
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Campus Gastronomy Tour: Investigating Hamiltonian

Cycles on all ITB Ganesha Canteen

Syahrizal Bani Khairan - 13523063

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: syahrizal.khairan@gmail.com , 13523063@std.stei.itb.ac.id

Abstract—This paper aims to search for cyclic paths that vists

every canteen, cafes, and the likes in the ITB Ganesha campus area

using pathfinding algorithms, and examines their properties on

graph modification. The graph constituting the canteens as

vertices are connected by edges of variable weight that represents

the walking distance between vertices. Of particular interest is

finding the shortest path that visits all canteen in the campus area.

This problem is analogous to the Travelling Salesman Problem.

This paper will apply a brute force depth-first-search and Held-

Karp algorithm to find such paths.

Keywords—travelling salesman problem;

I. INTRODUCTION

The Institut Teknologi Bandung (ITB) Ganesha campus
contains many establishments offering food and beverages.
These establishments, which from here on we refer as canteen,
may provide drinks, light snacks, to a full meal. These
collections of canteen are scattered throughout the area,
providing easy access to the general populace and visitors. The
distribution of these establishments around the campus presents
an opportunity for analysis of their logistical optimization.

To analyze this problem from a computational perspective,
the campus layout and its canteens can be formally modeled as
a weighted undirected graph. In this model, each canteen is
represented as a vertex (or node), and the walkable paths
between them are represented as edges. The weight of each edge
corresponds to the physical distance between two canteens,
creating a network that accurately reflects the travel cost of
moving between any two points. The challenge is, therefore,
transforms a simple navigation task into a well-defined
computational problem: finding the optimal tour of this graph.

This paper will investigate this specific instance of the TSP
by first identifying the locations of all canteens on the Ganesha
campus. Subsequently, the walking distances between each pair
of canteens will be measured as the waling distance. Following
the data gathering and graph construction, we will implement
and compare two distinct algorithmic approaches to solve this
problem: a brute-force depth-first search, which guarantees
optimality by exploring every possible path, and the more
sophisticated Held-Karp algorithm, a dynamic programming
approach that is significantly more efficient for a larger number
of vertices.

This paper will briefly explore on commonly used heuristics
to solve similar problems. Additionally, we will examine a case
of an addition of a node affects the optimal path.

II. METHODOLOGY

A. Considered canteen and all their locations

There are a lot of places where food and beverage can be
acquired in the campus area. These ranges from machines to
fully fledged cafés. This paper will restrict the sample to several
concentrated points, of which the distance between them will be
measured.

We exclude vending machines, automated coffee machines
and other unmanned vendors from the sample. There a lot of
such machines and these do not adequately represent the
authentic ITB experience. A minimarket retail chain also opened
their branch on campus. For similar reason, the author decides
to exclude them as being not unique to the area.

Several points are actually a group of canteens within the
same location. This is done to massively simplify calculations;
places that are located within the near vicinity of each other are
represented as a single node. A place that are roughly within 50
meters apart from another place in a group also belongs to the
same group.

With these constraints, 12 points are considered for the
context of this paper:

1. Kantin ATM Center
2. Gedung Kuliah Umum Barat (GKUB)
3. Kantin Labtek V
4. Gedung Kuliah Umum Timur (GKUT)
5. Eititu
6. Community Center Barat (CC Barat)
7. Tunas Padi
8. Kantin Lab Biru
9. Kantin CRCS
10. Kantin SBM
11. Kantin Timur
12. Kantin Barrack

Do note that this sample is biased with respect to the author’s
knowledge and discretion. Should there be unmentioned places,
it is to be understood that the author has no knowledge of their

mailto:syahrizal.khairan@gmail.com
mailto:13523063@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

existence. Nevertheless, the provided list should capture the
essence of the daily culinary experience for the students.

