 𝑉(𝑠) = 𝑈(𝑠)
Otherwise, one can define the minimax value recursively as:

where is the set of legal actions in state and 𝐴(𝑠) 𝑠 𝑠
𝑎

denotes the successor state after action . This equation 𝑎
encapsulates the minimax principle that Max pursues the
move with maximum guaranteed payoff while Min responds
to minimize the payoff. The minimax procedure is provably
optimal against an optimal adversary, making it a reliable
baseline for two-player zero-sum games.

C.​ Alpha-Beta Pruning
While the minimax algorithm finds optimal moves, it can

be computationally expensive as the game tree grows
exponentially with depth. Alpha-beta pruning is an
optimization that significantly reduces the number of nodes
evaluated, without affecting the final result of minimax. The
key idea is to “prune” away branches of the game tree that
cannot possibly influence the final decision. As the search
progresses depth-first, it keeps track of two thresholds: α, the
best (highest) value found so far for Max (a lower bound on
the outcome Max can guarantee), and β, the best (lowest)
value found so far for Min (an upper bound on the outcome
Min can guarantee). If at any point in the traversal these
bounds overlap such that , it implies that the current β ≤ α
node cannot lead to an outcome better than what has already
been found along another path. In such a case, further
exploration of that branch is futile and it is pruned (cut off),
thereby skipping a large number of node evaluations that are
irrelevant to the final minimax decision.

Alpha-beta pruning does not alter the result of the minimax
algorithm; it simply avoids exploring moves that are
suboptimal given the information already gathered. In the
best-case scenario (when the game tree is traversed in an
optimal move order such that the most promising moves are
evaluated first), alpha-beta can reduce the effective branching
factor dramatically. In fact, with ideal ordering, alpha-beta
examines on the order of nodes instead of for a 𝑂(𝑏𝑑/2) 𝑂(𝑏𝑑)
game tree of branching factor and depth . This means the 𝑏 𝑑
search can go roughly twice as deep in the same computation
time compared to naive minimax. (By contrast, in the
worst-case with very poor move ordering, alpha-beta reverts to
examining nodes, offering no improvement over basic 𝑂(𝑏𝑑)
minimax.) The significant pruning happens when high-value
moves for Max or low-value moves for Min are discovered
early, causing many sibling branches to be cut off. Thus,
ordering moves from best to worst (for Max) and worst to best
(for Min) yields the maximum pruning benefit. In summary,
alpha-beta pruning exploits the minimax principle to ignore
portions of the search tree that cannot affect the final choice,

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

thereby expediting the decision process under adversarial
conditions.

D.​ Game Tree Representation

Fig. 2.1 Game Tree Representation of Tic-Tac-Toe​

(source: wikipedia.org)

Two-player deterministic games are naturally modeled as a
game tree, where nodes represent game states and edges
represent the players’ moves (actions). The game begins at an
initial state (the root of the tree), and each possible action
leads to a child node representing the resulting state. Play
alternates between the two players, so the tree’s levels (plies)
alternate between Max’s turn and Min’s turn. This yields a
branching structure: from the root, one level down are all the
states resulting from Max’s possible first moves; the next level
contains states resulting from each of Min’s responses, and so
on. This expansion continues until terminal states (leaves) are
reached – these leaves correspond to end-of-game outcomes
(win, lose, or draw positions, each with an assigned utility
value). Each path from the root down to a leaf thus represents
a complete sequence of moves (a possible play of the game
from start to finish). This tree representation of game states
and decisions is the foundation for minimax search: it provides
the structure through which the algorithm can traverse all
potential move sequences, evaluate their outcomes, and back
up the results to inform the optimal move at the root. In
implementing a minimax-based AI agent, the game tree is
typically generated on the fly up to a certain depth (due to
complexity constraints), but conceptually the agent is
exploring this implicit tree of decisions and consequences to
decide on the best move.

