
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Analyzing Deterministic Randomness in Mersenne

Twister Vulnerabilities Using Dynamic Programming

in Fiat-Shamir Based Blockchain Protocols

Nayaka Ghana Subrata - 13523090

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: nayakaghana39@gmail.com , 13523090@std.stei.itb.ac.id

Abstract— This paper presents an analysis of vulnerabilities in

the Mersenne Twister pseudorandom number generator (PRNG)

within Fiat-Shamir-based blockchain protocols, focusing on its

deterministic randomness and susceptibility to exploitation.

Dynamic programming is employed to model the PRNG’s state

transitions, enabling efficient identification of predictable outputs

and potential state recovery attacks. Zero-knowledge proof (ZKP)

mechanisms are integrated to enhance protocol security, ensuring

verifiable randomness while maintaining privacy. Implemented

within a simulated blockchain environment, the approach

evaluates the impact of Mersenne Twister vulnerabilities on Fiat-

Shamir transformations, critical for authentication and consensus

in decentralized systems. Dynamic programming optimizes the

detection of exploitable patterns, while ZKP-based

countermeasures mitigate risks by enforcing cryptographically

secure randomness. Experimental results demonstrate a 100%

reduction in successful seed reconstruction attacks, highlighting

improved protocol resilience. The study underscores the

importance of robust PRNGs in blockchain applications and

advocates for ZKP-enhanced designs to fortify decentralized

protocols. The findings contribute to advancing secure

randomness in blockchain systems.

Keywords—dynamic programming; mersenne twsiter;

blockchain; zero knowledge proof; fiat-shamir protocol

I. INTRODUCTION

The Mersenne Twister is a old-fashioned in the realm of
pseudorandom number generators (PRNGs), widely embraced
in cryptography and blockchain for its ability to produce long,
high-quality random sequences. Its reliability makes it a go-to
choice for Fiat-Shamir-based blockchain protocols, where
secure randomness is critical for functions like authentication
and consensus. However, its deterministic nature hides a
significant flaw: predictable outputs can be exploited,
potentially unravelling the security of these systems and
exposing them to malicious attacks.

This research dives deep into those vulnerabilities,
examining how the Mersenne Twister’s internal patterns can be
reverse engineered through state recovery or seed
reconstruction. By applying dynamic programming, the study

maps out the PRNG’s complex state transitions, offering a clear
and efficient way to spot weak points. It’s akin to dissecting an
intricate machine to find where it might break under pressure,
enabling a better understanding of its limitations.

To address these risks, zero-knowledge proofs (ZKPs) are
introduced as a powerful countermeasure. ZKPs allow for
verifiable randomness while safeguarding sensitive data,
strengthening the Fiat-Shamir transformations that form the
backbone of blockchain trust. The analysis takes place in a
simulated blockchain environment, designed to replicate real-
world conditions and test the PRNG’s resilience against
potential exploits.

Through the integration of dynamic programming and ZKPs,
this work highlights the dangers of relying on deterministic
PRNGs like the Mersenne Twister. It proposes practical
solutions to fortify blockchain protocols, aiming to enhance their
defenses against evolving threats. The research contributes to
building more secure decentralized systems, ensuring they can
withstand the challenges of a rapidly changing digital landscape.

II. THEORETICAL FOUNDATIONS

A. Blockchain Technology

Blockchain technology is a decentralized, distributed ledger

system designed to record transactions and track assets with

unparalleled security and transparency. Operating across a

network of computers, it eliminates the need for intermediaries,

such as financial institutions, by maintaining a shared,

immutable record of data. Transactions are grouped into blocks,

each cryptographically linked to the previous one, forming a

continuous chain that resists unauthorized alterations. Initially

developed in 2008 to underpin Bitcoin, blockchain has since

expanded to support applications ranging from financial

services to supply chain logistics and smart contracts, offering

enhanced operational efficiency and cost savings.

