
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Automated Unit Balancing in Tactical RPGs via

Scenario Based Simulation and Heuristic Search

Rafizan Muhammad Syawalazmi - 13523034

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: rafi.syawalazmi@gmail.com , 13523034@std.stei.itb.ac.id

Abstract—Balancing unit statistics in tactical role playing

games (TRPGs) is a critical but notoriously complex task, often

constrained by the limitations of manual playtesting and

subjective developer intuition. This paper presents an automated

framework for unit balancing based on heuristic search and

scenario-based evaluation. Units are modeled using core combat

attributes and are tested against a diverse set of predefined

combat scenarios to simulate near optimal play. The simulation

engine employs a depth limited depth-first search (DFS) with

alpha-beta pruning and top N action filtering to explore plausible

combat outcomes efficiently. A win rate-based fitness function

evaluates unit performance across all scenarios, offering an

objective and quantifiable balance metric. A random search

strategy is used to tune unit parameters until their aggregated

performance matches a defined baseline. The resulting system

reduces the subjectivity and time cost of manual balancing,

offering a scalable, extensible, and data-driven alternative for

developing fair and strategically deep tactical game experiences.

Keywords—Game balancing, tactical RPG, scenario-based

evaluation, DFS, alpha-beta pruning, random search, AI

simulation, unit optimization

I. INTRODUCTION

Game balance is an important piece of successful game
design, fundamentally influencing player retention,
satisfaction, and a game's long term viability. An unbalanced
game, whether perceived as extremely difficult or easy, leads to
player frustration or boredom, often resulting in player
disengagement. The objective of balancing is to create a fair
and enjoyable experience, offering a sense of accomplishment
when challenges are overcome, without falling into
overwhelming difficulty or a lack of meaningful opposition.

However, achieving this equilibrium through traditional,
manual methods is with significant limitations. Modern games
are characterized by their depth and their vast global player
base, rendering it practically impossible for even large
development teams to fully comprehend every conceivable
combination or variation of gameplay. Manual balancing
processes rely heavily on iterative human playtesting, a method
that is extremely time consuming and often insufficient for
games featuring complex, intransitive mechanics. This often
necessitates the release of numerous balance patches post-
launch, indicating an ongoing struggle to achieve stability.

Furthermore, balance decisions made purely on numerical data
or solely on subjective feeling often lead to unwelcomed
outcomes.

The manual balancing process is also quite subjective,
heavily dependent on developer intuition and the limited scope
of internal playtesting and player feedback. The cognitive load
imposed on a single designer or even a dedicated team to
predict all tactical implications of stat modifications in a
complex grid based game is immense. For example, in games
like Fire Emblem Fates Conquest, enemy AI is designed to
effectively target weaker units, and resource management is
critical, making precise manual tuning of unit capabilities quite
challenging. This human cognitive limitation means that
despite best efforts, manual balancing can lead to unintended
dominant strategies, situations where decisions become
meaningless, or a general lack of counterplay, diminishing the
strategic depth of the game.

In response to the inherent limitations of balancing,
specifically manual unit balancing in grid based tactical games
for this paper, characterized by its time consuming nature and
subjective outcomes, this project proposes a systematic and
automated solution. The core objective is to automatically
balance a game unit by evaluating its performance across a
predefined set of diverse combat scenarios.

Using unit modeling, an evaluator, various scenario sets, a
fitness function, and a balancing strategy, creates a powerful
synergy for great evaluation. The near optimal play can be
achieved by the DFS-based engine. Furthermore, the use of a
diverse set of predefined scenarios ensures that this competent
evaluation is more flexible and does not limits the balance for
specific scenarios. This prevents the unit from being
inadvertently balanced for one specific enemy type while
remaining overpowered or underpowered against others. This
synergistic combination renders the evaluation not only
computationally efficient but also highly reliable and
comprehensive. It directly addresses the inherent subjectivity
of manual balancing by providing objective, data-driven
performance metrics under realistic and challenging conditions,
thereby yielding a more robust and generalizable balance
configuration.

mailto:rafi.syawalazmi@gmail.com
mailto:13523034@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

II. THEORETICAL BASIS

A. Depth First Search

Depth First Search (DFS) is a fundamental graph traversal
algorithm that forms the basis for exploring complex structures
like game trees in artificial intelligence. It operates by
systematically exploring as far as possible along each branch
before backtracking. When traversing a graph, DFS explores an
adjacent vertex and then recursively completes the traversal of
all vertices reachable through that adjacent vertex before
moving to other neighbors. This behavior is similar to a tree
traversal where an entire subtree (example, the left subtree) is
fully explored before moving to another (example, the right
subtree).

