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Abstract—This paper presents the design and implementation 
of a Minimax-based AI agent for the two-player Chain Reaction 
game, adapted from JindoBlu’s mobile version. The game is 
modeled on a 5×5 grid with uniform critical mass and strict 
ownership rules, resulting in a reactive environment where a 
single move can trigger complex cascading explosions. The AI 
agent employs the Minimax algorithm with alpha-beta pruning, 
enhanced through game state cloning, transposition caching, and 
parallel move evaluation to ensure both correctness and 
efficiency. Two purely quantitative evaluation strategies are 
explored: one based on total orb count and another based on the 
number of owned cells . Although CellEvalStrategy is 
computationally simpler, it consistently enables more flexible and 
resilient gameplay by promoting spatial control and preserving 
legal move options. Experimental results across human, random, 
and AI-versus-AI matchups show that the agent performs 
competitively, even with a shallow search depth of five. 
Furthermore, the inherent advantage of playing second—due to 
the game’s asymmetric opening rules—is shown to significantly 
affect outcomes, reinforcing the importance of turn order 
alongside evaluation design. These findings confirm that classical 
adversarial search, when paired with domain-aware heuristics, 
remains highly effective for dynamic, deterministic games like 
Chain Reaction. 

Keywords—Artificial Intelligence, Minimax, Alpha-Beta 
Pruning, Chain Reaction, Game AI, Evaluation Function, 
Heuristic Strategy, Turn-Based Game 

 

I.​  INTRODUCTION 
Artificial Intelligence (AI) has long played a pivotal role in 

games, both as a benchmark for AI research and in creating 
challenging opponents for human players. A landmark 
achievement in game AI was IBM’s Deep Blue defeating 
world chess champion Garry Kasparov in 1997. This victory – 
the first time a computer beat a reigning world champion 
under tournament conditions – marked an inflection point in 
computing, heralding a future where machines could rival 
human experts in strategic thinking. Such milestones illustrate 
the impact of AI in games and validate game-playing as a 
fertile ground for developing and evaluating AI techniques.  

Many classical games can be modeled as two-player 
zero-sum competitions, where one player’s gain is the other’s 
loss. Game-theoretic AI agents for these domains commonly 

rely on the minimax search algorithm, which assumes both 
players act optimally to minimize the opponent’s payoff. The 
minimax approach exhaustively explores game state trees to 
identify optimal moves, but its brute-force application is 
computationally expensive due to the exponential growth of 
possibilities. A crucial enhancement is alpha-beta pruning, 
which eliminates branches that cannot influence the final 
decision, thereby significantly reducing the search space. 
Alpha-beta pruning is known to effectively double the 
achievable search depth compared to naive minimax search 
given the same computational resources. These techniques 
(minimax and alpha-beta) have become standard in AI for 
sequential perfect-information games such as Chess and 
Checkers [1]. We leverage this rich theoretical foundation as 
the basis for our AI agent’s decision-making (detailed in 
Section II).  

 

Fig 1.1 JindoBlu’s Chain Reaction​
(source: JindoBlu’s 2 Player games) 

One modern game that presents an interesting challenge 
for such AI methods is JindoBlu’s 2 Player games’ version of 
Chain Reaction, a strategic board game developed as an 
Android app. This version of Chain Reaction is a 
deterministic, turn-based game played on a 5x5 grid where 
players alternately place their colored “orbs” in cells they 
already control. When a cell’s orb count reaches its critical 
mass, which is 4, it explodes, sending one orb into each 
adjacent cell and taking over those cells for the exploding 
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player. This chain reaction can cascade – an explosion may 
overload neighboring cells and trigger further explosions – 
and it continues until the board stabilizes. If an explosion hits 
an opponent’s orb, that cell is captured (converted to the 
exploding player’s color). The goal is to eliminate the 
opponent by eventually causing all of their orbs to be removed 
or converted. Despite its simple rules, Chain Reaction exhibits 
complex and unpredictable dynamics: a position that appears 
dominant can quickly collapse after a well-timed chain of 
explosions Naive heuristics (such as “having more orbs is 
always better”) often fail, as dramatic comebacks are possible 
when a critical mass is reached. These properties make the 
game an excellent testbed for AI – it is a perfect-information 
zero-sum game like chess, but with explosive state transitions 
that pose a significant search and evaluation challenge.  