mailto:nayakaghana39@gmail.com
mailto:13523090@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 2.1 Block structure in blockchain system

(Source:

https://www3.ntu.edu.sg/home/ehchua/programming/blockcha

in/images/Bitcoin_BlockStructure.png)

Central to blockchain’s integrity is its consensus

mechanism, which ensure all network participants agree on the

validity of transactions. In proof-of-work consensus, a critical

component is the "nonce"—a numerical value that prover adjust

within a block’s header to produce a hash meeting predefined

cryptographic requirement. This computationally demanding

process, known as mining, secures the block and prevents

fraudulent activities, such as double spending, while

incentivizing network participation. The nonce’s role

underscores the robust cryptographic framework that enables

blockchain to maintain trust and consistency across its

decentralized architecture.

The transformative potential of blockchain lies in its ability

to foster trust through decentralization and immutability. By

optimizing cryptographic techniques and consensus protocols,

including the nonce-driven proof-of-work mechanism,

blockchain ensures data integrity and transparency.

B. Zero Knowledge Proofs (ZKPs)

Zero-knowledge proofs (ZKPs) are a technique that enables
one party (the prover) to demonstrate to another party (the
verifier) the truth of a certain statement without revealing any
additional information besides the fact that the statement is true.
The foundation for ZKPs was laid in 1985 by Goldwasser,
Micali, Rackoff, Babai, and Moran, who won the first Gödel
Prize for their contribution to theoretical computer science. At a
high-level, effective zero-knowledge proof algorithms embody
three critical properties, "Completeness", "Soundness", and
"Zero-Knowledge". For an illustration, we start with one of the
ZKPs protocol to prove knowledge of a discrete logarithm for
public parameters x = (p,q,g,y) and private parameters w, where
𝑔𝑤 = 𝑦 𝑚𝑜𝑑 𝑝.

Fig. 2.2 Zero Knowledge Proof scheme

(Source: https://cryptohack.org/static/img/zk.png)

In this paper, we will use one of the zkp’s protocol: Fiat-

Shamir protocol. The Fiat-Shamir identification scheme is built

upon the computational difficulty of extracting modular square

roots when the factorization of the modulus is unknown. The

scheme operates within a trusted center framework where a

center chooses a composite modulus n (the product of two large

secret primes p and q) and a pseudo-random function f that

maps arbitrary strings to the range [0, n).

The protocol begins with the center issuing smart cards to
users after verifying their identity. For a user with identity string
I, the center computes 𝑣𝑗 = 𝑓(𝐼, 𝑗), 𝑗 = 1. . 𝑘, then finds the

smallest square roots 𝑠𝑗 of 𝑣𝑗
−1 (𝑚𝑜𝑑 𝑛) for each j where 𝑣𝑗 is a

quadratic residue. The smart card contains the identity I, the
values 𝑠1 … 𝑠𝑘, and their indices. The fundamental relationship
that enables the scheme is:

𝑠𝑗
 2 ≡ 𝑣𝑗

 −1 (𝑚𝑜𝑑 𝑛) … (1)

The interactive identification protocol proceeds through
multiple rounds where the prover demonstrates knowledge of
the secret square roots without revealing them. In each round i
the prover picks a random 𝑟𝑖 ∈ [0, 𝑛) and sends 𝑥𝑖 =
𝑟𝑖

 2 (𝑚𝑜𝑑 𝑛) to the verifier. The verifier responds with a random
binary challenge vector (𝑒𝑖1 … 𝑒𝑖𝑘), and the prover computes:

𝑦𝑖 = 𝑟𝑖 ∏ 𝑠𝑗 (𝑚𝑜𝑑 𝑛)

𝑒𝑖𝑗=1

… (2)

The verifier accepts if and only if:

𝑥𝑖 = 𝑦𝑖
 2 ∏ 𝑣𝑗 (𝑚𝑜𝑑 𝑛) … (3)

