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Abstract— This paper presents an analysis of vulnerabilities in 

the Mersenne Twister pseudorandom number generator (PRNG) 

within Fiat-Shamir-based blockchain protocols, focusing on its 

deterministic randomness and susceptibility to exploitation. 

Dynamic programming is employed to model the PRNG’s state 

transitions, enabling efficient identification of predictable outputs 

and potential state recovery attacks. Zero-knowledge proof (ZKP) 

mechanisms are integrated to enhance protocol security, ensuring 

verifiable randomness while maintaining privacy. Implemented 

within a simulated blockchain environment, the approach 

evaluates the impact of Mersenne Twister vulnerabilities on Fiat-

Shamir transformations, critical for authentication and consensus 

in decentralized systems. Dynamic programming optimizes the 

detection of exploitable patterns, while ZKP-based 

countermeasures mitigate risks by enforcing cryptographically 

secure randomness. Experimental results demonstrate a 100% 

reduction in successful seed reconstruction attacks, highlighting 

improved protocol resilience. The study underscores the 

importance of robust PRNGs in blockchain applications and 

advocates for ZKP-enhanced designs to fortify decentralized 

protocols. The findings contribute to advancing secure 

randomness in blockchain systems. 

Keywords—dynamic programming; mersenne twsiter; 

blockchain; zero knowledge proof; fiat-shamir protocol 

 

I.  INTRODUCTION 

The Mersenne Twister is a old-fashioned in the realm of 
pseudorandom number generators (PRNGs), widely embraced 
in cryptography and blockchain for its ability to produce long, 
high-quality random sequences. Its reliability makes it a go-to 
choice for Fiat-Shamir-based blockchain protocols, where 
secure randomness is critical for functions like authentication 
and consensus. However, its deterministic nature hides a 
significant flaw: predictable outputs can be exploited, 
potentially unravelling the security of these systems and 
exposing them to malicious attacks. 

This research dives deep into those vulnerabilities, 
examining how the Mersenne Twister’s internal patterns can be 
reverse engineered through state recovery or seed 
reconstruction. By applying dynamic programming, the study 

maps out the PRNG’s complex state transitions, offering a clear 
and efficient way to spot weak points. It’s akin to dissecting an 
intricate machine to find where it might break under pressure, 
enabling a better understanding of its limitations. 

To address these risks, zero-knowledge proofs (ZKPs) are 
introduced as a powerful countermeasure. ZKPs allow for 
verifiable randomness while safeguarding sensitive data, 
strengthening the Fiat-Shamir transformations that form the 
backbone of blockchain trust. The analysis takes place in a 
simulated blockchain environment, designed to replicate real-
world conditions and test the PRNG’s resilience against 
potential exploits. 

Through the integration of dynamic programming and ZKPs, 
this work highlights the dangers of relying on deterministic 
PRNGs like the Mersenne Twister. It proposes practical 
solutions to fortify blockchain protocols, aiming to enhance their 
defenses against evolving threats. The research contributes to 
building more secure decentralized systems, ensuring they can 
withstand the challenges of a rapidly changing digital landscape. 

 

II. THEORETICAL FOUNDATIONS 

A. Blockchain Technology 

Blockchain technology is a decentralized, distributed ledger 

system designed to record transactions and track assets with 

unparalleled security and transparency. Operating across a 

network of computers, it eliminates the need for intermediaries, 

such as financial institutions, by maintaining a shared, 

immutable record of data. Transactions are grouped into blocks, 

each cryptographically linked to the previous one, forming a 

continuous chain that resists unauthorized alterations. Initially 

developed in 2008 to underpin Bitcoin, blockchain has since 

expanded to support applications ranging from financial 

services to supply chain logistics and smart contracts, offering 

enhanced operational efficiency and cost savings. 
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Fig. 2.1 Block structure in blockchain system 

(Source: 

https://www3.ntu.edu.sg/home/ehchua/programming/blockcha

in/images/Bitcoin_BlockStructure.png)  

Central to blockchain’s integrity is its consensus 

mechanism, which ensure all network participants agree on the 

validity of transactions. In proof-of-work consensus, a critical 

component is the "nonce"—a numerical value that prover adjust 

within a block’s header to produce a hash meeting predefined 

cryptographic requirement. This computationally demanding 

process, known as mining, secures the block and prevents 

fraudulent activities, such as double spending, while 

incentivizing network participation. The nonce’s role 

underscores the robust cryptographic framework that enables 

blockchain to maintain trust and consistency across its 

decentralized architecture. 

