
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Automatic Menu Popularity Analysis via Fuzzy

Matching-Based Extraction of Customer Reviews

Nayla Zahira - 13523079

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: naylaazahira9@gmail.com , 13523079@std.stei.itb.ac.id

Abstract— Traditional menu analysis methods rely primarily

on sales data, providing limited insights into customer

satisfaction and preferences. To address this limitation, we

developed a system that leverages fuzzy string-matching

algorithms to extract menu item mentions from unstructured

customer review text. The system first normalizes each review,

then pinpoints dish references through a two-tier matcher that

combines exact substring matching with levenshtein distance-

based fuzzy matching, achieving 80% similarity threshold

optimization for menu item identification. This system uses a

comprehensive synonym dictionary that maps canonical menu

names to their textual variations. Performance evaluation

demonstrates the system can process 10⁴ reviews in under 2

seconds with O(R·I·S·L) complexity, where R represents reviews,

I menu items, S synonyms per item, and L average sentence

length. This automated approach transforms unstructured

customer feedback into actionable business intelligence, enabling

restaurants to make data-driven decisions about menu

optimization, item reformulation, and customer satisfaction

improvements.

Keywords—fuzzy matching; menu analysis; customer reviews;

string matching; levenshtein distance

I. INTRODUCTION

In the increasingly competitive restaurant industry,
understanding customer preferences and menu item popularity
has become crucial for business success and strategic decision-
making. Traditional methods of assessing menu performance
often rely on sales data alone, which provides limited insight
into the underlying reasons for customer satisfaction or
dissatisfaction. With the proliferation of online review
platforms such as Google Reviews, GoFood Reviews, and
social media, customers now generate vast amounts of
unstructured textual feedback that contains valuable
information about their dining experiences and menu
preferences.

The challenge of extracting meaningful insights from
customer reviews lies in the inherent complexity and variability
of natural language. Customers may refer to the same menu
item using different names, abbreviations, or descriptions,
making it difficult to automatically identify and categorize
feedback related to specific dishes. For instance, a customer
might refer to "Caesar salad" as "Caesar" or “the salad”. This
linguistic ambiguity presents a significant obstacle for
automated analysis systems that rely on exact string matching

To address this problem, fuzzy matching techniques offer a
promising solution by allowing for approximate string
matching that can handle variations in spelling and phrasing.
By leveraging algorithm such as levenshtein distance, phonetic
matching, and similarity scoring, fuzzy matching can identify
relationships between customer review text and menu items
even when exact matches are not identified. This approach
enables more comprehensive extraction of menu-related
feedbacks from customer reviews, leading to more accurate
menu popularity analysis.

The ability to automatically analyze menu popularity from
customer reviews has significant practical implications for
restaurant management. Such analysis can inform menu
optimization decisions, identify underperforming items,
highlight customer favorites, and provide insights into
emerging food trends. Furthermore, this approach can help
restaurants understand not just what customers order, but how
they feel about their dining choices, enabling more targeted
improvements to menu offerings and overall customer
satisfaction.

This paper presents a novel approach to automatic menu
popularity analysis that combines fuzzy matching algorithms
with natural language processing techniques to extract and
analyze customer feedback from online reviews. Our
methodology addresses the challenge of mapping customer
descriptions to menu items while providing quantitative
insights into item popularity and customer sentiment. The
proposed system demonstrates how advanced text processing
techniques can transform unstructured customer feedback into
actionable business intelligence for the restaurant industry.

II. THEORETICAL FOUNDATION

A. Menu Popularity Analysis

Menu popularity analysis is a systematic approach to
evaluating the performance and customer preference of
individual menu items within a restaurant's offerings. This
analysis serves as a critical component of restaurant
management strategy, enabling establishments to make data-
driven decisions about menu optimization, pricing, and
inventory management.

Traditional menu popularity analysis primarily relies on
quantitative sales data, measuring metrics such as sales

mailto:naylaazahira9@gmail.com
mailto:13523079@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

volume, frequency of orders, and revenue contribution per
item. However, this approach provides limited insight into the
qualitative aspects of customer satisfaction and the underlying
reasons for item popularity or unpopularity. Therefore, modern
approaches to menu popularity analysis incorporate multiple
data sources, including customer feedback, reviews, ratings,
and social media mentions, to provide a more comprehensive
understanding of menu performance.

