
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

AutoPlumber: A Data Preprocessing Pipeline

Optimizer

William Andrian Dharma T - 13523006

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: williamadt123@gmail.com , 13523006@std.stei.itb.ac.id

Abstract—A crucial part in machine learning is data

preprocessing. Choosing the appropriate pipeline before

modelling could significantly improve model accuracy. However,

with the number of possibilities available to choose from, an

optimized search algorithm would be beneficial to reduce search

time. AutoPlumber aims to solve this problem by creating an

optimized search algorithm for common data preprocessing

techniques to quickly test possibilities with a simple user setup.

Keywords—Machine Learning, Data Science, Optimization

I. INTRODUCTION

Data Science has been a rapidly growing field in the last few
decades joined with the increase of data collection by services
and companies around the world. A comprehensive analysis of
the data possessed can lead to an improved understanding of the
problem at hand and reduces guessing in decision-making. From
analysis, oftentimes modelling is done as the next step of the
operation to do classification or regression tasks as some
examples. Before data is passed on to the model, it has to be
preprocessed in order to make the data operable by the model,
or to improve the predictive quality of the model. Examples of
preprocessing include imputation, outlier removal, encoding,
and many more. The abundance of options available to choose
from makes this task a rather cumbersome one, especially if
handling with large amounts of data, where each trial run could
take a considerable amount of time. Trying out every possible
combination of techniques on every feature using a bruteforce
search would then be very time consuming and not efficient.
With that problem in mind, this library is built with the goal of
an creating an optimzed preprocessing pipeline searcher, which
could be very useful in the early stages of modelling to act as a
baseline to build from. As most of the existing optimization
frameworks deal with model selection and hyperparameter
tuning such as Hyperopt [1] and Optuna [2], we believe that this
library could be a novel solution in this field.

The searching algorithm implemented here will be variations
of greedy algorithms with different heuristics which would
reduce the search space in order to search more efficiently. State
nodes would contain the current pipeline chosen and would
expand into nodes based on the available options that can be
taken in the next step of the preprocessing. A bruteforce option
would be available for the user to choose to ensure an exhaustive
search of all options.

II. PRELIMINARIES

A. Tree

Fig 1. An example of a tree

Source: Some tree.svg. Encyclopedia of
Mathematics. URL:

http://encyclopediaofmath.org/index.php?title=Some_tree.svg
&oldid=5255

A tree is a connected graph which does not contain any
circuits [3]. Following that definition, several properties can
arise such as:

1. For every pair of vertices in a tree, there is only one
path

2. A tree with n vertices has n－1 edges

3. A tree with a distinguished vertex is called a rooted
tree, with the distinguished vertex being called the
root

4. A vertex with a degree of one is called a pendant
vertex

5. A tree with two or more vertices will have at least
two pendant vertices

The tree we will be working with will be a rooted tree, with
the root being the initial state of the data. For the purposes of this
paper, we will refer a vertex as a node, and a pendant vertex as
a leaf node instead.

Edges between nodes can be unweighted or weighted. A
weighted edge could represent a cost to transition between two
nodes.

mailto:williamadt123@gmail.com
mailto:13523006@std.stei.itb.ac.id
http://encyclopediaofmath.org/index.php?title=Some_tree.svg&oldid=5255
http://encyclopediaofmath.org/index.php?title=Some_tree.svg&oldid=5255

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Search Tree

Fig 2. Search tree of a classic 8-puzzle problem

Source: Multi-Agent Route Planning in Grid-Based Storage

Systems - Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net/figure/Expansion-tree-of-an-8-

puzzle_fig10_322721630

A search tree is an application of a tree for searching

problems. Instead of having a singular value, each node has its
value representing a state of the problem, with the leaf nodes
being the ending states. A state which satisfies the requirements
of a goal is called the goal state. A search tree is built by first
defining the initial state of the problem. It then adds children
nodes by expanding the node, which is the act of listing every
valid possible action that can be taken in a the given node.