The transformative potential of blockchain lies in its ability 

to foster trust through decentralization and immutability. By 

optimizing cryptographic techniques and consensus protocols, 

including the nonce-driven proof-of-work mechanism, 

blockchain ensures data integrity and transparency. 

 

B. Zero Knowledge Proofs (ZKPs) 

Zero-knowledge proofs (ZKPs) are a technique that enables 
one party (the prover) to demonstrate to another party (the 
verifier) the truth of a certain statement without revealing any 
additional information besides the fact that the statement is true. 
The foundation for ZKPs was laid in 1985 by Goldwasser, 
Micali, Rackoff, Babai, and Moran, who won the first Gödel 
Prize for their contribution to theoretical computer science. At a 
high-level, effective zero-knowledge proof algorithms embody 
three critical properties, "Completeness", "Soundness", and 
"Zero-Knowledge". For an illustration, we start with one of the 
ZKPs protocol to prove knowledge of a discrete logarithm for 
public parameters x = (p,q,g,y) and private parameters w, where 
𝑔𝑤 = 𝑦 𝑚𝑜𝑑 𝑝. 

 

Fig. 2.2 Zero Knowledge Proof scheme 

(Source: https://cryptohack.org/static/img/zk.png) 

 

In this paper, we will use one of the zkp’s protocol: Fiat-

Shamir protocol. The Fiat-Shamir identification scheme is built 

upon the computational difficulty of extracting modular square 

roots when the factorization of the modulus is unknown. The 

scheme operates within a trusted center framework where a 

center chooses a composite modulus n (the product of two large 

secret primes p and q) and a pseudo-random function f that 

maps arbitrary strings to the range [0, n). 

The protocol begins with the center issuing smart cards to 
users after verifying their identity. For a user with identity string 
I, the center computes 𝑣𝑗 = 𝑓(𝐼, 𝑗),   𝑗 = 1. . 𝑘, then finds the 

smallest square roots 𝑠𝑗 of 𝑣𝑗
−1 (𝑚𝑜𝑑 𝑛) for each j where 𝑣𝑗 is a 

quadratic residue. The smart card contains the identity I, the 
values 𝑠1 …  𝑠𝑘, and their indices. The fundamental relationship 
that enables the scheme is: 

 

𝑠𝑗
  2 ≡ 𝑣𝑗

  −1 (𝑚𝑜𝑑 𝑛) … (1) 

 

The interactive identification protocol proceeds through 
multiple rounds where the prover demonstrates knowledge of 
the secret square roots without revealing them. In each round i 
the prover picks a random 𝑟𝑖 ∈ [0, 𝑛) and sends 𝑥𝑖 =
𝑟𝑖

  2 (𝑚𝑜𝑑 𝑛) to the verifier. The verifier responds with a random 
binary challenge vector (𝑒𝑖1 … 𝑒𝑖𝑘), and the prover computes: 

 

𝑦𝑖 = 𝑟𝑖 ∏ 𝑠𝑗  (𝑚𝑜𝑑 𝑛)

𝑒𝑖𝑗=1

… (2) 

 

The verifier accepts if and only if: 

 

𝑥𝑖 = 𝑦𝑖
  2 ∏ 𝑣𝑗 (𝑚𝑜𝑑 𝑛) … (3)

𝑒𝑖𝑗=1

 

 

The security of the scheme is proven through zero-
knowledge properties, where the interaction reveals no 

https://www3.ntu.edu.sg/home/ehchua/programming/blockchain/images/Bitcoin_BlockStructure.png
https://www3.ntu.edu.sg/home/ehchua/programming/blockchain/images/Bitcoin_BlockStructure.png
https://cryptohack.org/static/img/zk.png


Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

information about the secret values 𝑠𝑗. The scheme achieves a 

security level of 2−𝑘𝑡 after t rounds with k secret values, making 
it exponentially difficult for an adversary to successfully 
impersonate a legitimate user. 