III.​ MAPPING THE CHAIN REACTION GAME TO MINIMAX AND
ALPHA-BETA PRUNING

To enable the application of the Minimax algorithm with
alpha-beta pruning to the Chain Reaction game, the game
must first be mapped into a formal problem representation
suitable for adversarial search. In this mapping, the entire
game board is modeled as a two-dimensional grid, where each
cell holds information about the number of tokens it contains
and which player currently controls it. The complete
configuration of the board, along with the current player’s
turn, constitutes the “state” in the search tree.

A “move” is defined as the action of a player placing a
token in a cell that is already under their control. When a cell
reaches its critical capacity, it distributes its tokens to
neighboring cells, potentially triggering further distributions in
a chain reaction. This dynamic is captured in the state
transition function, which takes a state and a move as input
and produces a new state reflecting all resulting changes,
including any cascading effects.

Terminal states are those in which one player has lost all
their tokens on the board, signifying the end of the game. The
Minimax algorithm explores possible sequences of moves by
recursively simulating all legal actions for both players,
alternating between maximizing and minimizing the
evaluation score depending on whose turn it is. Alpha-beta
pruning is integrated to eliminate branches of the search tree
that cannot possibly influence the final decision, thereby
improving computational efficiency.

A crucial component of this mapping is the evaluation
function, which estimates the desirability of a given state
when the search cannot proceed to a terminal state due to
computational limits. In this work, the evaluation function is
designed based on two main factors: the difference in the sum
of cell values (orb) owned by the AI and its opponent, and the
difference in the number of cells controlled by each player.
The rationale behind this design is that having more tokens
increases a player’s potential to trigger chain reactions and
exert influence on the board, while controlling more cells
reduces the opponent’s options and increases territorial
advantage. By combining these two aspects, the evaluation
function provides a balanced heuristic that guides the AI to
both accumulate resources and expand its control, which are
both critical for success in the game.

Fig. 3.1 Evaluation Strategy by Counting Cells Code
Snippet

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 3.1 Evaluation Strategy by Counting Orbs Code
Snippet

This mapping from the Chain Reaction game to the
Minimax search framework, with a carefully designed
evaluation function, allows the AI agent to simulate future
possibilities, anticipate the opponent’s responses, and select
moves that maximize its chances of winning.

IV.​ EXPERIMENT AND ANALYSIS
To evaluate the effectiveness of the AI agent and the

impact of different evaluation strategies, a series of
experiments were conducted under controlled conditions. The
experiments aimed to assess the performance of the
Minimax-based agent using two heuristic
variants—OrbEvalStrategy and CellEvalStrategy—across
different types of opponents: human players, random-move
agents, and head-to-head matches between the two AI
configurations. All experiments were performed with a fixed
maximum search depth of 5 plies, a value empirically selected
to balance decision quality and computational feasibility.

The game was executed on a 5×5 board configuration, with
uniform critical mass of 4 across all cells. Players were
restricted to placing orbs only on cells they already owned,
except during the first turn where an empty cell was permitted.
These constraints closely followed the ruleset of JindoBlu’s
mobile version of the Chain Reaction game, and were
enforced consistently during all tests.

The random agent used as a baseline opponent selects its
moves uniformly at random from the list of legal actions
available at each turn. No weighting or history-based bias was
applied to its choices. For the human player experiments, a
custom graphical user interface was used to allow real-time
input from a human user, with game state updates and legal
move constraints enforced by the engine. All
human-versus-AI games were run interactively, and move
times for the human player were not timed.

In each match, the following performance metrics were
recorded: move count (total number of turns until game end),
execution time for the AI agent per game (in nanoseconds),
and final game outcome (winning player). To minimize bias
due to turn advantage, experiments were distributed across

both cases where the AI moves first and where it moves
second. The agent’s multithreaded execution was enabled in
all tests, using Java’s ExecutorService to parallelize top-level
move evaluation.

Finally, to assess the comparative strength of the two
heuristics, cross-strategy matches were performed between
OrbEvalStrategy and CellEvalStrategy, alternating the first
player in each game. This direct comparison enables analysis
of each heuristic’s strengths and weaknesses in dynamic
adversarial settings, offering insight beyond random or human
benchmarks.