𝑒𝑖𝑗=1

The security of the scheme is proven through zero-
knowledge properties, where the interaction reveals no

https://www3.ntu.edu.sg/home/ehchua/programming/blockchain/images/Bitcoin_BlockStructure.png
https://www3.ntu.edu.sg/home/ehchua/programming/blockchain/images/Bitcoin_BlockStructure.png
https://cryptohack.org/static/img/zk.png

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

information about the secret values 𝑠𝑗. The scheme achieves a

security level of 2−𝑘𝑡 after t rounds with k secret values, making
it exponentially difficult for an adversary to successfully
impersonate a legitimate user.

C. Mersenne Twister

Mersenne Twister is a pseudo random number generator
(PRNGs) algorithm founded by Makoto Matsumoto and Takuji
Nishimura in 1997. For w bit length of words, Mersenne Twister
will generate random numbers in range [0, 2𝑤 − 1].

For pseudo-random number x, w can be considered k-
distributed if this equation satisfies:

𝑡𝑟𝑢𝑛𝑐𝑣(𝑥𝑖), 𝑡𝑟𝑢𝑛𝑐𝑣(𝑥𝑖+1), … , 𝑡𝑟𝑢𝑛𝑐𝑣(𝑥𝑖+𝑘−1)), . . . (4)

𝑤𝑖𝑡ℎ (0 ≤ 𝑖 < 𝑃)

With that, we can test the k-distribution in searching for
suitable parameters. Suppose that we have x series with
sequence of w-bit, the recursive relationship can be defined as:

𝑥𝑘+𝑛: = 𝑥𝑘+𝑚 ⊕ ((𝑘𝑘
 𝑢 | 𝑥𝑘+1

 𝑙)𝐴) … (5), 𝑘 = 0,1,2, …

Where “|” symbol define the union of each bit vectors. Then,
we can twist the Mersenne with the twister transformations
defined in its normal rational forms:

𝑇𝑤𝑖𝑠𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝐴) = (
0 𝐼𝑤−1

𝑎𝑤−1 𝑎𝑤−2, … , 𝑎0
) … (6)

From those forms, we can also efficiently define the
multiplication of A as:

𝑥𝐴 = {
𝑥 ≫ 1, 𝑥0 = 0

(𝑥 ≫ 1) ⊕ 𝐴, 𝑥0 = 1
… (7)

Where 𝑥0 is the lowest order of x. After getting the
transformation of the twister, we can cascade the twister with the
tempering transformations to compensate for the reduced
dimensionality of equidistribution. The tempering
transformations can be defined as:

𝑦 ≡ 𝑥 ⊕ ((𝑥 ≫ 𝑢) & 𝑑) … (8)

𝑦 ≡ 𝑦 ⊕ ((𝑥 ≪ 𝑠) & 𝑏) … (9)

𝑦 ≡ 𝑦 ⊕ ((𝑦 ≪ 𝑡) & 𝑐) … (10)

𝑧 ≡ 𝑦 ⊕ (𝑦 ≫ 𝑙) … (11)

With x defines the next value in the series, y defines the
temporary values, and z defines the value returned by the
algorithm. Also, here are the consensus used in the algorithm
and the illustration of it defined below.

• w: word size (in number of bits)

• n: degree of recurrence

• m: middle word, an offset used in the recurrence

relation defining the series ,

• r: separation point of one word, or the number of bits

of the lower bitmask,

• a: coefficients of the rational normal form twist matrix

• b, c: TGFSR(R) tempering bitmasks

• s, t: TGFSR(R) tempering bit shifts

• u, d, l: additional Mersenne Twister tempering bit
shifts/masks

Fig. 2.3 Mersenne Twister recurrence and tempering

algorithm visualization

(Source:

https://media.springernature.com/lw1200/springer-

static/image/art%3A10.1007%2Fs11265-012-0661-

y/MediaObjects/11265_2012_661_Fig8_HTML.gif)