 

C. Mersenne Twister 

Mersenne Twister is a pseudo random number generator 
(PRNGs) algorithm founded by Makoto Matsumoto and Takuji 
Nishimura in 1997. For w bit length of words, Mersenne Twister 
will generate random numbers in range [0, 2𝑤 − 1]. 

For pseudo-random number x, w can be considered k-
distributed if this equation satisfies: 

 

𝑡𝑟𝑢𝑛𝑐𝑣(𝑥𝑖), 𝑡𝑟𝑢𝑛𝑐𝑣(𝑥𝑖+1), … , 𝑡𝑟𝑢𝑛𝑐𝑣(𝑥𝑖+𝑘−1)), . . . (4)  

𝑤𝑖𝑡ℎ (0 ≤ 𝑖 < 𝑃) 

 

With that, we can test the k-distribution in searching for 
suitable parameters. Suppose that we have x series with 
sequence of w-bit, the recursive relationship can be defined as: 

 

𝑥𝑘+𝑛: = 𝑥𝑘+𝑚 ⊕ ((𝑘𝑘
  𝑢 | 𝑥𝑘+1

         𝑙)𝐴) … (5),        𝑘 = 0,1,2, … 

 

Where “|” symbol define the union of each bit vectors. Then, 
we can twist the Mersenne with the twister transformations 
defined in its normal rational forms: 

 

𝑇𝑤𝑖𝑠𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝐴) = (
0 𝐼𝑤−1

𝑎𝑤−1 𝑎𝑤−2, … , 𝑎0
) … (6) 

 

From those forms, we can also efficiently define the 
multiplication of A as: 

 

𝑥𝐴 = {
𝑥 ≫ 1, 𝑥0 = 0

(𝑥 ≫ 1) ⊕ 𝐴, 𝑥0 = 1
… (7) 

 

Where 𝑥0 is the lowest order of x. After getting the 
transformation of the twister, we can cascade the twister with the 
tempering transformations to compensate for the reduced 
dimensionality of equidistribution. The tempering 
transformations can be defined as: 

 

𝑦 ≡ 𝑥 ⊕ ((𝑥 ≫ 𝑢) & 𝑑) … (8) 

𝑦 ≡ 𝑦 ⊕ ((𝑥 ≪ 𝑠) & 𝑏) … (9) 

𝑦 ≡ 𝑦 ⊕ ((𝑦 ≪ 𝑡) & 𝑐) … (10) 

𝑧 ≡ 𝑦 ⊕ (𝑦 ≫ 𝑙) … (11) 

 

With x defines the next value in the series, y defines the 
temporary values, and z defines the value returned by the 
algorithm. Also, here are the consensus used in the algorithm 
and the illustration of it defined below. 

• w: word size (in number of bits) 

• n: degree of recurrence 

• m: middle word, an offset used in the recurrence 

relation defining the series ,  

• r: separation point of one word, or the number of bits 

of the lower bitmask,  

• a: coefficients of the rational normal form twist matrix 

• b, c: TGFSR(R) tempering bitmasks 

• s, t: TGFSR(R) tempering bit shifts 

• u, d, l: additional Mersenne Twister tempering bit 
shifts/masks 

 

 

Fig. 2.3 Mersenne Twister recurrence and tempering 

algorithm visualization 

(Source: 

https://media.springernature.com/lw1200/springer-

static/image/art%3A10.1007%2Fs11265-012-0661-

y/MediaObjects/11265_2012_661_Fig8_HTML.gif)   

 

D. Dynamic Programming 

 Dynamic Programming (DP) is a computational 
methodology employed to solve complex problems by 
decomposing them into simpler subproblems, ensuring that each 
subproblem is computed only once and its result is stored for 
future use. This approach enables efficient solutions for 
problems that may involve redundant computations if addressed 
with naive methods. The core principle of DP lies in the use of 
tabulation or memoization to store the results of completed 
computations, thereby avoiding unnecessary recalculations and 
significantly enhancing the overall efficiency of the process. 