TABLE I. ​ORB COUNTING MINIMAX VERSUS HUMAN PLAYER

Game
Measures

Orb Time
(ns)

Human
Time (ns) First Player Move

Count Winner

1 68582097 - Orb 18 Orb

2 28371200
0 - Orb 41 Orb

3 42858700 - Orb 19 Human

4 97246501 - Human 19 Orb

5 15797960
2 - Human 27 Orb

6 48924398 - Human 14 Orb

TABLE II. ORB COUNTING MINIMAX VERSUS RANDOM MOVE

Game
Measures

Orb Time
(ns)

Random
Time (ns) First Player Move

Count Winner

1 109131000 340600 Orb 17 Orb

2 49832900 311600 Orb 10 Orb

3 29412900 267200 Orb 10 Orb

4 15187000 909000 Random 8 Orb

5 72671800 717600 Random 13 Orb

6 137820000 1197900 Random 16 Orb

TABLE III. CELL COUNTING MINIMAX VERSUS HUMAN PLAYER

Game

Measures

Orb Time
(ns)

Human
Time
(ns)

First Player Move
Count Winner

1
1161050
00 - Cell 27 Cell

2 2152589
00 - Cell 37 Cell

3 9921810
0 - Cell 25 Cell

4 6511050
0 - Human 18 Cell

5 5910850
0 - Human 14 Cell

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Game

Measures

Orb Time
(ns)

Human
Time
(ns)

First Player Move
Count Winner

6 1054135
00 - Human 23 Cell

TABLE IV. CELL COUNTING MINIMAX VERSUS RANDOM MOVE

Game

Measures

Cell Time
(ns)

Random
Time
(ns)

First Player Move
Count Winner

1
1026091
00 571700 Cell 16 Cell

2 1051470
0 94900 Cell 4 Cell

3 2678085
00 478200 Cell 22 Cell

4 1711230
0 662000 Random 8 Cell

5 1198891
00

135350
0 Random 16 Cell

6 5501870
0

104910
0 Random 12 Cell

TABLE V. CELL COUNTING MINIMAX VERSUS ORB COUNTING MINIMAX

Game

Measures

Cell Time
(ns)

Orb
Time
(ns)

First Player Move
Count Winner

1
6285180
0

478571
00 Orb 15 Cell

2 4773554
00

303234
900 Cell 29 Orb

The results from the conducted experiments offer valuable

insights into the performance of the AI agent designed using
the Minimax algorithm with alpha-beta pruning, applied to the
two-player Chain Reaction game. The primary objective of
this work was to construct a functional and competitive AI
capable of operating within the game’s deterministic,
chain-reaction-driven mechanics. The empirical results
confirm that this objective has been achieved: the agent
consistently selects valid and impactful moves, anticipates
opponent responses through search depth up to five plies, and
handles cascading state changes resulting from explosions and
ownership shifts effectively. The success of the agent is
evident across multiple test scenarios—against human players,
random agents, and in direct AI-versus-AI
matchups—demonstrating both the correctness and practical
viability of the designed system.

The AI’s decision-making is driven by two purely
quantitative evaluation strategies: OrbEvalStrategy, which
calculates the difference in total orb count between the player
and their opponent, and CellEvalStrategy, which computes the
difference in the number of controlled cells. Notably,
CellEvalStrategy is the simpler of the two—it merely counts
how many cells are owned by each player, while
OrbEvalStrategy must aggregate orb quantities per cell, with
each cell holding between zero and four orbs. Despite its

simplicity, CellEvalStrategy often leads to more spatially
diverse and stable play, as each owned cell represents a legal
move and potential leverage point in future turns.

As shown in Tables I and II, OrbEvalStrategy performs
reliably against random agents and secures multiple wins
against human players, demonstrating its capacity to
efficiently accumulate material advantage. However, this
approach may cluster orbs in fewer positions, reducing tactical
flexibility and increasing vulnerability to chain
reactions—evident in cases like Game 4 of Table III, where
OrbEvalStrategy loses despite initially leading in orb count.