C. Greedy Algorithm

A greedy algorithm is a type of algorithm which is

commonly used as a fast and simple way to solve optimization

problems. It works by choosing the best immediate solution on

every step of the search until it reaches an end state. In other

words, a greedy algorithm will choose the local optima at a

moment.Selection of the option is based on the cost of

transitioning to the state by using a heuristic.

A heuristic is a shortcut strategy to solve a problem quicker

than an exhaustive search by trading optimality and

completeness for speed. It is usually made using domain

knowledge in conjunction with trial and error for a specific

problem. By using heuristics, we reduce the search space

significantly, but it also means we risk not finding the global

optima of a problem.

A greedy algorithm has the following elements:

1. Candidate Set: A set of available choices to choose

from in a given step

2. Solution Set: A set of chosen candidates

3. Solution Function: A function to determine if the

candidate set can form a solution

4. Selection Function: A function to select a

candidate with a heurstic.

5. Feasibility Function: A function to check if the

selected candidate can be added to the solution

6. Objective function: A function to evaluate the

solution, maximize or minimize.

III. METHODOLOGY

AutoPlumber will be built using the python programming
language and will also use other libraries such as pandas, numpy,
scikit-learn, and others.

A. Preprocessors

We provide several classes as wrappers for common
preprocessing techniques such as imputation, outlier removal,
encoding, scaling. Each feature in the training dataset will have
these objects in a chain and together will make up the state of
the search tree.

B. Imputation

Imputation is the technique of filling out missing values in

a dataset. Missing values are commonplace in real world data

and thus a method of handling it is necessary. Sometimes rows

with missing values are simply dropped from the dataset as a

simple solution, however this could reduce the input data

significantly if many rows contain missing values. As such,

imputation strategies are usually used to handle missing values

to preserve the size of the input data.

The imputer class is a class to store the imputation strategy

of a single column. It can impute using a strategy such as mean

imputation, mode imputation, or median imputation, or we

could give it a constant value to impute for example -1, to

represent that the data was missing.

1. import pandas as pd

2.

3. class Imputer:
4. def __init__(self, strategy="mean", constant=None):
5. def fit(self, X:pd.Series):
6. def transform(self, X:pd.Series) -> pd.Series:
7. def fit_transform(self, X:pd.Series) -> pd.Series:

Fig. 3. Imputer class methods

C. Outlier Removal

Real world data will usually have outliers. They are values
with a significant discrepancy than the expected distribution of

https://www.researchgate.net/figure/Expansion-tree-of-an-8-puzzle_fig10_322721630
https://www.researchgate.net/figure/Expansion-tree-of-an-8-puzzle_fig10_322721630

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

the vast majority of the data. Careful handling of these values
are crucial since an outlier doesn’t necesarrily mean an invalid
data, and removing them could lead to a loss of information.
However, not removing outliers could end up creating noise for
the model and reduce its accuracy.

Several methods can be used to identify and handle outliers.
Z-score based outlier removal uses a certain Z-score threshold
to classify values as outliers. For example, a threshold of 3
means that values over 3 standard deviations away from the
mean will be considered as outliers. However, a caveat of this
technique is that the data needs to be normally distributed for it
to work well.

Another method is the Interquartile Range (IQR) based
outlier removal. An outlier is defined as values below the lower
bound and above the upper bound which are defined as:

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄1 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝐼𝑄𝑅

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄3 + 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝐼𝑄𝑅

This method is more robust to skewness in the data, which is
when the distribution has a long tail.

Both methods have different end results after detecting the
outliers. We could either drop the row entirely or just cap the
outlier values to the threshold they break.

1. import pandas as pd
2. class ZScoreOutlierRemover:
3. def __init__(self, threshold=3,capped=False):
4. def fit(self, X:pd.Series):
5. def transform(self, X:pd.Series)-> pd.Series:
6. def fit_transform(self, X) -> pd.Series:

7.