B. Gathering data on distances between canteens

To model a tour that visits all canteens, there must be a path
that connects each node to the others. Not all path are equal,
since pairs of canteens may be further apart. For this reason, we
will consider the graph of all canteens and their paths to be a
weighted graph.

There are several ways to model the distance between
canteens. One may plot the nodes into a map and simply measure
the euclidean distances as they are located on the map. This
approach does not reflect accurately the actual distance travelled
for a person that travels on foot. One may refine the calculated
path to follow through roads as seen on available maps.
However, it is questionable how accurate this approach can
model pedestrian paths. In this paper, the weight of a path is
measured as the distance travelled when walked on foot.

Due to limited resource, it is not currently feasible to gather
data on the distance between all possible pairs of canteens. In the
data collection process, distance between canteens may not be
measured directly if there is an intermediate location between
the two. For a particular canteen, only the path to the several
nearest canteens are measured. This turned out to be a
commonly used heuristic when approximating an exact solution
to similar problems.

Between a pair of nodes, it is possible that there are multiple
paths. In this case, we will only consider an edge that have the
shortest distance among all paths that connect the same pair of
nodes. The data collection process attempts to include only
reasonable paths.

C. Algorithm to search for the most optimal Hamiltonian tour

on all canteens

Based on the previous problem statements, the task of
finding a cycle that visits all canteens with the smallest total
distance is analogous to the Travelling Salesman Problem. There
is a few exact algorithms that solve it. Exact algorithms include
a brute-force method and the Held-Karp algorithm which
employs dynamic programming techniques. This paper will
employ both algorithms, to demonstrate the effects of tabulation
on time complexity.

Both of the mentioned algorithms run in exponential time
with the brute force method being superexponential. For more
than a dozen of nodes, the brute force method runs in an
unreasoable time which will be shown in the results section. In
practice, algorithms that employ heuristics quickly yield
solution close to the exact optimal solution [1].

The brute-force algorithm has a time complexity of 𝑂(𝑛!).
The brute-force algorithm is equivalent to generating all
permutations of nodes, testing for the distance of a path in the

Fig 1. Marked map showing each locations of canteens as

numbered in the previous list.

Fig 2. Labelled weighted graph of the canteens. Weight of

each edge is measured as walking distance between inciding

nodes in meters. Edges are not drawn to reflect actual

pedestrian path

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

order of each permutation. The Held-Karp algorithm, which uses
memoization, has a time complexity of 𝑂(𝑛22𝑛). [2]

To search for the optimal tour, there need to be a slight
modification on the graph. Due to the limited data, not all pairs
of nodes have an edge that coincides with them; the graph is not
complete. The Travelling Salesman Problem traditionally
assume a complete graph. To addresss this problem, one may (1)
assign an arbitrarily large weighted edges to complete the graph,
or (2) synthetically construct an edge by searching the
incomplete graph for the shortest path between unconnected
nodes. We will see that neither choice should affect the resulting
optimal tour.

III. IMPLEMENTATION

Two exact algorithms will be employed to solve the
Travelling Salesman Problem. The first is a brute force method
by a complete depth-first search of the graph. The search will go
on to all nodes, keeping track of nodes that are already in the
path. Also note that the graph is represented as a symmetric
square matrix.

def tsp_brute_force(graph, start, visited=None,
path=None, current_cost=0, best_path=None,
min_cost=float('inf')) -> tuple[list[int], int]:
 if visited is None:
 visited = {start}
 if path is None:
 path = [start]

 if len(visited) == len(graph):
 # Return to the starting node to complete the

tour
 final_cost = current_cost +

graph[start][path[0]]
 if final_cost < min_cost:
 return path + [path[0]], final_cost
 return best_path, min_cost

 for neighbor in range(len(graph)):
 if neighbor not in visited:
 visited.add(neighbor)
 path.append(neighbor)

 best_path, min_cost = tsp_brute_force(

 graph,
 neighbor,
 visited,
 path,
 current_cost + graph[start][neighbor],
 best_path,
 min_cost
)
 path.pop()
 visited.remove(neighbor)

 return best_path, min_cost

 The second, more efficient exact algorithm is the Held-Karp
algorithm, a classic dynamic programming approach. Instead of
building and evaluating one complete path at a time, the Held-
Karp algorithm solves the problem by iteratively building up
solutions to smaller subproblems. It defines a subproblem as
finding the shortest path from a starting node to a different
destination node k, visiting a specific subset of intermediate
nodes S. It reuses stored result of subproblems to prevent
unneeded computation.