In contrast, Tables III and IV demonstrate how
CellEvalStrategy, though less sophisticated in metric,
emphasizes distributed control and broader territorial access.
A player owning four distinct cells, even with minimal orb
presence, maintains more actionable options per turn than one
who holds more orbs spread across fewer cells. This makes
CellEvalStrategy naturally robust against board congestion
and strategic confinement, especially in reactive environments
where flexibility and reach matter more than raw material
count.

One critical aspect affecting performance across all
experiments is the advantage of the second player, due to the
game’s rule that only the first move may be played on an
empty cell. This gives the second player the opportunity to
respond adjacent to the first move and cause an early
explosion, often leading to a 4-to-2 cell advantage after the
initial turns. This asymmetry consistently benefits the player
who moves second, often outweighing the influence of the
heuristic itself.

This effect is clearly visible in Table V, which compares
both strategies directly. In Game 1, CellEvalStrategy plays
second and secures a quick 15-move victory. In Game 2, the
roles are reversed—OrbEvalStrategy moves second and wins,
although only after a longer and more complex 29-move
struggle. These outcomes suggest that while CellEvalStrategy
generally leads to stronger, more flexible play, the turn order
remains the most decisive factor in early-game outcomes.
Nevertheless, the fact that a simpler metric like
CellEvalStrategy consistently enables efficient, winning
behavior—even against a more detailed orb-based
evaluation—highlights the importance of heuristic alignment
over computational complexity.

Another significant takeaway is the agent’s overall strength
despite using a relatively shallow maximum search depth of
five. In Chain Reaction, where each move can produce
cascades of cell takeovers, the impact of a decision is often
visible within a few plies. This makes long-term lookahead
less critical than in classical games like chess. The AI benefits
from the game's deterministic explosion mechanics, allowing
effective tactical forecasting even with short-range planning.
Combined with alpha-beta pruning and multithreaded
evaluation, this enables fast and effective gameplay,
confirming that a modest search depth coupled with a
task-appropriate heuristic is sufficient to achieve competent,
real-time AI performance in Chain Reaction.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

In summary, the Minimax-based AI agent demonstrates
reliable and strategically sound behavior across a variety of
adversaries and scenarios. Although OrbEvalStrategy offers
stronger material accumulation, CellEvalStrategy provides
more balanced and consistent play despite being the simpler
heuristic. The project demonstrates that with the right
structural design, even classical search methods and
lightweight evaluation functions can produce intelligent
behavior in highly dynamic, non-trivial game environments.
Furthermore, the results reinforce the influence of turn order
in Chain Reaction, showing that game-specific asymmetries
must be carefully considered when assessing AI effectiveness.

V.​ CONCLUSION
This paper presented the design and implementation of a

Minimax-based AI agent for the two-player version of the
Chain Reaction game. The agent was built upon a modular
architecture, with a flexible evaluation system, alpha-beta
pruning, and efficient simulation of game states through
cloning. The AI was successfully adapted to the game’s
unique dynamics—such as cascading explosions, strict move
constraints, and a compact 5×5 board—demonstrating that
classical adversarial search techniques remain highly
applicable in modern, reactive game environments.

Despite being constrained to a relatively shallow
maximum search depth of five plies, the agent was able to
perform effectively in a variety of competitive scenarios. This
reflects the nature of Chain Reaction, where local moves can
produce global consequences through chain reactions,
reducing the need for deep foresight. The results affirm that
even a limited-depth tree search, when combined with a
domain-aligned evaluation function and pruning
optimizations, can produce competent and strategic gameplay
in real time.

Two purely quantitative evaluation strategies were
explored and compared: OrbEvalStrategy, which computes the
total number of orbs owned, and CellEvalStrategy, which
simply counts the number of cells controlled. Although
CellEvalStrategy is computationally simpler, it consistently
led to more flexible, resilient play—especially in longer
games—by promoting greater spatial distribution and
preserving move options. Experiments revealed that while
OrbEvalStrategy could still secure wins, especially when
playing second, it typically required more moves and careful
timing to overcome its limitations. The turn order advantage,
favoring the second player due to the game’s opening rules,
was found to have a significant impact on outcomes, often
outweighing the choice of heuristic.