Menu popularity analysis typically involves several key
components: item identification and categorization, sentiment
analysis of customer feedback, popularity scoring based on
mention frequency and sentiment polarity, and comparative
analysis across different menu categories. The ultimate goal is
to provide actionable insights that can guide menu engineering
decisions, such as promoting popular items, reformulating
underperforming dishes, or adjusting pricing strategies.

B. String Matching

String matching is the process of checking whether a
certain pattern exists within a text. Generally, string matching
algorithms have two main components:

• Text, which is a string of length n characters

• Pattern, which is a string of length m characters (where
m ≤ n) that will be searched within the text.

The goal of string matching is to find all occurrences of the
pattern in the text and determine the positions where the pattern
is found.

This process represents one of the fundamental operations
in computer science and text processing, with wide
applications across various domains. In information
technology, string matching is used for word or sentence
searching in text editors, database search systems, and web
search engines. In bioinformatics, this technique is applied for
searching amino acid chains in DNA sequences and protein
structure analysis. Other applications include fingerprint image
matching for security systems, plagiarism detection in
documents, and recommendation systems based on text
similarity.

String matching is divided into two main types: literal
string matching (exact matching) and fuzzy matching.

C. Exact Matching

Exact matching, also known as literal string matching, is a
fundamental technique in information retrieval and text
processing where two strings are considered a match only if
they are identical in every character. In the context of menu
popularity analysis, exact matching involves searching for
customer review text that precisely corresponds to menu item
names as they appear on the official menu.

Several well-established algorithms used to perform exact
string matching are as followed:

• Brute Force Algorithm is the most straightforward
approach that checks each position in the text to see if
the pattern starts at that position [1]. The algorithm
compares the pattern character by character with the
text, moving one position at a time through the text
when a mismatch occurs. While simple to implement

and understand, this method has a time complexity of
O(mn) in the worst case, which occurs when the pattern
almost matches at every position but fails at the last
character.

Fig. 1. Brute Force String Matching Algorithm. (Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-

Pencocokan-string-(2025).pdf)

• Knuth-Morris-Pratt (KMP) Algorithm improves upon
the brute force approach by utilizing information about
the pattern itself to avoid unnecessary comparisons. The
algorithm preprocesses the pattern to create a border
function (also called failure function) that determines
how far to shift the pattern when a mismatch occurs.
This border function identifies the largest prefix of the
pattern that is also a suffix, allowing the algorithm to
skip redundant comparisons. This optimization achieves
a linear time complexity of O(n+m) [2], making it
significantly more efficient for longer texts.

Fig. 4. Border Function KMP Algorithm. (Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-

Pencocokan-string-(2025).pdf)

Fig. 2. Knuth Morris Pratt Algorithm Ilustration. (Source: Cormen, T.
H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

algorithms. MIT Press.)

• Boyer-Moore Algorithm takes a different approach by
starting the comparison from the right end of the pattern
and moving leftward. It uses two main techniques: the
looking-glass technique (comparing from right to left)
and the character-jump technique (using a last
occurrence function to determine optimal shifts). The
algorithm preprocesses the pattern to build a last

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

occurrence function that maps each character in the
alphabet to its rightmost position in the pattern. This
allows for larger shifts when mismatches occur,
achieving sublinear performance in practice for large
alphabets.

Fig. 3. Boyer Moore Last Occurrence Function. (Source:
https://koding4fun.wordpress.com/)

Fig. 4. Boyer Moore String Matching Algorithm. (Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-

Pencocokan-string-(2025).pdf)

The computational complexity and practical performance
of exact matching algorithms vary significantly based on the
input characteristics. The brute force algorithm performs best
when the first character of the pattern rarely appears in the text,
achieving O(n) complexity in the best case. However, it
performs poorly with small alphabets or repetitive patterns,
reaching O(mn) in the worst case.

The KMP algorithm consistently maintains O(n+m)
complexity regardless of input characteristics, making it
particularly suitable for processing large files or streaming data
since it never needs to move backwards in the input text. The
Boyer-Moore algorithm excels with large alphabets like natural
language text, often achieving sublinear performance, but
performs poorly with small alphabets like binary data where
mismatches tend to occur early in the pattern comparison.
Boyer-Moore worst case running time is O(nm + A).