Figure 2.1. DFS Visualization. Source:
https://www.wscubetech.com/resources/dsa/dfs-vs-bfs

A key consideration in graph traversal, particularly for
graphs that may contain cycles, is to prevent redundant
processing of nodes. DFS addresses this by typically
employing a mechanism, such as a boolean visited array, to
keep track of already explored nodes. The algorithm can be
implemented to start from a given source node and explore all
reachable vertices, or to perform a complete traversal of a
disconnected graph by iteratively calling the single-source DFS
for all unvisited vertices. The time complexity for DFS is
generally O(V + E), where V represents the number of vertices
and E represents the number of edges in the graph. Its auxiliary
space complexity is also O(V + E), primarily due to the visited
array and the call stack for recursive operations.[1]

In the context of game AI, DFS provides the underlying
search mechanism for algorithms like Minimax and Alpha Beta
pruning, which explore the vast game tree to determine optimal
moves. Its depth first nature allows for a thorough examination
of potential move sequences and their consequences, making it
a favored approach for game playing programs due to its
simplicity and effectiveness in traversing deep branches of the
game tree.[2]

B. Minimax

The simulation engine uses a search typically used for
competitive environments with conflicting goals. The Minimax
algorithm is foundational for optimal decision making,
constructing and traversing a game tree of possible moves and
states. It recursively evaluates nodes, maximizing the current
player's utility while minimizing the opponent's, assuming
optimal counter play. This framework ensures the unit's

performance is assessed against a challenging, strategic
opponent, crucial for producing robust balance configurations.
Aiming for near optimal play ensures the win-rate metric
reliably indicates balance against a competent player, not a
naive one.

Figure 2.2. Minimax Visualization. Source:
https://medium.com/@aidenrtracy/the-minimax-algorithm-f6e8e0a1eadb

There is a pruning method called Alpha Beta pruning that
optimizes Minimax by reducing computation time through
intelligent branch elimination. It maintains alpha (best value for
maximizer) and beta (best value for minimizer) values. if alpha
is more than beta, the branch is pruned. Alpha Beta is favored
for its efficiency in game playing programs and can be
enhanced by transposition tables and narrow search windows.

This paper also uses a "Top-N move” pruning method that
complements Alpha-Beta by focusing the search on promising
moves, balancing search depth for near optimal play with
computational time for numerous simulations.

C. Tactical Role Playing Games

Tactical Role Playing Games (TRPGs) are defined by their
unique fusion of deep character development and strategic
combat, typically unfolding on grid based maps. These games
emphasize strategic decision-making, often presenting battles
as intricate puzzles where players must skillfully outmaneuver
their adversaries. The genre is characterized by grid-based
movement, often on hexagonal maps, and a turn-based combat
system where players control their entire party's actions before
the enemy's turn commences. This ‘full team turns’ mechanic
is a defining feature, allowing for comprehensive strategic
planning within each round.

The strategic depth of these games is enriched by several
key mechanics. Positioning is paramount, as controlling terrain,
gaining initiative, and utilizing environmental cover can
significantly influence battle outcomes. Features such as zones
of control restrict the movement of engaged units, while
flanking or rear attacks offer tactical advantages, potentially
negating enemy counterattacks or bypassing defensive
measures like block points. The inclusion of diverse attack
types, including ranged attacks from archers, line attacks that
strike multiple units in a row, and wide area attacks from two
handed weapons, adds layers of tactical variety. Furthermore,
support units like healers and a wide array of active and passive
skills, offering buffs to allies or debuffs to enemies,

https://www.wscubetech.com/resources/dsa/dfs-vs-bfs
https://medium.com/@aidenrtracy/the-minimax-algorithm-f6e8e0a1eadb

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

significantly expand the tactical options available to players.
Missions often incorporate secondary objectives beyond simple
enemy elimination, adding further complexity and strategic
considerations.

Figure 2.1. TRPG Fire Emblem. Source:
https://www.gamestop.com/video-games/nintendo-switch/products/fire-

emblem-engage/20001849.html

The effectiveness of a unit's design is deeply intertwined
with the tactical environment provided by the map. Mechanics
such as zones of control, flanking or rear attacks, and block
points are heavily influenced by a unit's position on the grid-
based maps. Similarly, the importance of positioning and the
impact of terrain effects are repeatedly emphasized within the
genre. This inherent interdependence implies that true unit
balance is not merely a matter of internal numerical
consistency but also how a unit performs across a variety of
tactical environments. A unit perfectly balanced for open
terrain might be overpowered in tight corridors or
underpowered if its range cannot be effectively leveraged due
to obstacles. The project's use of a diverse set of predefined
scenarios implicitly addresses this, as these scenarios likely
represent different map layouts or enemy compositions that
challenge units in varied ways, thereby fostering a more robust
balancing outcome.

In this project, game units are modeled using a set of core
attributes that are fundamental to their performance in turn
based and grid based combat. These attributes are standard
across the tactical RPG genre and include:

• HP (Health Points): This attribute determines the total
health of a character, directly impacting its
survivability and endurance in combat encounters.