In this paper, we present the design and implementation of 
a minimax-based AI agent for the two-player Chain Reaction 
game. The remainder of the paper is organized as follows: 
Section II provides background theory on zero-sum games and 
the minimax search algorithm with alpha-beta pruning. 
Section III describes the mapping of the Minimax Algorithm 
for Chain Reaction. Section IV details the experimental setup 
and results, evaluating the AI’s performance against human 
players and other AI. Finally, Section V offers concluding 
remarks and discusses potential improvements and future 
work in extending the AI agent’s capabilities. 

II.​ THEORETICAL FOUNDATIONS 

A.​ Zero-Sum Game 
Merriam-Webster defines zero-sum games as a situation in 

which one person or group can win something only by causing 
another person or group to lose it. In game theory, a zero-sum 
game is one in which one player's gain is exactly balanced by 
the other player's loss. Formally, the sum of payoffs to all 
players remains constant (often zero) for any outcome. In the 
context of two-player deterministic games (with no chance 
elements and perfect information), this means the interests of 
the two opponents are strictly opposed – a win for one player 
implies an equivalent loss for the other. Classic board games 
like chess or tic-tac-toe are well-modeled as zero-sum: both 
players have opposing goals and every advantage for one side 
comes at the expense of the other. Such two-player 
deterministic zero-sum settings provide a foundation for 
adversarial search algorithms, as optimal play by one player is 
directly aimed at minimizing the payoff of the opponent. 

B.​ Minimax Algorithm 
The minimax algorithm is a fundamental decision-making 

strategy for two-player zero-sum games under adversarial 
conditions. It assumes that one player (Max) attempts to 
maximize the outcome value while the opponent (Min) tries to 
minimize it. The algorithm explores the game’s decision tree, 
evaluating terminal outcomes (or using a heuristic evaluation 
for non-terminal states at a depth limit) to propagate values 
backward. At a Max node (a state where the maximizing 
player is to move), the highest value among the child states is 
chosen; at a Min node (opponent’s turn), the lowest child 
value is chosen. This backward induction models optimal play 
by both sides, effectively planning for the worst-case opponent 

response. Given enough time and space to search the full game 
tree, minimax will converge on the optimal move for the 
maximizing player. Formally, let  be the minimax value of 𝑉(𝑠)
a game state  (from Max’s perspective). If 𝑠 is terminal, 𝑠

 is the utility (payoff) for that terminal outcome. 𝑉(𝑠) = 𝑈(𝑠)
Otherwise, one can define the minimax value recursively as: 

 

where  is the set of legal actions in state  and  𝐴(𝑠) 𝑠 𝑠
𝑎

denotes the successor state after action . This equation 𝑎
encapsulates the minimax principle that Max pursues the 
move with maximum guaranteed payoff while Min responds 
to minimize the payoff. The minimax procedure is provably 
optimal against an optimal adversary, making it a reliable 
baseline for two-player zero-sum games. 

C.​ Alpha-Beta Pruning 
While the minimax algorithm finds optimal moves, it can 

be computationally expensive as the game tree grows 
exponentially with depth. Alpha-beta pruning is an 
optimization that significantly reduces the number of nodes 
evaluated, without affecting the final result of minimax. The 
key idea is to “prune” away branches of the game tree that 
cannot possibly influence the final decision. As the search 
progresses depth-first, it keeps track of two thresholds: α, the 
best (highest) value found so far for Max (a lower bound on 
the outcome Max can guarantee), and β, the best (lowest) 
value found so far for Min (an upper bound on the outcome 
Min can guarantee). If at any point in the traversal these 
bounds overlap such that , it implies that the current β ≤ α
node cannot lead to an outcome better than what has already 
been found along another path. In such a case, further 
exploration of that branch is futile and it is pruned (cut off), 
thereby skipping a large number of node evaluations that are 
irrelevant to the final minimax decision.  