8. class IQROutlierRemover:
9. def __init__(self, threshold=1.5,capped=False):
10. def fit(self, X:pd.Series):
11. def transform(self, X:pd.Series) -> pd.Series:
12. def fit_transform(self, X:pd.Series) -> pd.Series:

Fig. 4. Outlier removal classes

D. Encoding

Categorical data is not directly operable by a model. The data
needs to be encoded into a numerical representation. Common
encoding techniques such as one-hot encoding, label encoding,
and target encoding, are commonly used. Although general
guidelines such as using one-hot encoding for low unique valued
data and label encoding for high uniqued valued data exist,
unfortunately in practice sometimes the results do not align with
them. So, again trial and error is used to determine the best action
that can be taken. Here we wrap sklearn’s encoders to add
additional behaviours such as a maximum category limit for the
one-hot encoder.

1. import pandas as pd

2. import numpy as np

3. from sklearn.preprocessing import LabelEncoder as

SkLabelEncoder

4. from sklearn.preprocessing import OneHotEncoder as

SkOneHotEncoder

5.

6. class LabelEncoder:

7. def __init__(self):

8. def fit(self, X: pd.Series):

9. def transform(self, X: pd.Series) -> pd.Series:

10. def fit_transform(self, X: pd.Series) ->

pd.Series:

11.

12. class OneHotEncoder:

13. def __init__(self, drop_first=False,

max_categories=10):

14. def fit(self, X: pd.Series):

15. def transform(self, X: pd.Series) -> pd.DataFrame:

16. def fit_transform(self, X: pd.Series) ->

pd.DataFrame:

17.

18. class TargetEncoder:

19. """Target encoder for categorical variables (mean

encoding)."""

20. def __init__(self, smoothing=1.0):

21. def fit(self, X: pd.Series, y: pd.Series):

22. def transform(self, X: pd.Series) -> pd.Series:

23. def fit_transform(self, X: pd.Series, y:

pd.Series) -> pd.Series:
Fig. 5. Encoder classes

E. Scaling

Numerical data can be further transformed to improve the
quality of a model. They are used to alter the distribution of the
data and are crucial for distance based models for example
Support Vector Machine (SVM) or k-Nearest Neighbors (KNN),
to ensure every numerical column is on the same scale. Log
transformations are also useful scaling techniques that can be
used to reduce skewness of data. Our pipeline searcher works
with sklearn’s scalers via an adapter and custom scalers can also
work by matching the fit, transform, and fit_transform functions.

1. class SeriesAdapter:
2. def __init__(self, scaler):
3. def fit(self, X):
4. def transform(self, X):
5. def fit_transform(self, X):
6.

Fig. 6. Scaler series adapter

F. Pipeline

A ColumnPipeline is a class which contains the processing
done to a single column. They are then stored together in a
DataFramePipeline class to represent the total preprocessing
done to the dataset.

G. AutoPlumber

The main class of the library is the AutoPlumber class. It
contains the methods to setup and run the data preprocessing
optimization. The constructor asks for the model, scoring, cv,
maximum iterations, and early stopping rounds. From there, we

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

define the preprocessing options we want to search from divided
into imputation, outlier removal, encoding, and scaling.

We commence the search by calling the fit() function on our
dataset. A high-level overview of the search is as follows:

1. Start with an empty pipeline as the initial state

2. In each iteration, find if an improvement can be
achieved for each column

3. Choose the best improvement found in the iteration

4. Repeat until no improvement can be achieved or if
we have reached the maximum number of iterations

This algorithm is a greedy algorithm that chooses only the
best transformation on a column in every iteration. This means
the pipeline is built incrementally every iteration and a
previously transformed column can get another replacement
transformation if the largest improvement is found on it during
the current iteration. A more detailed explanation will be
discussed in the following section.

H. Search Algorithm

1) Initialization
1. current_pipeline = DataFramePipeline() # Starts empty

2. current_score = -np.inf

3. columns_to_optimize = list(X.columns)

4. no_improvement_count = 0 # Tracks stagnation

Fig. 7. Search initial state

2) Iterative Optimization
For every iteration, we conduct a greedy search on every

column to find the best transformation we can do currently. We
then evaluate the newly modified pipeline and compare it with
the last iteration’s score and we update our pipeline if it performs
better.