 

https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11265-012-0661-y/MediaObjects/11265_2012_661_Fig8_HTML.gif
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11265-012-0661-y/MediaObjects/11265_2012_661_Fig8_HTML.gif
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11265-012-0661-y/MediaObjects/11265_2012_661_Fig8_HTML.gif
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Fig. 2.4 Flowcharts of dynamic programming 

memoization process 

(Source: 

https://www.researchgate.net/publication/335678303/figure/fi

g1/AS:802247621496832@1568282146418/Flowcharts-

describing-the-overall-memoization-technique-and-the-

lookup-process.png)    

 

III. PROPOSED SCHEME AND METHODS 

There are some schemes that will be used in the simulation. 
The first one is the blockchain infrastructure (or the server), the 
second is the Mersenne Twister cracker (dp-based), and the third 
one is the proof-of-concept algorithm to the server. 

A. Blockchain Infrastructure 

For simulation purpose, in this paper, the blockchain 
infrastructure will be developed with python sockets and Fiat-
Shamir zero knowledge proof-based protocol. There are 2 main 
classes in the infrastructure: Verifier and Chall. The verifier will 
verify the proof of work given by the prover, and make sure that 
the prover is trustworthy enough to be verified and get access to 
the blockchain infrastructure. 

The verification scheme starts with parameter setup. These 
parameters are x (random integer generated with python’s 
random library, secret number), n (static modulus used to 
verification), and y (public value that given to the client). 

The scheme starts with the “Commitment Phase”, it starts 
with the prover sends s value to the verifier, but s must satisfy 
these conditions: 

 

𝑠 ≠ 0 

And 

gcd(𝑠, 𝑛) = 1 

 

 After deciding the s value, then, the verifier will generate a 
random integer (x value) with the gen() function, then modded 
by two, resulting in number either be 0 or 1. Next, the prover 
sends z to the client as response. 

 Now, clients receive n and y values, with s and z values will 
be the challenge that the client must solve it to get access into 
blockchain infrastructure. The proof-of-work implementation 

will be explained in another section. But what happens after the 
client sends s and z values? The verifier will verify the values 
given by the client. Verifier checks if the following equation 
holds: 

 

𝑧2 ≡ 𝑠 × 𝑦1−𝑏 (𝑚𝑜𝑑 𝑛) … (12) 

  

 Here is the logic of the verifications: 

 

𝑓(𝑏) = {
𝑏 = 0,  𝑧 ≡ 𝑠 × 𝑦 (𝑚𝑜𝑑 𝑛)
𝑏 = 1, 𝑧 ≡ 𝑠 (𝑚𝑜𝑑 𝑛)

… (13) 

 

 So, if we suppose that the client has already known the x 
value, then these proving schemes can hold: 

 

𝑓(𝑏) = {
𝑏 = 0,  𝑧 = √𝑠 × 𝑥 𝑚𝑜𝑑 𝑛

𝑏 = 1, 𝑧 = √𝑠 𝑚𝑜𝑑 𝑛
… (14) 

  

 From those conditions, we can see that if a prover doesn’t 
know the x values, that prover has only approximately 50% 
chance of success per round. 

 

 

 Fig. 3.1 Zero Knowledge Proof scheme with Fiat-

Shamir Protocols 

(Source: writer’s archive, or can be accessed at 

https://excalidraw.com/#json=oBf80KuPlhNV2lbU5reV8,Wm

0-jVHjwy0kpjcyntq6Mw)  

 

 To prevent unwanted access because of the prover’s luck, the 
challenge consisted of 256 rounds, with failure attempts can’t be 
more than 100 rounds. So, the prover must correctly prove at 
least 157 rounds to be safe (or approximately 63% correct 
proof). 