Alpha-beta pruning does not alter the result of the minimax 
algorithm; it simply avoids exploring moves that are 
suboptimal given the information already gathered. In the 
best-case scenario (when the game tree is traversed in an 
optimal move order such that the most promising moves are 
evaluated first), alpha-beta can reduce the effective branching 
factor dramatically. In fact, with ideal ordering, alpha-beta 
examines on the order of  nodes instead of  for a 𝑂(𝑏𝑑/2) 𝑂(𝑏𝑑)
game tree of branching factor  and depth . This means the 𝑏 𝑑
search can go roughly twice as deep in the same computation 
time compared to naive minimax. (By contrast, in the 
worst-case with very poor move ordering, alpha-beta reverts to 
examining  nodes, offering no improvement over basic 𝑂(𝑏𝑑)
minimax.) The significant pruning happens when high-value 
moves for Max or low-value moves for Min are discovered 
early, causing many sibling branches to be cut off. Thus, 
ordering moves from best to worst (for Max) and worst to best 
(for Min) yields the maximum pruning benefit. In summary, 
alpha-beta pruning exploits the minimax principle to ignore 
portions of the search tree that cannot affect the final choice, 
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thereby expediting the decision process under adversarial 
conditions. 

 

D.​ Game Tree Representation 

 
Fig. 2.1 Game Tree Representation of Tic-Tac-Toe​

(source: wikipedia.org) 

Two-player deterministic games are naturally modeled as a 
game tree, where nodes represent game states and edges 
represent the players’ moves (actions). The game begins at an 
initial state (the root of the tree), and each possible action 
leads to a child node representing the resulting state. Play 
alternates between the two players, so the tree’s levels (plies) 
alternate between Max’s turn and Min’s turn. This yields a 
branching structure: from the root, one level down are all the 
states resulting from Max’s possible first moves; the next level 
contains states resulting from each of Min’s responses, and so 
on. This expansion continues until terminal states (leaves) are 
reached – these leaves correspond to end-of-game outcomes 
(win, lose, or draw positions, each with an assigned utility 
value). Each path from the root down to a leaf thus represents 
a complete sequence of moves (a possible play of the game 
from start to finish). This tree representation of game states 
and decisions is the foundation for minimax search: it provides 
the structure through which the algorithm can traverse all 
potential move sequences, evaluate their outcomes, and back 
up the results to inform the optimal move at the root. In 
implementing a minimax-based AI agent, the game tree is 
typically generated on the fly up to a certain depth (due to 
complexity constraints), but conceptually the agent is 
exploring this implicit tree of decisions and consequences to 
decide on the best move. 

III.​ MAPPING THE CHAIN REACTION GAME TO MINIMAX AND 
ALPHA-BETA PRUNING 

To enable the application of the Minimax algorithm with 
alpha-beta pruning to the Chain Reaction game, the game 
must first be mapped into a formal problem representation 
suitable for adversarial search. In this mapping, the entire 
game board is modeled as a two-dimensional grid, where each 
cell holds information about the number of tokens it contains 
and which player currently controls it. The complete 
configuration of the board, along with the current player’s 
turn, constitutes the “state” in the search tree. 

A “move” is defined as the action of a player placing a 
token in a cell that is already under their control. When a cell 
reaches its critical capacity, it distributes its tokens to 
neighboring cells, potentially triggering further distributions in 
a chain reaction. This dynamic is captured in the state 
transition function, which takes a state and a move as input 
and produces a new state reflecting all resulting changes, 
including any cascading effects. 

Terminal states are those in which one player has lost all 
their tokens on the board, signifying the end of the game. The 
Minimax algorithm explores possible sequences of moves by 
recursively simulating all legal actions for both players, 
alternating between maximizing and minimizing the 
evaluation score depending on whose turn it is. Alpha-beta 
pruning is integrated to eliminate branches of the search tree 
that cannot possibly influence the final decision, thereby 
improving computational efficiency. 