def tsp_held_karp(graph, start=0):
 """

 Solves the Traveling Salesman Problem using Held-
Karp, a DP algorithm, and reconstructs the path.
 """
 n = len(graph)

 # Memo table
 # memo stores the minimum cost for a given state
(mask, pos)
 memo = {}

 # path_memo stores the next city to visit to
achieve that minimum cost
 path_memo = {}

 def held_karp(mask, pos):
 # Base case: if all cities are visited, return to
the starting node
 if mask == (1 << n) - 1:
 return graph[pos][start]

 # If this subproblem is already solved, return
the stored result
 if (mask, pos) in memo:
 return memo[(mask, pos)]

 min_cost = float('inf')
 best_next_city = -1

 # Iterate over all possible next cities
 for next_city in range(n):
 # If the city has not been visited yet
 if not (mask & (1 << next_city)):
 # Calculate the cost of going to the
next city and then solving the rest of the tour
 new_cost = graph[pos][next_city] +
held_karp(mask | (1 << next_city), next_city)

 if new_cost < min_cost:
 min_cost = new_cost
 best_next_city = next_city

 memo[(mask, pos)] = min_cost
 path_memo[(mask, pos)] = best_next_city

 return min_cost

 # Calculate the minimum cost of the tour starting
from start
 min_tour_cost = held_karp(1 << start, start)

 path = []
 current_mask = 1 << start
 current_node = start

 # Follow the path_memo to rebuild the tour
 for _ in range(n - 1):
 path.append(current_node)
 next_node = path_memo[(current_mask,
current_node)]
 current_mask |= (1 << next_node)
 current_node = next_node

 path.append(current_node)
 path.append(start)

 return path, min_tour_cost

 Additionally, since the data collected does not result in a
complete graph, a method to synthetically construct incomplete
edges is needed. This code is used to fill in the edges to make a
complete graph. The weight of an edge that coincides a pair tof
nodes is equal to the distance of the shortest path between them
in the original graph.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

def construct_incomplete_edge(graph: list[list[int]]) -
> None:
 """
 Constructs incomplete edges for the graph by
searching for shortest path.
 """

 def find_shortest_path_cost(start: int, end: int) -
> int:
 # UCS algorithm
 queue = [(0, start)] # (cost, node)
 visited = dict()

 while queue:
 current_cost, current_node =
heapq.heappop(queue)

 if current_node in visited and
visited[current_node] <= current_cost:
 continue

 visited[current_node] = current_cost

 if current_node == end:
 return current_cost

 for neighbor, edge_cost in
enumerate(graph[current_node]):
 if edge_cost > 0:
 new_cost = current_cost + edge_cost
 if neighbor not in visited or
new_cost < visited[neighbor]:
 heapq.heappush(queue,
(new_cost, neighbor))

 return visited.get(end, float('inf'))

 for i in range(len(graph)):
 for j in range(i + 1, len(graph)):
 if graph[i][j] == -1 and graph[j][i] == -1:
 cost = find_shortest_path_cost(i, j)
 graph[i][j] = cost
 graph[j][i] = cost

 return

 All code and data is available in a GitHub repository linked
in the appendix.

IV. RESULT AND ANALYSYS

A. Shortest tour that visits all canteens

First we compute the optimal tour using the brute force

algorithm. Incomplete edges in the graph is filled with weight

10000.