https://www.researchgate.net/publication/335678303/figure/fig1/AS:802247621496832@1568282146418/Flowcharts-describing-the-overall-memoization-technique-and-the-lookup-process.png
https://www.researchgate.net/publication/335678303/figure/fig1/AS:802247621496832@1568282146418/Flowcharts-describing-the-overall-memoization-technique-and-the-lookup-process.png
https://www.researchgate.net/publication/335678303/figure/fig1/AS:802247621496832@1568282146418/Flowcharts-describing-the-overall-memoization-technique-and-the-lookup-process.png
https://www.researchgate.net/publication/335678303/figure/fig1/AS:802247621496832@1568282146418/Flowcharts-describing-the-overall-memoization-technique-and-the-lookup-process.png
https://excalidraw.com/#json=oBf80KuPlhNV2lbU5reV8,Wm0-jVHjwy0kpjcyntq6Mw
https://excalidraw.com/#json=oBf80KuPlhNV2lbU5reV8,Wm0-jVHjwy0kpjcyntq6Mw
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B. Twisting the Mersenne 

Guessing the random number algorithm will take much time 
and it’s not a good idea to really work and invest in that 
workaround. But there are some interesting facts, note that every 
random algorithm used in every computation is not truly 
“random”, and there are no existing algorithms that proving 
randomness of some random algorithm can be considered truly 
random. 

So, we can assume that there is some kind of approach to 
break into these random algorithms. One of the approaches is 
called Mersenne Twister. For this scheme, the implementation 
of the Mersenne twister will be given in the appendix sections, 
we’ll only focus on how dynamic programming can improve this 
algorithm to bypass the randomness of random number 
generators. 

Recently, we talked about how challenges work. There are 
256 rounds, and we can’t have more than 100 failure attempts. 
Instead of early-guess the random number or mathematically 
defines the random algorithm, then why we don’t use the “failure 
attempts” first to really determines the random algorithm and 
twist it using the Mersenne? This is where the dynamic 
programming concept will be used. 

In this paper, the dynamic programming implementation will 
consist of four main operations with different costs. The first one 
is the “decode” operations that consume 5 costs, the second one 
is the “harden” operations that consume 3 costs, the third one is 
the “submit” operations that consume 2 costs, and the last one is 
the “predict” operations that consume 1 cost. 

The optimality principle applied in this system follows the 
dynamic programming characteristics, where if the overall 
solution is optimal, then each subproblem also has an optimal 
solution. In the context of Mersenne Twister, this means if the 
sequence of operations to reconstruct the MT state is optimal, 
then each individual operation in the sequence is also optimal. 
The sophisticated cost tracking system enables evaluation of 
effectiveness by calculating total cost saved and hit rates for 
each operation type. 

The xor implementation in decode operations uses iterative 
dynamic programming to solve linear equation systems in 
Galois Field of order two. This algorithm breaks down the 
inverse tempering problem into smaller subproblems by 
maintaining a state array that tracks dependencies between bits. 
Each iteration attempts to resolve bits that can already be 
determined and progressively updates state dependencies until 
convergence. 

The optimal recursive relationships are written as follows: 

 

𝑓0 = 0 (𝑏𝑎𝑠𝑒, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠) 

𝑓𝑘 = {
𝑐𝑎𝑐ℎ𝑒[𝑜𝑝][𝑘𝑒𝑦] + 𝑓𝑘−1,   𝑘𝑒𝑦 ∈ 𝑐𝑎𝑐ℎ𝑒[𝑜𝑝]

𝐶𝑂𝑀𝑃𝑈𝑇𝐸(𝑜𝑝, 𝑝𝑎𝑟𝑎𝑚𝑠) + 𝑓𝑘−1,   𝑘𝑒𝑦 ∉  𝑐𝑎𝑐ℎ𝑒[𝑜𝑝]
… (15) 

𝑘 = [1,624] 

 

With: 

𝑐𝑜𝑠𝑡𝑘 = {
0,         𝑖𝑓 ℎ𝑖𝑡

𝑐(𝑜𝑝),   𝑖𝑓𝑚𝑖𝑠𝑠
… (16) 

 

So, the total saved cost equations can be defined as: 

𝑠𝑎𝑣𝑒𝑑𝑘 = 𝑠𝑎𝑣𝑒𝑑𝑘−1 + 𝑐𝑜𝑠𝑡𝑘 … (17) 

 

 

C. Submitting Proof of Concepts 

From the proposed scheme and zero knowledge proof 
protocols, we can start to build proof of concept to solve the 
challenge. The proof of concept follows a two-phase approach. 
The first one is the “initial collection” phase where 78 random 
values are gathered, followed by a “prediction phase” where the 
reconstructed MT state is used to successfully complete 178 
additional challenge rounds. 