A crucial component of this mapping is the evaluation 
function, which estimates the desirability of a given state 
when the search cannot proceed to a terminal state due to 
computational limits. In this work, the evaluation function is 
designed based on two main factors: the difference in the sum 
of cell values (orb) owned by the AI and its opponent, and the 
difference in the number of cells controlled by each player. 
The rationale behind this design is that having more tokens 
increases a player’s potential to trigger chain reactions and 
exert influence on the board, while controlling more cells 
reduces the opponent’s options and increases territorial 
advantage. By combining these two aspects, the evaluation 
function provides a balanced heuristic that guides the AI to 
both accumulate resources and expand its control, which are 
both critical for success in the game. 

 

Fig. 3.1 Evaluation Strategy by Counting Cells Code 
Snippet 
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Fig. 3.1 Evaluation Strategy by Counting Orbs Code 
Snippet 

This mapping from the Chain Reaction game to the 
Minimax search framework, with a carefully designed 
evaluation function, allows the AI agent to simulate future 
possibilities, anticipate the opponent’s responses, and select 
moves that maximize its chances of winning. 

IV.​ EXPERIMENT AND ANALYSIS 
To evaluate the effectiveness of the AI agent and the 

impact of different evaluation strategies, a series of 
experiments were conducted under controlled conditions. The 
experiments aimed to assess the performance of the 
Minimax-based agent using two heuristic 
variants—OrbEvalStrategy and CellEvalStrategy—across 
different types of opponents: human players, random-move 
agents, and head-to-head matches between the two AI 
configurations. All experiments were performed with a fixed 
maximum search depth of 5 plies, a value empirically selected 
to balance decision quality and computational feasibility. 

 

The game was executed on a 5×5 board configuration, with 
uniform critical mass of 4 across all cells. Players were 
restricted to placing orbs only on cells they already owned, 
except during the first turn where an empty cell was permitted. 
These constraints closely followed the ruleset of JindoBlu’s 
mobile version of the Chain Reaction game, and were 
enforced consistently during all tests. 

The random agent used as a baseline opponent selects its 
moves uniformly at random from the list of legal actions 
available at each turn. No weighting or history-based bias was 
applied to its choices. For the human player experiments, a 
custom graphical user interface was used to allow real-time 
input from a human user, with game state updates and legal 
move constraints enforced by the engine. All 
human-versus-AI games were run interactively, and move 
times for the human player were not timed. 

In each match, the following performance metrics were 
recorded: move count (total number of turns until game end), 
execution time for the AI agent per game (in nanoseconds), 
and final game outcome (winning player). To minimize bias 
due to turn advantage, experiments were distributed across 

both cases where the AI moves first and where it moves 
second. The agent’s multithreaded execution was enabled in 
all tests, using Java’s ExecutorService to parallelize top-level 
move evaluation. 

Finally, to assess the comparative strength of the two 
heuristics, cross-strategy matches were performed between 
OrbEvalStrategy and CellEvalStrategy, alternating the first 
player in each game. This direct comparison enables analysis 
of each heuristic’s strengths and weaknesses in dynamic 
adversarial settings, offering insight beyond random or human 
benchmarks. 

 

TABLE I. ​ORB COUNTING MINIMAX VERSUS HUMAN PLAYER 

Game 
Measures 

Orb Time 
(ns) 

Human 
Time (ns) First Player Move 

Count Winner 

1 68582097 - Orb 18 Orb 

2 28371200
0 - Orb 41 Orb 

3 42858700 - Orb 19 Human 

4 97246501 - Human 19 Orb 

5 15797960
2 - Human 27 Orb 

6 48924398 - Human 14 Orb 

 

TABLE II. ORB COUNTING MINIMAX VERSUS RANDOM MOVE 

Game 
Measures 

Orb Time 
(ns) 

Random 
Time (ns) First Player Move 

Count Winner 

1 109131000 340600 Orb 17 Orb 

2 49832900 311600 Orb 10 Orb 

3 29412900 267200 Orb 10 Orb 

4 15187000 909000 Random 8 Orb 

5 72671800 717600 Random 13 Orb 

6 137820000 1197900 Random 16 Orb 

 

TABLE III. CELL COUNTING MINIMAX VERSUS HUMAN PLAYER 

Game 

Measures 

Orb Time 
(ns) 

Human
Time 
(ns) 