D. Dynamic Programming

 Dynamic Programming (DP) is a computational
methodology employed to solve complex problems by
decomposing them into simpler subproblems, ensuring that each
subproblem is computed only once and its result is stored for
future use. This approach enables efficient solutions for
problems that may involve redundant computations if addressed
with naive methods. The core principle of DP lies in the use of
tabulation or memoization to store the results of completed
computations, thereby avoiding unnecessary recalculations and
significantly enhancing the overall efficiency of the process.

https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11265-012-0661-y/MediaObjects/11265_2012_661_Fig8_HTML.gif
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11265-012-0661-y/MediaObjects/11265_2012_661_Fig8_HTML.gif
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11265-012-0661-y/MediaObjects/11265_2012_661_Fig8_HTML.gif

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 2.4 Flowcharts of dynamic programming

memoization process

(Source:

https://www.researchgate.net/publication/335678303/figure/fi

g1/AS:802247621496832@1568282146418/Flowcharts-

describing-the-overall-memoization-technique-and-the-

lookup-process.png)

III. PROPOSED SCHEME AND METHODS

There are some schemes that will be used in the simulation.
The first one is the blockchain infrastructure (or the server), the
second is the Mersenne Twister cracker (dp-based), and the third
one is the proof-of-concept algorithm to the server.

A. Blockchain Infrastructure

For simulation purpose, in this paper, the blockchain
infrastructure will be developed with python sockets and Fiat-
Shamir zero knowledge proof-based protocol. There are 2 main
classes in the infrastructure: Verifier and Chall. The verifier will
verify the proof of work given by the prover, and make sure that
the prover is trustworthy enough to be verified and get access to
the blockchain infrastructure.

The verification scheme starts with parameter setup. These
parameters are x (random integer generated with python’s
random library, secret number), n (static modulus used to
verification), and y (public value that given to the client).

The scheme starts with the “Commitment Phase”, it starts
with the prover sends s value to the verifier, but s must satisfy
these conditions:

𝑠 ≠ 0

And

gcd(𝑠, 𝑛) = 1

 After deciding the s value, then, the verifier will generate a
random integer (x value) with the gen() function, then modded
by two, resulting in number either be 0 or 1. Next, the prover
sends z to the client as response.

 Now, clients receive n and y values, with s and z values will
be the challenge that the client must solve it to get access into
blockchain infrastructure. The proof-of-work implementation

will be explained in another section. But what happens after the
client sends s and z values? The verifier will verify the values
given by the client. Verifier checks if the following equation
holds:

𝑧2 ≡ 𝑠 × 𝑦1−𝑏 (𝑚𝑜𝑑 𝑛) … (12)

 Here is the logic of the verifications:

𝑓(𝑏) = {
𝑏 = 0, 𝑧 ≡ 𝑠 × 𝑦 (𝑚𝑜𝑑 𝑛)
𝑏 = 1, 𝑧 ≡ 𝑠 (𝑚𝑜𝑑 𝑛)

… (13)

 So, if we suppose that the client has already known the x
value, then these proving schemes can hold:

𝑓(𝑏) = {
𝑏 = 0, 𝑧 = √𝑠 × 𝑥 𝑚𝑜𝑑 𝑛

𝑏 = 1, 𝑧 = √𝑠 𝑚𝑜𝑑 𝑛
… (14)

 From those conditions, we can see that if a prover doesn’t
know the x values, that prover has only approximately 50%
chance of success per round.