Then, with the same input using the Held-Karp algorithm:

Fig. Result using Held-Karp algorithm which agrees with the

brute-force algorithm.

Both of the algorithms used above always produce the same

result. But it can be seen that Held-Karp massively outperforms

the brute-force method even though both of them are

exponential algorithms. These algorithms are still impractical

for large graph however. For comparison, the Held-Karp

algorithm crosses one minute of computation time on a graph

of 21 nodes.

Fig 4. The time taken for Held-Karp algorithm to find an

optimal cycle. The brute-force algorithm took over one

minute for a graph with 12 nodes.

Previously the complete graph is generated by fiiling

missing edges with a predetermined weight. By choosing an

extremely large weight, it discourages the search process to

include such edges. If a hamiltonian circuit exist for the

original graph, the optimal path will never include the filled

in edges.

With this information, the Hamiltonian tour that visits all

canteens with the shortest distance with respect to the

available data is as follows

Fig 3. Result using a brute-force algorithm.

Kantin ATM Center – Eititu – CC Barat –

Labtek V – GKU B – Lab Biru – Kantin SBM

– Tunas Padi – Kantin CRCS – Kantin Timur –

GKU T – Kantin Barrack - Kantin ATM Center

Distance: 2360 meters

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig 5. The optimal tour that visits all canteens with the

shortest distance

B. Other method of filling in incomplete edges

Now we propose another solution to complete missing

edges in the graph. For every pair of nodes in a graph,

provided that the graph is connected, there is a path between

them that has minimal cost. Using this fact, we may construct

an artificial edge connecting every missing pair of nodes as

having the same weight as the optimal cost.

With this method, the Held-Karp algorithm yield the

following result

Fig 6. Adjacency matrix when shortest-path distance

method is applied.

which is the same path produced with the previous method.

There is no evidence to assert that the results always agree.

V. DISCUSSION AND REFLECTION

The algorithms successfully identified the shortest possible
tour visiting all 12 selected canteen locations on the ITB
Ganesha campus, which was found to be 2360 meters. The
optimal path follows the sequence: Kantin ATM Center → Eititu
→ CC Barat → Labtek V → GKU B → Lab Biru → Kantin
SBM → Tunas Padi → Kantin CRCS → Kantin Timur → GKU
T → Kantin Barrack → Kantin ATM Center. This provides a
practical, efficient route for anyone wishing to undertake a
complete "gastronomy tour" of the campus.

A key finding from a computational standpoint is the
dramatic difference in performance between the brute-force and
Held-Karp algorithms. While both are exact algorithms that
yielded the same correct result , the brute-force method's
superexponential time complexity resulted in a runtime of over
one minute for just 12 nodes. In contrast, the Held-Karp
algorithm, which is also exponential, found the solution almost
instantly. This empirically demonstrates the effect of
algorithmic improvements to the runtime of exponential
algorithms.

VI. APPENDIX

All code and the collected data is available in the following
repository:

https://github.com/rizalkhairan/canteen-tour

https://github.com/rizalkhairan/canteen-tour

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

ACKNOWLEDGMENT

The completion of this paper would not have been possible
without the support and encouragement of many people. The
author extends his deepest gratitude to Dr. Ir. Rinaldi Munir,
M.T., whose inspirational teaching provided the foundational
knowledge for this project and whose invaluable guidance and
constant support were essential to its completion. Special thanks
are also extended to Rafi Ramadhan of STI’23 for his
willingness to contribute his invaluable time for a part of the data
collection process.

REFERENCES

[1] C. Rego, D. Gamboa, F. Glover dan C. Osterman,

“Traveling salesman problem heuristics: leading methods,

implementations and latest advances,” European Journal

of Operational Research, 2011.

[2] M. Held dan R. M. Karp, “A Dynamic Programming

Approach to Sequencing Problems,” Journal of the

Society for Industrial and Applied Mathematics, 1962.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Syahrizal Bani Khairan, 13523063