First Player Move 
Count Winner 

1 
1161050
00 - Cell 27 Cell 

2 2152589
00 - Cell 37 Cell 

3 9921810
0 - Cell 25 Cell 

4 6511050
0 - Human 18 Cell 

5 5910850
0 - Human 14 Cell 
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Game 

Measures 

Orb Time 
(ns) 

Human
Time 
(ns) 

First Player Move 
Count Winner 

6 1054135
00 - Human 23 Cell 

 

TABLE IV. CELL COUNTING MINIMAX VERSUS RANDOM MOVE 

Game 

Measures 

Cell Time 
(ns) 

Random 
Time 
(ns) 

First Player Move 
Count Winner 

1 
1026091
00 571700 Cell 16 Cell 

2 1051470
0 94900 Cell 4 Cell 

3 2678085
00 478200 Cell 22 Cell 

4 1711230
0 662000 Random 8 Cell 

5 1198891
00 

135350
0 Random 16 Cell 

6 5501870
0 

104910
0 Random 12 Cell 

 
TABLE V. CELL COUNTING MINIMAX VERSUS ORB COUNTING MINIMAX 

Game 

Measures 

Cell Time 
(ns) 

Orb 
Time 
(ns) 

First Player Move 
Count Winner 

1 
6285180
0 

478571
00 Orb 15 Cell 

2 4773554
00 

303234
900 Cell 29 Orb 

 
The results from the conducted experiments offer valuable 

insights into the performance of the AI agent designed using 
the Minimax algorithm with alpha-beta pruning, applied to the 
two-player Chain Reaction game. The primary objective of 
this work was to construct a functional and competitive AI 
capable of operating within the game’s deterministic, 
chain-reaction-driven mechanics. The empirical results 
confirm that this objective has been achieved: the agent 
consistently selects valid and impactful moves, anticipates 
opponent responses through search depth up to five plies, and 
handles cascading state changes resulting from explosions and 
ownership shifts effectively. The success of the agent is 
evident across multiple test scenarios—against human players, 
random agents, and in direct AI-versus-AI 
matchups—demonstrating both the correctness and practical 
viability of the designed system. 

The AI’s decision-making is driven by two purely 
quantitative evaluation strategies: OrbEvalStrategy, which 
calculates the difference in total orb count between the player 
and their opponent, and CellEvalStrategy, which computes the 
difference in the number of controlled cells. Notably, 
CellEvalStrategy is the simpler of the two—it merely counts 
how many cells are owned by each player, while 
OrbEvalStrategy must aggregate orb quantities per cell, with 
each cell holding between zero and four orbs. Despite its 

simplicity, CellEvalStrategy often leads to more spatially 
diverse and stable play, as each owned cell represents a legal 
move and potential leverage point in future turns. 

As shown in Tables I and II, OrbEvalStrategy performs 
reliably against random agents and secures multiple wins 
against human players, demonstrating its capacity to 
efficiently accumulate material advantage. However, this 
approach may cluster orbs in fewer positions, reducing tactical 
flexibility and increasing vulnerability to chain 
reactions—evident in cases like Game 4 of Table III, where 
OrbEvalStrategy loses despite initially leading in orb count. 

In contrast, Tables III and IV demonstrate how 
CellEvalStrategy, though less sophisticated in metric, 
emphasizes distributed control and broader territorial access. 
A player owning four distinct cells, even with minimal orb 
presence, maintains more actionable options per turn than one 
who holds more orbs spread across fewer cells. This makes 
CellEvalStrategy naturally robust against board congestion 
and strategic confinement, especially in reactive environments 
where flexibility and reach matter more than raw material 
count. 

One critical aspect affecting performance across all 
experiments is the advantage of the second player, due to the 
game’s rule that only the first move may be played on an 
empty cell. This gives the second player the opportunity to 
respond adjacent to the first move and cause an early 
explosion, often leading to a 4-to-2 cell advantage after the 
initial turns. This asymmetry consistently benefits the player 
who moves second, often outweighing the influence of the 
heuristic itself. 