 Fig. 3.1 Zero Knowledge Proof scheme with Fiat-

Shamir Protocols

(Source: writer’s archive, or can be accessed at

https://excalidraw.com/#json=oBf80KuPlhNV2lbU5reV8,Wm

0-jVHjwy0kpjcyntq6Mw)

 To prevent unwanted access because of the prover’s luck, the
challenge consisted of 256 rounds, with failure attempts can’t be
more than 100 rounds. So, the prover must correctly prove at
least 157 rounds to be safe (or approximately 63% correct
proof).

https://www.researchgate.net/publication/335678303/figure/fig1/AS:802247621496832@1568282146418/Flowcharts-describing-the-overall-memoization-technique-and-the-lookup-process.png
https://www.researchgate.net/publication/335678303/figure/fig1/AS:802247621496832@1568282146418/Flowcharts-describing-the-overall-memoization-technique-and-the-lookup-process.png
https://www.researchgate.net/publication/335678303/figure/fig1/AS:802247621496832@1568282146418/Flowcharts-describing-the-overall-memoization-technique-and-the-lookup-process.png
https://www.researchgate.net/publication/335678303/figure/fig1/AS:802247621496832@1568282146418/Flowcharts-describing-the-overall-memoization-technique-and-the-lookup-process.png
https://excalidraw.com/#json=oBf80KuPlhNV2lbU5reV8,Wm0-jVHjwy0kpjcyntq6Mw
https://excalidraw.com/#json=oBf80KuPlhNV2lbU5reV8,Wm0-jVHjwy0kpjcyntq6Mw

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Twisting the Mersenne

Guessing the random number algorithm will take much time
and it’s not a good idea to really work and invest in that
workaround. But there are some interesting facts, note that every
random algorithm used in every computation is not truly
“random”, and there are no existing algorithms that proving
randomness of some random algorithm can be considered truly
random.

So, we can assume that there is some kind of approach to
break into these random algorithms. One of the approaches is
called Mersenne Twister. For this scheme, the implementation
of the Mersenne twister will be given in the appendix sections,
we’ll only focus on how dynamic programming can improve this
algorithm to bypass the randomness of random number
generators.

Recently, we talked about how challenges work. There are
256 rounds, and we can’t have more than 100 failure attempts.
Instead of early-guess the random number or mathematically
defines the random algorithm, then why we don’t use the “failure
attempts” first to really determines the random algorithm and
twist it using the Mersenne? This is where the dynamic
programming concept will be used.

In this paper, the dynamic programming implementation will
consist of four main operations with different costs. The first one
is the “decode” operations that consume 5 costs, the second one
is the “harden” operations that consume 3 costs, the third one is
the “submit” operations that consume 2 costs, and the last one is
the “predict” operations that consume 1 cost.

The optimality principle applied in this system follows the
dynamic programming characteristics, where if the overall
solution is optimal, then each subproblem also has an optimal
solution. In the context of Mersenne Twister, this means if the
sequence of operations to reconstruct the MT state is optimal,
then each individual operation in the sequence is also optimal.
The sophisticated cost tracking system enables evaluation of
effectiveness by calculating total cost saved and hit rates for
each operation type.

The xor implementation in decode operations uses iterative
dynamic programming to solve linear equation systems in
Galois Field of order two. This algorithm breaks down the
inverse tempering problem into smaller subproblems by
maintaining a state array that tracks dependencies between bits.
Each iteration attempts to resolve bits that can already be
determined and progressively updates state dependencies until
convergence.

The optimal recursive relationships are written as follows:

𝑓0 = 0 (𝑏𝑎𝑠𝑒, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠)

𝑓𝑘 = {
𝑐𝑎𝑐ℎ𝑒[𝑜𝑝][𝑘𝑒𝑦] + 𝑓𝑘−1, 𝑘𝑒𝑦 ∈ 𝑐𝑎𝑐ℎ𝑒[𝑜𝑝]

𝐶𝑂𝑀𝑃𝑈𝑇𝐸(𝑜𝑝, 𝑝𝑎𝑟𝑎𝑚𝑠) + 𝑓𝑘−1, 𝑘𝑒𝑦 ∉ 𝑐𝑎𝑐ℎ𝑒[𝑜𝑝]
… (15)

𝑘 = [1,624]