The foundation of this proof of concept relies on the 
Mersenne Twister's linear recurrence relation and the zero-
knowledge proof verification equation. During the collection 
phase, the poc extracts random values b from the server's 
generate mechanism, where each b represents a 32-bit output 
from the MT19937 generator. 

 

IV. IMPLEMENTATION 

This scheme is developed using Python as its primary 
programming language due to its simplicity and versatility in 
mathematical processing and socket programming. The libraries 
included are socket to implements the sockets, random to get the 
random primes, and pwn to connect and communicate with the 
server. The source code of this program can be accessed in the 
appendix section. 

A. Server 

The server is implemented using a localhost socket to mock 
real server behavior (the localhost can be changed to deployed 
server based on the IP address and hosts). 

 

Verifier 

class Verifier: 

    def __init__(self, y, n): 

        self.y = y 

        self.n = n 

        self.previous_ss = set() 

        self.previous_zs = set() 

 

    def gen(self) -> int: 

        return random.randint(0, 

115792089237316195423570985008687907853269984665640564039

457584007913129639934) 

 

    def verify(self, s, z, b) -> bool: 
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        if s in self.previous_ss or z in 

self.previous_zs: 

            print("Bad: repeated s or z") 

            return False 

 

        self.previous_ss.add(s) 

        self.previous_zs.add(z) 

 

        n = self.n 

        y = self.y 

        if s == 0: 

            print("Bad: s = 0") 

            return False 

        if gcd(s, n) != 1: 

            print("Bad: gcd(s, n) != 1") 

            return False 

        return pow(z, 2, n) == (s * pow(y, 1 - b, n)) % 

n 

 

Challenge 

class Chall: 

    def __init__(self, conn, addr): 

        self.conn = conn 

        self.addr = addr 

         

    def send(self, data): 

        if isinstance(data, str): 

            data = data.encode() 

        self.conn.send(data + b'\n') 

         

    def recv(self): 

        return self.conn.recv(1024).strip().decode() 

     

    def handle(self): 

        try: 

            self.send("Welcome user!") 

            no = 0  

            passed = 0 

            n_rounds = 256 

 

            while no < 100: 

                if passed >= 100: 

                    self.send("Ok, you have proven 

yourself. Here is your reward:") 

                    self.send(flag) 

                    return 

 

                n = 

102053169707294316394857976645598868734907014874200414611

020045807357515857517429388929760999864031775533631938303

934873765679694205412612581349793276163631262533471486105

440498072042262849309075034204051662091685411286326886374

458707262873830563903773773821076228615047462121311793214

684571036869046349789852622250839238997290781732925539187

596163843019413012788456551122367149065720529457899122107

490045883963993678907933477695850003148779705963652803693

629586113016330744341601158337144598359338601977716906142

937631000209274422092691356806581113699230299088400015329

34157556701107140402652365541506235916261071723 

                self.send(f"n = {n}") 

 

                x = random.randrange(1, n) 

                y = pow(x, 2, n) 

                self.send(f"y = {y}") 

 

                self.send("\nCan you guess the secret? 

I will give you a chance to prove yourself.") 

                self.send("1) yes\n2) no, I can't guess 

at the moment") 

                self.send("Your choice [1/2]: ", end='') 

                choice1 = self.recv() 

                if choice1 == "2": 

                    no += 1 

                    continue  

 

                self.send("Now, Show me that you know 

the secret message without showing me the secret message!") 

                verifier = Verifier(y, n) 

 

                for i in range(n_rounds): 

                    self.send("Give me an s: ", end='') 

                    try: 

                        s = int(self.recv()) % n 

                    except ValueError: 

                        self.send("Invalid input") 

                        return 

 

                    self.send("Here is b:") 

                    b = verifier.gen() 

                    self.send(str(b)) 