This effect is clearly visible in Table V, which compares 
both strategies directly. In Game 1, CellEvalStrategy plays 
second and secures a quick 15-move victory. In Game 2, the 
roles are reversed—OrbEvalStrategy moves second and wins, 
although only after a longer and more complex 29-move 
struggle. These outcomes suggest that while CellEvalStrategy 
generally leads to stronger, more flexible play, the turn order 
remains the most decisive factor in early-game outcomes. 
Nevertheless, the fact that a simpler metric like 
CellEvalStrategy consistently enables efficient, winning 
behavior—even against a more detailed orb-based 
evaluation—highlights the importance of heuristic alignment 
over computational complexity. 

Another significant takeaway is the agent’s overall strength 
despite using a relatively shallow maximum search depth of 
five. In Chain Reaction, where each move can produce 
cascades of cell takeovers, the impact of a decision is often 
visible within a few plies. This makes long-term lookahead 
less critical than in classical games like chess. The AI benefits 
from the game's deterministic explosion mechanics, allowing 
effective tactical forecasting even with short-range planning. 
Combined with alpha-beta pruning and multithreaded 
evaluation, this enables fast and effective gameplay, 
confirming that a modest search depth coupled with a 
task-appropriate heuristic is sufficient to achieve competent, 
real-time AI performance in Chain Reaction. 
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In summary, the Minimax-based AI agent demonstrates 
reliable and strategically sound behavior across a variety of 
adversaries and scenarios. Although OrbEvalStrategy offers 
stronger material accumulation, CellEvalStrategy provides 
more balanced and consistent play despite being the simpler 
heuristic. The project demonstrates that with the right 
structural design, even classical search methods and 
lightweight evaluation functions can produce intelligent 
behavior in highly dynamic, non-trivial game environments. 
Furthermore, the results reinforce the influence of turn order 
in Chain Reaction, showing that game-specific asymmetries 
must be carefully considered when assessing AI effectiveness. 

V.​ CONCLUSION 
This paper presented the design and implementation of a 

Minimax-based AI agent for the two-player version of the 
Chain Reaction game. The agent was built upon a modular 
architecture, with a flexible evaluation system, alpha-beta 
pruning, and efficient simulation of game states through 
cloning. The AI was successfully adapted to the game’s 
unique dynamics—such as cascading explosions, strict move 
constraints, and a compact 5×5 board—demonstrating that 
classical adversarial search techniques remain highly 
applicable in modern, reactive game environments. 

Despite being constrained to a relatively shallow 
maximum search depth of five plies, the agent was able to 
perform effectively in a variety of competitive scenarios. This 
reflects the nature of Chain Reaction, where local moves can 
produce global consequences through chain reactions, 
reducing the need for deep foresight. The results affirm that 
even a limited-depth tree search, when combined with a 
domain-aligned evaluation function and pruning 
optimizations, can produce competent and strategic gameplay 
in real time. 

Two purely quantitative evaluation strategies were 
explored and compared: OrbEvalStrategy, which computes the 
total number of orbs owned, and CellEvalStrategy, which 
simply counts the number of cells controlled. Although 
CellEvalStrategy is computationally simpler, it consistently 
led to more flexible, resilient play—especially in longer 
games—by promoting greater spatial distribution and 
preserving move options. Experiments revealed that while 
OrbEvalStrategy could still secure wins, especially when 
playing second, it typically required more moves and careful 
timing to overcome its limitations. The turn order advantage, 
favoring the second player due to the game’s opening rules, 
was found to have a significant impact on outcomes, often 
outweighing the choice of heuristic. 

Overall, this project demonstrates that traditional AI 
techniques such as Minimax search remain powerful when 
tailored to the structural and dynamic properties of a specific 
game. It highlights how even simple evaluation strategies, 
when thoughtfully aligned with game mechanics, can yield 
diverse and competitive AI behavior. Future work could 
explore hybrid heuristics, dynamic depth adjustments, or 
learning-based methods to further enhance strategic depth and 
adaptability. Ultimately, the success of this agent reaffirms the 
relevance of tree search–based AI design in dynamic, 
turn-based games with deterministic transitions. 

 

 

VI.​ APPENDIX 
The source code for this project is available at github: 

https://github.com/iammadsfq/Chain-Reaction-Game-1352313
5  

VIDEO LINK AT YOUTUBE 
https://www.youtube.com/watch?v=XUGgPqDXsuU  
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