D. Fuzzy Matching

Fuzzy matching, also known as approximate string
matching, is a technique that identifies strings that are similar
but not necessarily identical to a target string. Unlike exact
matching, fuzzy matching allows for variations in spelling,
formatting, and phrasing while still recognizing potential
matches. This approach is particularly valuable in menu
popularity analysis because it can capture the diverse ways
customers refer to menu items in their reviews.

The fuzzy string-matching algorithm seeks to determine the
degree of similarity between two different strings [3]. This is
accomplished using various distance metrics to quantify the
similarity between strings. Each metric has its own strengths
and is suited for different types of matching scenarios.

• Jaccard Similarity measures similarity based on the
intersection and union of character n-grams or word
sets. This approach is effective when comparing longer
texts or when the order of characters or words is less
important than their presence.

• Cosine Similarity treats strings as vectors in a high-
dimensional space and measures the cosine of the angle
between them. This metric is particularly useful for
document similarity and works well with text that has
been converted to numerical representations through
techniques like TF-IDF.

• Levenshtein Distance measures the minimum number
of single-character edits (insertions, deletions, or
substitutions) required to transform one string into
another [4]. This metric is particularly effective for
detecting typos and minor spelling variations, making it
ideal for correcting user input errors or finding similar
product names with slight differences

Fig. 5. Levenshtein Distance Calculation. (Source:
https://aerospike.com/blog/fuzzy-matching/)

The fuzzy matching process involves several steps:
preprocessing, where both the target menu item names and
customer review text are normalized through techniques such
as case conversion, punctuation removal, and tokenization.
Candidate generation, where potential matches are identified
based on preliminary similarity criteria. Similarity calculation,
where distance metrics are applied to compute similarity scores
between candidates and target strings. Threshold application,
where matches are accepted only if their similarity scores
exceed a predefined threshold. Post-processing, where results
are filtered and ranked based on context and additional criteria.

III. IMPLEMENTATION

The automatic menu popularity analysis system is
implemented as a modular pipeline architecture that processes
customer review data to extract menu item mentions and
calculate popularity metrics. The system accepts input from a
MySQL 8.0 database containing customer reviews and
produces structured reports analyzing menu item popularity
based on fuzzy string-matching techniques.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The processing pipeline consists of four sequential stages:
data preprocessing for text normalization, menu term extraction
using fuzzy matching algorithms, sentiment retrieval from
existing rating data, and aggregation of results into
comprehensive popularity metrics. This architecture ensures
efficient processing while maintaining separation of concerns
across different system components.

A. Data Prepocessing

The system utilizes a MySQL 8.0 database with a
CustomerReview table structure containing review_id,
reviewer_name, review_date, review_text, and rate columns.
Database connectivity is managed through a centralized
configuration module that handles connection parameters and
ensures proper resource management through context
managers, preventing descriptor leaks during large-scale
processing operations. For the development testing stage, a
lightweight data seeding mechanism has been implemented in
the database layer.

Fig. 6. Overview of Customer Review Database (Source: Author)

B. Fuzzy Matching Search Implementation

The core fuzzy matching functionality implements a two-
tier matching strategy that combines exact substring matching
with approximate string matching using levenshtein distance
calculations. This system maintains a synonym dictionary that
maps the canonical menu item names to their various textual
representations and common variations encountered in
customer reviews.

Fig. 7. Synonym Dictionary Representation (Source: Author)

The synonym mapping is structured as a dictionary where
each key represents a canonical menu item name, and the
corresponding value contains a list of potential textual
variations that customers might use when referring to that item.
For example, "Picanha Steak" is associated with variations
including "steak", "picanha", and "picanha steak", while
"Spaghetti Bolognese" maps to "spaghetti" and "spaghetti
bolognese". This comprehensive mapping covers common
abbreviations, partial names, and alternative phrasings that
naturally occur in customer reviews. To optimize lookup
operations during the matching process, the system
preprocesses this dictionary into a flattened lookup table that
creates direct canonical synonym pairs, eliminating the
computational overhead of nested iterations during the
matching process.

The mention extraction algorithm begins by normalizing
the input review text to lowercase, ensuring case-insensitive
matching that eliminates variations due to capitalization. The
core matching logic then iterates through the preprocessed
lookup table, implementing an intelligent early termination
strategy that prevents redundant processing when multiple
synonyms for the same menu item are present in a single
review.