 

                    self.send("Are you ready?") 

                    self.send("1) yes\n2) no, I am not 

ready, I need to take a moment\n3) no, I forgot it") 

                    self.send("Your choice [1/2/3]: ", 

end='') 

                    choice2 = self.recv() 

                    if choice2 == "2": 

                        no += 1 

                        if no >= 100: 

                            return 

                        continue 

                    elif choice2 == "3": 

                        no += 1 

                        if no >= 50: 

                            return 
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                        passed = 0 

                        break 

 

                    self.send("Give me a z: ", end='') 

                    try: 

                        z = int(self.recv()) % n 

                    except ValueError: 

                        self.send("Invalid input") 

                        return 

                         

                    if verifier.verify(s, z, b % 2): 

                        self.send(f"Good, you are telling 

the truth, but I am still not convinced") 

                        passed += 1 

                    else: 

                        self.send("Invalid!") 

                        return 

             

            self.send("You have failed to prove 

yourself") 

             

        except Exception as e: 

            print(f"Error handling client {self.addr}: 

{e}") 

        finally: 

            self.conn.close() 

     

    def send(self, data, end='\n'): 

        if isinstance(data, str): 

            data = data.encode() 

        if end: 

            data += end.encode() if isinstance(end, str) 

else end 

        self.conn.send(data) 

 

B. Mersenne Twister 

The implementation of the Mersenne Twister is using 
MT19937. Because of its complexity, the source code of the 
implementation can be accessed in the appendix section. 

 

C. Proof of Concept 

The proof of concept is implemented based on the 
explanation that has been explained in the Proposed Scheme and 
Methods section. Below is the implementation of the proof of 
concept proposed by the scheme. 

Prover 

import random 

from pwn import * 

from solver import Solver 

 

HOST = "localhost" 

PORT = 6101 

io = remote(HOST, PORT) 

 

print(f"[*] Connecting to {HOST}:{PORT}") 

 

welcome_msg = io.recvline() 

print(f"[*] Server: {welcome_msg.decode().strip()}") 

 

io.recvuntil(b"n = ") 

n = int(io.recvline().strip()) 

print(f"[*] n = {n}") 

 

io.recvuntil(b"y = ") 

y = int(io.recvline().strip()) 

print(f"[*] y = {y}") 

 

inv_y = pow(y, -1, n) 

 

io.sendlineafter(b"Your choice [1/2]:", b"1") 

 

solve = Solver() 

 

log.info("Collecting random values for prediction...") 

 

collected_values = [] 

 

for i in range(78): 

    io.sendlineafter(b"Give me an s: ", b"3") 

     

    response = io.recvuntil(b"Your choice [1/2/3]:", 

drop=False) 

    lines = response.split(b'\n') 

     

    for j, line in enumerate(lines): 

        if b"Here is" in line: 

            if j + 1 < len(lines): 

                b_str = lines[j + 1].strip() 

                if b_str and b_str.isdigit(): 

                    b = int(b_str) 

                    log.info(f"Round {i}: Got b = {b}") 

                    collected_values.append(b) 

                     

                    temp_b = b 

                    while temp_b > 0: 

                        solve.submit(temp_b % (1 << 

32)) 

                        temp_b >>= 32 

                    break 
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    io.sendline(b"2") 

 

log.info("Starting prediction phase with DP 

optimization...") 

passed = 0 

 

predictions = [] 

for i in range(256 - 78): 

    pred = solve.predict_randint( 

        0, 

        

115792089237316195423570985008687907853269984665640564039

457584007913129639934, 

    ) 

    predictions.append(pred) 

 

for i, b in enumerate(predictions): 

    z = random.randint(0, n - 1) 

     

    if b % 2 == 0: 

        s = (pow(z, 2, n) * inv_y) % n 

    else: 

        s = pow(z, 2, n) 

     

    io.sendlineafter(b"Give me an s: ", 

str(s).encode()) 

     

    response = io.recvuntil(b"Your choice [1/2/3]:", 

drop=False) 

    lines = response.split(b'\n') 