• ATK (Attack): This statistic dictates the damage dealt
by a unit's equipped weapons, serving as its primary
offensive capability.

• DEF (Defense): This attribute reduces the amount of
damage taken from enemy attacks, contributing to a
unit's overall resilience and durability.

• MOV (Movement): Representing the number of grid
spaces a unit can traverse per turn, this attribute is
critical for tactical positioning, flanking maneuvers,
and controlling the battlefield.

• RNG (Range): This attribute defines the maximum
distance from which a unit can initiate an attack. Its

importance is implied by the presence of ranged
attacks from archers in tactical games.

• SPD (Speed): This attribute influences a unit's evasion
(dodge chance), its priority in counterattacks, and its
ability to perform double attacks if its speed
significantly exceeds that of an opponent (example by
4 points).

• CRIT (Critical Chance): This attribute boosts a unit's
accuracy and hit chance, determining the likelihood of
successfully landing an attack and potentially dealing
critical damage.

These core attributes combine to form derived combat
statistics, such as a unit's overall Attack value, which might
combine its Strength with the damage rating of its equipped
weapon. This intricate interplay of statistics creates complex
interactions, such as the Speed versus Speed comparison for
double attacks, which underscores the profound challenge of
manual balancing.

The impact of changing a single unit statistic is often not
linear but rather threshold-based or multiplicative. For
example, a small increment in a unit's Speed might have no
observable effect until it crosses a specific threshold relative to
an opponent's Speed, at which point it suddenly grants a
significant advantage, such as a double attack. Similarly,
accuracy might scale non-linear with the Skill attribute. This
non linear behavior makes manual balancing exceptionally
difficult, as minor numerical tweaks can lead to
disproportionately large effects, or conversely, no effect at all,
until a critical breakpoint is reached. Automated simulation and
optimization are therefore indispensable for effectively
navigating this complex, non linear performance landscape and
achieving precise unit balance.

III. IMPLEMENTATIONS

A. Unit and Battlefield Representation

Each unit in the system is modeled as a structured object
with attributes such as maximum hit points (HP), attack power
(ATK), defense (DEF), movement range (MOV), attack range
(RNG), speed (SPD), and critical hit rate (CRIT). These
attributes determine how a unit performs in combat. A unit is
also associated with a team designation, either red or blue, and
is assigned a fixed position on a 2D grid-based battlefield. The
battlefield itself is represented as a finite-sized grid that
manages tile-based positioning and enforces constraints on unit
movement, such as staying within bounds and avoiding
occupied tiles. This representation mirrors the structure of
typical turn-based tactical games and provides a deterministic
foundation for simulating discrete combat scenarios.

B. Battle Simulations

Combat simulation is implemented using a depth limited

recursive search inspired by the Minimax algorithm. Each

layer of recursion corresponds not to a single unit's action, but

to a full team turn meaning that all remaining units on a team

execute their actions before the turn passes to the opposing

side. This model more accurately reflects the turn structure

https://www.gamestop.com/video-games/nintendo-switch/products/fire-emblem-engage/20001849.html
https://www.gamestop.com/video-games/nintendo-switch/products/fire-emblem-engage/20001849.html

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

found in tactical games like Fire Emblem, where players

control multiple units per phase. The system explores action

sequences using depthnfirst search, but integrates alpha beta

pruning to eliminate branches that cannot influence the final

outcome. To further control the branching factor, the system

filters actions using a top N heuristic. For each unit, the

simulation evaluates all legal move and attack combinations,

ranks them based on factors such as potential damage and

proximity to enemies, and selects only the highest scoring N

actions for further evaluation. This selective pruning

significantly improves runtime without discarding the most

promising tactical options. The recursion continues until the

maximum depth is reached or until one team has been

completely defeated.

C. Heuristic Evaluation

At the leaves of the search tree, or when the recursion

depth limit is reached, the system evaluates the resulting game

state using a heuristic function. The primary metric is the

difference in total remaining hit points between the red and

blue teams. A positive score indicates a favorable state for the

red team, while a negative score favors the blue team. This

continuous scoring mechanism provides gradient feedback for

optimization and allows the balancer to compare outcomes

across scenarios.

In addition to scoring the outcomes, the simulator also

records the sequence of actions that led to each evaluated

state. This is done using an ActionStep structure, which

captures the acting unit, the origin and destination of its

movement, the type of action performed (e.g., move, attack, or

move attack), and the target unit if applicable. As the recursive

search proceeds, the optimal path is propagated upward along

with the score, making it possible to extract the best move

sequence under the assumed depth and search conditions.

D. Scenario Based Evaluation

To evaluate unit effectiveness in a balanced and

generalizable way, the system tests each candidate

configuration against a fixed set of combat scenarios. Each

scenario defines an enemy unit with specific stats and a

starting position, intended to represent different combat

archetypes such as ranged attackers, high-defense tanks, or

fast melee units. These scenarios remain constant across all

candidate evaluations to ensure consistency.