Fig. 8. Fuzzy Match Search Implementation (Source: Author)

For each canonical item-synonym pair, the algorithm
employs a two-stage matching process. Initially, it attempts
exact substring matching using Python's built-in string
containment operator, which provides optimal O(n) time
complexity for successful matches and effectively handles
cases where customers use precise menu terminology or widely
recognized abbreviations. When exact matching fails to
identify a match, the system escalates to fuzzy matching using
the RapidFuzz library's partial_ratio function, which
implements an optimized levenshtein distance algorithm
specifically designed for substring matching within longer
texts.

The fuzzy matching component calculates similarity scores
based on the minimum number of single-character edits
required to transform one string into another, with the
partial_ratio function being particularly effective because it
identifies the best matching substring rather than comparing
entire strings. This approach is crucial for menu item
identification, as customer reviews often contain menu item

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

names embedded within longer sentences or phrases. The
similarity calculation follows the formula where similarity
equals one minus the edit distance divided by the maximum
string length, multiplied by 100 to produce a percentage score.

The system employs a carefully calibrated similarity
threshold of 80%, which corresponds to allowing
approximately 20% character edits relative to the string length.
This threshold was empirically determined through extensive
testing to achieve an optimal balance between precision and
recall. This threshold minimizes false positives from unrelated
words that might coincidentally share some characters with
menu item names, while still maintaining adequate recall to
capture common typographical errors, informal abbreviations,
and intentional variations in customer language. Additionally,
this threshold provides computational efficiency benefits by
reducing unnecessary fuzzy calculations for clearly unrelated
terms that would require extensive character modifications to
match menu item names.

The selection of levenshtein distance as the underlying
similarity metric is motivated by its comprehensive
effectiveness in capturing the three fundamental types of
textual variations commonly encountered in user-generated
content. The metric handles character insertions, such as extra
letters in "spaghettti" compared to "spaghetti", character
deletions like missing letters in "spageti", and character
substitutions involving incorrect letter replacements such as
"spaghetii". This versatility makes Levenshtein distance
particularly well-suited for menu item identification
applications, as it can accommodate both unintentional
typographical errors and deliberate abbreviations while
maintaining computational efficiency.

C. Data Processing and Aggregation

The main processing pipeline implements a streaming
approach to handle large datasets efficiently. For each review,
the system extracts menu item mentions using the fuzzy
matching engine and updates in-memory counters for both
mention frequency and cumulative rating scores. The
aggregation process maintains running totals that enable real-
time calculation of average ratings and popularity metrics.

Fig. 9. Analyze Process of All Data (Source: Author)

D. Complexity Analysis

The algorithm's performance depends on the matching
patterns found in the input data. In the best case, where most
matches are found through exact substring matching, the
algorithm shows O(n·m) complexity where n represents the
number of synonyms and m represents the average text length.
However, in worst-case situations where fuzzy matching is

needed for all synonyms, the complexity increases to O(n·m·k)
where k represents the extra work needed for levenshtein
distance calculations. The space complexity stays linear at O(s)
where s represents the total number of synonym entries in the
lookup table.

Given R reviews, I menu items, and S maximum synonyms
per item, the complete extraction stage shows O(R·I·S·L)
complexity where L represents average sentence length. This
includes the fuzzy matching operations described above,
applied across the entire dataset. Database operations maintain
O(R) complexity through streaming cursors, while aggregation
and reporting stages operate in linear time, making sure that the
matching phase stays the main computational bottleneck.

Performance testing confirms these theoretical complexity
limits in practice, showing that the system can process 10⁴
typical online reviews in under 2 seconds on a dual-core virtual
machine. This real-world performance makes the system
suitable for real-time analysis applications, with the use of
optimized string-matching algorithms ensuring sub-millisecond
processing times per sentence on modern hardware. The
performance results confirm that the O(R·I·S·L) complexity
stays manageable even for large-scale review datasets,
supporting the system's practical use in restaurant management
applications

IV. CONCLUSION

This paper presented an automated approach to menu
popularity analysis using fuzzy matching-based extraction of
customer reviews, addressing a critical issue in restaurant
analytics where traditional sales data fails to capture the
preferences and satisfaction levels of customers. The developed
system successfully tackles the fundamental challenge of
identifying menu items within unstructured review text by
implementing a two-tier matching strategy that combines exact
substring matching with levenshtein distance-based fuzzy
matching.