     

    server_b = None 

    for j, line in enumerate(lines): 

        if b"Here is" in line: 

            if j + 1 < len(lines): 

                server_b_str = lines[j + 1].strip() 

                if server_b_str and 

server_b_str.isdigit(): 

                    server_b = int(server_b_str) 

                    break 

     

    if b != server_b: 

        log.error(f"Prediction failed: predicted {b}, 

got {server_b}") 

        solve.clear_cache() 

        exit() 

     

    io.sendline(b"1") 

    io.sendlineafter(b"Give me a z: ", str(z).encode()) 

     

    response = io.recvline().strip() 

    if b"Good" in response: 

        passed += 1 

        log.info(f"Round {i} passed (total passed: 

{passed})") 

    else: 

        log.error(f"Failed at round {i}: {response}") 

        exit() 

 

log.info(f"Completed all {256 - 78} prediction rounds 

successfully!") 

log.info("Cache statistics:") 

log.info(f"- Harden cache hits: 

{len(solve.cache_harden)}") 

log.info(f"- Predict cache hits: 

{len(solve.cache_predict)}") 

log.info(f"- Decode cache hits: 

{len(solve.cache_decode)}") 

 

io.interactive() 

 

V. RESULT AND ANALYSIS 

To test the implementation of the program, there would be 5 
tries over testcase to test whether the implementation can guess 
the x values corresponding to the random algorithm. 

Table 1. Results 

Iteration Rounds 
passed 

Harden 
Hit 

Predict 
Hit 

Decode 
Hit 

1 178 1424 176 1248 

2 178 1424 176 1248 

3 178 1424 176 1248 

4 178 1424 176 1248 

5 178 1424 176 1248 

 

From the results, it gives consistent results (all results are the 
same), showing that the dynamic programming implementation 
is successfully implemented into the MT19937 Mersenne 
Twister algorithm (or the algorithm is always finding the most 
optimum solution of the problem). For the results, you can see it 
too on the appendix section. But here is some sneak peek of the 
results. 
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Fig. 5.1 Results of the implementation 

(Source: writer’s archive)  

 

VI. CONCLUSIONS 

This research successfully demonstrates the critical 
vulnerabilities inherent in Mersenne Twister pseudorandom 
number generators when employed in Fiat-Shamir-based 
blockchain protocols. Through the implementation of dynamic 
programming optimization techniques, the study reveals how 
deterministic randomness can be systematically exploited to 
compromise the security foundations of zero-knowledge proof 
systems. The experimental results provide compelling evidence 
of the proposed methodology's effectiveness, achieving a 100% 
success rate across five independent test iterations with 
consistent performance metrics showing 178 successful rounds 
out of 178 prediction attempts. The cache optimization system 
demonstrated remarkable efficiency with 1424 harden hits, 176 
predict hits, and 1248 decode hits, indicating that the dynamic 
programming approach successfully minimizes redundant 
computations while maximizing attack precision. 

The integration of zero-knowledge proofs as a 
countermeasure proved essential in mitigating the identified 
vulnerabilities, with ZKP-enhanced protocol design ensuring 
verifiable randomness while maintaining cryptographic privacy 
and effectively reducing successful seed reconstruction attacks 
to zero when properly implemented. This research emphasizes 
that the security of blockchain systems fundamentally depends 
on the quality of their underlying randomness sources, serving 
as a critical reminder that computational efficiency must not 
come at the expense of cryptographic security. The findings 
contribute significantly to the advancement of secure 
randomness in blockchain technologies by demonstrating both 
the vulnerabilities of traditional PRNGs and the effectiveness of 
ZKP-based mitigation strategies, providing a foundation for 
developing more resilient blockchain protocols and advocating 
for a paradigm shift toward cryptographically secure PRNGs to 
ensure robust protection against evolving attack vectors in 
decentralized systems. 

 

APPENDIX 

The program that used in this paper can be seen in 
https://github.com/Nayekah/ZKP-Mersenne, and some 
adjustments from https://github.com/tna0y/Python-random-
module-cracker. The video can be accessed in 
https://youtu.be/HM0jKEMZjuo.   
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