1. for iteration in range(self.max_iterations):

2. if self.verbose:

3. self.logger.info(f”\\n--- Iteration {iteration +

1} ---")

4.

5. improved = False

6. best_iteration_score = current_score

7. best_iteration_pipeline = None

8.

9. # Try optimizing each column

10. for column_name in columns_to_optimize:

11. if self.verbose:

12. self.logger.info(f”Testing column:

{column_name}”)

13.

14. # Find best pipeline for this column

15. best_column_pipeline, column_score =

self._greedy_search_column(

16. column_name, X, y, current_pipeline

17.)

18.

19. if best_column_pipeline is not None:

20. # Create new pipeline with this column

optimization

21. test_pipeline = current_pipeline.copy()

22. test_pipeline.add_column_pipeline(column_nam

e, best_column_pipeline)

23.

24. try:

25. test_pipeline.fit(X, y)

26. test_score =

self._evaluate_pipeline(test_pipeline, X, y)

27.

28. if test_score > best_iteration_score:

29. best_iteration_score = test_score

30. best_iteration_pipeline =

test_pipeline

31. improved = True

32.

33. if self.verbose:

34. self.logger.info(f” Improvement

found! Score: {test_score:.4f}”)

35.

36. except Exception as e:

37. if self.verbose:

38. self.logger.warning(f” Pipeline

failed: {str€}”)

39.

40. # Update current best if improved

41. if improved and best_iteration_pipeline is not None:

42. current_pipeline = best_iteration_pipeline

43. current_score = best_iteration_score

44. no_improvement_count = 0

45.

46. if self.verbose:

47. self.logger.info(f”New best score:

{current_score:.4f}”)

48. else:

49. no_improvement_count += 1

50. if self.verbose:

51. self.logger.info(“No improvement in this

iteration”)

52.

53. # Record iteration

54. self.search_history_.append({

55. ‘iteration’: iteration + 1,

56. ‘score’: current_score,

57. ‘improved’: improved

58. })

59.

60. # Early stopping

61. if no_improvement_count >=

self.early_stopping_rounds:

62. if self.verbose:

63. self.logger.info(f”Early stopping after

{no_improvement_count} iterations without improvement”)

64. break

65.

66. # Store best results

67. self.best_pipeline_ = current_pipeline

68. self.best_score_ = current_score

69. self.is_fitted = True

Fig. 8. Iterative optimization code

For every column, every possible transformation available

for choosing is tried with the current DataFramePipeline to
evaluate the score.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

1. def _greedy_search_column(

2. self,

3. column_name: str,

4. X: pd.DataFrame,

5. y: pd.Series,

6. current_pipeline: DataFramePipeline

7.) -> Tuple[ColumnPipeline, float]:

8. """

9. Perform greedy search for the best preprocessing

pipeline for a single column.

10. """

11. column = X[column_name]

12. column_type = self._detect_column_type(column)

13.

14. if self.verbose:

15. self.logger.info(f"Optimizing column

'{column_name}' (type: {column_type})")

16.

17. # Get all possible transformer combinations for this

column

18. transformer_combinations =

self._get_applicable_transformers(column, column_type)

19.

20. best_score = -np.inf

21. best_column_pipeline = None

22.

23. # Try each transformer combination

24. for i, transformers in

enumerate(transformer_combinations):

25. try:

26. # Create column pipeline

27. column_pipeline =

ColumnPipeline(column_name, transformers)

28.

29. # Create test pipeline

30. test_pipeline = current_pipeline.copy()

31. test_pipeline.add_column_pipeline(column_nam

e, column_pipeline)

32.

33. # Fit and evaluate

34. test_pipeline.fit(X, y)

35. score =

self._evaluate_pipeline(test_pipeline, X, y)

36.

37. if score > best_score:

38. best_score = score

39. best_column_pipeline = column_pipeline

40.

41. if self.verbose and i % 5 == 0:

42. self.logger.debug(f" Tested

{i+1}/{len(transformer_combinations)} combinations")

43.