Overall, this project demonstrates that traditional AI
techniques such as Minimax search remain powerful when
tailored to the structural and dynamic properties of a specific
game. It highlights how even simple evaluation strategies,
when thoughtfully aligned with game mechanics, can yield
diverse and competitive AI behavior. Future work could
explore hybrid heuristics, dynamic depth adjustments, or
learning-based methods to further enhance strategic depth and
adaptability. Ultimately, the success of this agent reaffirms the
relevance of tree search–based AI design in dynamic,
turn-based games with deterministic transitions.

VI.​ APPENDIX
The source code for this project is available at github:

https://github.com/iammadsfq/Chain-Reaction-Game-1352313
5

VIDEO LINK AT YOUTUBE
https://www.youtube.com/watch?v=XUGgPqDXsuU

ACKNOWLEDGMENT
Author expresses gratitude to all parties who have assisted

in the preparation of this paper, especially to:

1.​ The Almighty God, for His grace and guidance,
allowing the smooth completion of this paper.

2.​ Both parents, for providing both moral and material
support to the author.

3.​ Extended family and friends who have encouraged
and aided in the completion of this paper.

4.​ Monterico Adrian, S.T., M.T. as the lecturer for the
IF2211 Algorithm Strategy course and Dr. Ir. Rinaldi
Munir, M.T. for kindly imparting additional
knowledge and offering solutions to challenges
encountered in writing this paper.

5.​ Colleagues from the School of Electrical
Engineering, especially those in the IF K3 class, for
their support and collaborative spirit that have
inspired and motivated the author throughout his
journey

​ The author deeply appreciates all the assistance,
encouragement, and kindness received from these individuals
and groups, without which the completion of this paper would
not have been possible

REFERENCES
[1]​ M. H. Winands, Y. Björnsson, and J. W. H. M. Uiterwijk, “Alpha-Beta

Pruning,” in *Proceedings of the AAAI Conference on Artificial
Intelligence*, vol. 34, no. 13, pp. 11675–11682, Dec. 2020. [Online].
Available:
https://cdn.aaai.org/ojs/8148/8148-13-11675-1-2-20201228.pdf

[2]​ D. Roth, “Lecture 32: Game Playing II,” *CS 440: Artificial
Intelligence*, University of Illinois at Urbana-Champaign, Fall 2018.
[Online]. Available:
https://courses.grainger.illinois.edu/cs440/fa2018/lectures/lect32.html

[3]​ C. Fry, C. Li, and M. Zheng, “Using Reinforcement Learning to Play
Othello,” *CS229 Final Project Report*, Stanford University, 2016.
[Online]. Available:
https://cs229.stanford.edu/proj2016/report/FryLiZheng-UsingReinforce
mentLearningToPlayOthello.pdf

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

https://github.com/iammadsfq/Chain-Reaction-Game-13523135
https://github.com/iammadsfq/Chain-Reaction-Game-13523135
https://www.youtube.com/watch?v=XUGgPqDXsuU
https://cdn.aaai.org/ojs/8148/8148-13-11675-1-2-20201228.pdf
https://courses.grainger.illinois.edu/cs440/fa2018/lectures/lect32.html
https://cs229.stanford.edu/proj2016/report/FryLiZheng-UsingReinforcementLearningToPlayOthello.pdf
https://cs229.stanford.edu/proj2016/report/FryLiZheng-UsingReinforcementLearningToPlayOthello.pdf

Bandung, 1 Juni 2025

Ahmad Syafiq

13523135

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

	I.​ INTRODUCTION
	II.​THEORETICAL FOUNDATIONS
	A.​Zero-Sum Game
	B.​Minimax Algorithm
	C.​Alpha-Beta Pruning
	D.​Game Tree Representation

	III.​MAPPING THE CHAIN REACTION GAME TO MINIMAX AND ALPHA-BETA PRUNING
	IV.​EXPERIMENT AND ANALYSIS
	V.​CONCLUSION
	VI.​APPENDIX
	VIDEO LINK AT YOUTUBE
	ACKNOWLEDGMENT
	REFERENCES