For each scenario, the candidate unit is paired against the

scenario enemy on a fresh battlefield, and the battle is

simulated using the heuristic DFS engine. The outcome is

recorded as a win, loss, or draw based on the evaluation score,

and a binary win-rate score is computed for the entire set. This

scenario-based approach provides a more comprehensive

picture of unit viability than single-match evaluation and

encourages general robustness rather than optimization for

narrow cases.

E. Random Stat Optimization

The auto-balancing mechanism employs a random search

strategy over a predefined space of tunable parameters. Each

candidate configuration is generated by sampling values for

selected stats such as HP, ATK, and DEF within bounded

integer ranges. Other stats, such as movement range or critical

rate, may be held constant to simplify the search.

Each candidate configuration is evaluated using the same

scenario-based performance function as described above. The

system computes the total win rate across all scenarios and

compares this value against a target, either a fixed percentage

(e.g., 50%) or the known win rate of a baseline reference unit.

The configuration that minimizes the absolute difference

between the candidate and target win rates is retained as the

best-performing unit. This process is repeated for a fixed

number of iterations (typically several hundred) to ensure

adequate coverage of the search space.

IV. TESTING AND ANALYSIS

Testing is done using these configurations as the basis.

Random Trials 500

Depth per Simulation 3

Top-N Actions 3

Scenario Set One versus one against 6

combat archetypes.

Reference Unit BaselineKnight
Table 4.1. Simulation configurations.

BaselineKnight, being as the reference unit for the
simulation, provides these results when put inside the 6
different scenarios.

Figure 4.1. BaselineKnight results.

Using these win rate, the program will create a candidate
that has similar win ratio. These are two candidate results using
different results:

Figure 4.2. CandidateKnight results.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 4.3. CandidateKnightV2 results.

As we can see, both candidates got the exact same win rates
among the 6 scenarios provided. Both having the same win and
losses for every scenarios is entirely coincidental. This
behavior will disappear when using a vast more scenarios with
more units in each of them. Also something to notice is that
the score of each scenarios is somewhat similar with a margin
below 5.

And lastly, these are the optimized and ‘most balanced’
configurations based on each candidates.

Figure 4.4. CandidateKnight optimized config.

Figure 4.5. CandidateKnightV2 optimized config.

V. CONCLUSION

This paper highlights the increasing challenges of manually
balancing units in complex, grid based tactical games. The
combinatorial complexity of game elements makes traditional
methods time consuming, subjective, and insufficient, often
leading to frequent post-release patches. This bottleneck in
human cognitive capacity necessitates automated solutions.

The paper offers an automated unit balancing system driven
by scenario based simulation. It leverages adversarial search
algorithms (Minimax with DFS and Alpha Beta pruning) to
simulate near optimal play, ensuring meaningful win rate
evaluation against competent opponents. A diverse set of
predefined combat scenarios ensures robust and generalizable
balance.

 The win rate based fitness function provides an objective,
quantifiable measure for balance, complementing manual

tuning's subjectivity. Random search is a pragmatic
optimization strategy, offering simplicity and effectiveness in
exploring the high-dimensional, non-linear parameter space of
unit statistics.

In essence, this research demonstrates a viable path towards
more efficient, objective, and robust game balancing. By
automating complex numerical optimization, game developers
can potentially reduce development time, minimize post release
issues, and deliver more consistently enjoyable and
strategically deep tactical games.

ACKNOWLEDGMENT

The Author would like to express our heartfelt gratitude to
everyone who contributed to the successful completion of the
paper.

The Author extend his deepest appreciation to his
algorithmatic strategies teacher, Dr. Nur Ulfa Maulidevi, for
their teachings to make this paper possible and encouraging us
to make this paper in the first place.

This paper is collaborative effort and shared knowledge of
all those involved. Thank you.

REFERENCES

[1] Adversarial Search Algorithms in Artificial Intelligence (accessed June
24, 2025, https://www.geeksforgeeks.org/artificial-
intelligence/adversarial-search-algorithms/

[2] Best-First and Depth-First Minimax Search in Practice, accessed June
24, 2025,
https://webdocs.cs.ualberta.ca/~jonathan/publications/ai_publications/cs
n.pdf

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Rafizan Muhammad Syawalazmi (13523034)

https://www.geeksforgeeks.org/artificial-intelligence/adversarial-search-algorithms/
https://www.geeksforgeeks.org/artificial-intelligence/adversarial-search-algorithms/
https://webdocs.cs.ualberta.ca/~jonathan/publications/ai_publications/csn.pdf
https://webdocs.cs.ualberta.ca/~jonathan/publications/ai_publications/csn.pdf