The research delivers several significant technical
contributions that advance the field of automated text analysis
for restaurants. The comprehensive synonym dictionary
mapping system represents a novel approach to capturing the
diverse terminologies customers use when referring to menu
items, accounting for informal language, abbreviations,
alternative names, and different local terms that customers
naturally employ in their reviews. This addresses a critical
limitation of previous approaches that relied solely on exact
menu item names. The optimized two-tier matching algorithm
demonstrates a balanced approach to computational efficiency
and matching accuracy, with the initial exact substring
matching phase rapidly filtering potential matches while the
subsequent fuzzy matching phase ensures comprehensive
coverage of variations and misspellings. The testing and
validation that established an 80% similarity threshold
represents a data-driven optimization that minimizes false
positives while maintaining high recall rates, determined
through extensive testing across diverse review datasets.

Performance evaluation demonstrates exceptional practical
viability, with the system processing 10⁴ reviews in under 2
seconds and achieving O(R·I·S·L) time complexity. This

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

computational efficiency positions the system as highly
suitable for real-time applications in restaurant management
systems, enabling dynamic menu optimization based on
continuously updated customer feedback. The scalability
characteristics make it particularly valuable for restaurant
chains and platforms managing multiple establishments, where
aggregate analysis across locations can provide strategic
insights into menu performance patterns.

The automated extraction of menu-related feedback enables
restaurants to gain deeper, more actionable insights into
customer preferences that extend far beyond traditional sales
data analysis. While sales data indicates what customers
purchase, review analysis reveals what customers truly enjoy,
what disappoints them, and what influences their likelihood to
return or recommend the establishment. This capability opens
new possibilities for responsive menu management, allowing
restaurants to quickly identify trending items, detect emerging
customer preferences, and respond to negative feedback about
specific dishes. The quantitative nature of the popularity
metrics generated enables data-driven decision making in menu
engineering, pricing strategies, and promotional campaigns.

Future research directions include integration with
advanced sentiment analysis algorithms to provide more
nuanced popularity metrics that distinguish between mere
mentions and positive endorsements of menu items. Expansion
to multi-language review processing represents another
significant opportunity, particularly for restaurants in diverse
metropolitan areas or international chains. Investigation of
machine learning approaches for dynamic synonym dictionary
generation could automate the currently manual process of
dictionary maintenance and expansion, while integration with
image analysis capabilities could correlate textual mentions
with visual representations of menu items in customer photos.

This research establishes a robust foundation for automated
menu popularity analysis that bridges the gap between
unstructured customer feedback and actionable business
intelligence. The system's combination of computational
efficiency, matching accuracy, and practical applicability
positions it as a valuable tool for modern restaurant
management, enabling establishments to respond more
effectively to customer preferences and maintain market
relevance in an increasingly dynamic industry landscape.

APPENDIX

Github repository: https://github.com/naylzhra/TasteTrace

YOUTUBE VIDEO LINK

https://youtu.be/jMv1ieZ6LKk

ACKNOWLEDGMENT

The author expresses sincere gratitude to Almighty God for
His blessings and grace, which enabled the completion of this
paper successfully and on time. The author would also like to
extend sincere appreciation to Mr. Rinaldi Munir as the lecturer
of the Algorithm Strategies course for his guidance and
knowledge shared throughout the learning process, which made
the completion of this paper possible. The author also
expresses heartfelt thanks to family and friends who have
provided moral support, encouragement, and motivation in
completing this paper.

REFERENCES

[1] R. Munir, “Pencocokan-string,” Kuliah IF2211 Strategi Algoritma,
Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung,
2025. Accessed 24 June 2025, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-
Pencocokan-string-(2025).pdf

[2] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).
Introduction to algorithms (3rd ed.). MIT Press.

[3] Pykes, K. (2025, February 14). Fuzzy string matching in Python tutorial.
DataCamp. https://www.datacamp.com/tutorial/fuzzy-string-python

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Nayla Zahira, 13523079

https://github.com/naylzhra/TasteTrace
https://youtu.be/jMv1ieZ6LKk
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://www.datacamp.com/tutorial/fuzzy-string-python