44. except Exception as e:

45. if self.verbose:

46. self.logger.warning(f" Combination {i}

failed: {str(e)}")

47. continue

48.

49. if self.verbose:

50. self.logger.info(f" Best score for

'{column_name}': {best_score:.4f}")

51. return best_column_pipeline, best_score

Fig. 9. Column greedy search

3) Example
We have an example dataset we would like to optimize with

the columns: [“num_1”, num_2”, “cat_1”, “cat_2”], column
names starting with num being numerical columns and cat being
categorical columns. We try out every transformer combination
based on our options for every column and we list the best ones
from each of them before choosing to transform the best column:

1. Iteration 1:

a. Num_1: [impute_mean + standard_scale],
score = 0.65

b. Num 2: [impute median + robust scale],
score = 0.72, best score

c. Cat 1: [impute mode + label encode],
score = 0.58

d. Cat 2: [one hot encode], score = 0.61

2. Iteration 2 current:{num_2:[impute median +
robust scale]}:

a. Num 1: [impute mean + log scale], score
= 0.78, best score

b. Num 2: [impute mean + min max scale],
score = 0.70

c. Cat 1: [target encode], score = 0.76

d. Cat 2: [one hot encode], score = 0.75

3. Iteration 3 current:{num_1:[impute mean + log
scale], num_2: [impute median + robust scale]},
continue until done

IV. BENCHMARKS

To demonstrate our library, we will test on the titanic dataset,
https://www.kaggle.com/c/titanic/data, with a random forest
model and a logistic regression model. A basic preprocessed
dataset with median imputed values for the numerical columns
and mode imputed values for the categorical columns which are
then encoded using a label encoder, is chosen as the control
benchmark which will be compared against the AutoPlumber
optimized search. We will be using accuracy as the scoring
metric and a cross validation count of 5 splits.

A. Data Distribution

Fig. 10. Data distribution of the titanic dataset

https://www.kaggle.com/c/titanic/data

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Missing Values

Fig. 11. Missing values of the dataset

C. Results

 Method CV

Score

Test

Accuracy

CV

diff

Test

diff

Random

Forest

Basic 0.7936 0.7709
+3.25% +6.96%

AutoPlumber 0.8203 0.8286

Logistic

Regression

Basic 0.7978 0.8045
+3.17% -0.69%

AutoPlumber 0.8231 0.7989

Table 1. Accuracy result comparison

Based on the benchmarks shown on Table 1. , we can

observe that AutoPlumber successfully increased our cross
validation scores for both models approximately by 3 percent.
Test accuracy increased by 6 percent for our random forest
model, a 0.69 percent decrease happened to our logistic
regression model, although the cross validation score should be
the main metric of testing a model’s performance. Looking with
our cross validation scores, the logistic regression is chosen as
the best model of this benchmark, and further analysis on it will
be done. Visualizations of the improvement done in each
iteration can be displayed to gain a deeper understanding of the
optimization process.

Fig. 12. Random forest iteration improvements

Fig. 13. Logistic regression iteration improvements

We can see from Fig. 12 and Fig. 13 that the model
performance will improve on every iteration until it is not
possible.

Fig 14. Cumulative improvement graph

ACKNOWLEDGMENT

We would like to thank my lecturer Dr. Nur Ulfa Maulidevi,
for teaching us clearly and comprehensively.

REFERENCES

[1] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David
D Cox. Hyperopt: a Python library for model selection and
hyperparameter optimization. Computational Science & Discovery,
8(1):14008, 2015.

[2] Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019, July).
Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining (pp. 2623-2631).

[3] IDeo, Narsingh (1974), Graph Theory with Applications to Engineering
and Computer Science (PDF), Englewood, New Jersey: Prentice-
Hall, ISBN 0-13-363473-6,.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juli 2025

https://www.edutechlearners.com/download/Graphtheory.pdf
https://www.edutechlearners.com/download/Graphtheory.pdf
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-13-363473-6

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

William Andrian Dharma T - 13523006