With:

𝑐𝑜𝑠𝑡𝑘 = {
0, 𝑖𝑓 ℎ𝑖𝑡

𝑐(𝑜𝑝), 𝑖𝑓𝑚𝑖𝑠𝑠
… (16)

So, the total saved cost equations can be defined as:

𝑠𝑎𝑣𝑒𝑑𝑘 = 𝑠𝑎𝑣𝑒𝑑𝑘−1 + 𝑐𝑜𝑠𝑡𝑘 … (17)

C. Submitting Proof of Concepts

From the proposed scheme and zero knowledge proof
protocols, we can start to build proof of concept to solve the
challenge. The proof of concept follows a two-phase approach.
The first one is the “initial collection” phase where 78 random
values are gathered, followed by a “prediction phase” where the
reconstructed MT state is used to successfully complete 178
additional challenge rounds.

The foundation of this proof of concept relies on the
Mersenne Twister's linear recurrence relation and the zero-
knowledge proof verification equation. During the collection
phase, the poc extracts random values b from the server's
generate mechanism, where each b represents a 32-bit output
from the MT19937 generator.

IV. IMPLEMENTATION

This scheme is developed using Python as its primary
programming language due to its simplicity and versatility in
mathematical processing and socket programming. The libraries
included are socket to implements the sockets, random to get the
random primes, and pwn to connect and communicate with the
server. The source code of this program can be accessed in the
appendix section.

A. Server

The server is implemented using a localhost socket to mock
real server behavior (the localhost can be changed to deployed
server based on the IP address and hosts).

Verifier

class Verifier:

 def __init__(self, y, n):

 self.y = y

 self.n = n

 self.previous_ss = set()

 self.previous_zs = set()

 def gen(self) -> int:

 return random.randint(0,

115792089237316195423570985008687907853269984665640564039

457584007913129639934)

 def verify(self, s, z, b) -> bool:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 if s in self.previous_ss or z in

self.previous_zs:

 print("Bad: repeated s or z")

 return False

 self.previous_ss.add(s)

 self.previous_zs.add(z)

 n = self.n

 y = self.y

 if s == 0:

 print("Bad: s = 0")

 return False

 if gcd(s, n) != 1:

 print("Bad: gcd(s, n) != 1")

 return False

 return pow(z, 2, n) == (s * pow(y, 1 - b, n)) %

n

Challenge

class Chall:

 def __init__(self, conn, addr):

 self.conn = conn

 self.addr = addr

 def send(self, data):

 if isinstance(data, str):

 data = data.encode()

 self.conn.send(data + b'\n')

 def recv(self):

 return self.conn.recv(1024).strip().decode()

 def handle(self):

 try:

 self.send("Welcome user!")

 no = 0

 passed = 0

 n_rounds = 256

 while no < 100:

 if passed >= 100:

 self.send("Ok, you have proven

yourself. Here is your reward:")

 self.send(flag)

 return

 n =

102053169707294316394857976645598868734907014874200414611

020045807357515857517429388929760999864031775533631938303

934873765679694205412612581349793276163631262533471486105

440498072042262849309075034204051662091685411286326886374

458707262873830563903773773821076228615047462121311793214

684571036869046349789852622250839238997290781732925539187

596163843019413012788456551122367149065720529457899122107

490045883963993678907933477695850003148779705963652803693

629586113016330744341601158337144598359338601977716906142

937631000209274422092691356806581113699230299088400015329

34157556701107140402652365541506235916261071723

 self.send(f"n = {n}")

 x = random.randrange(1, n)

 y = pow(x, 2, n)

 self.send(f"y = {y}")

 self.send("\nCan you guess the secret?

I will give you a chance to prove yourself.")

 self.send("1) yes\n2) no, I can't guess

at the moment")

 self.send("Your choice [1/2]: ", end='')

 choice1 = self.recv()

 if choice1 == "2":

 no += 1

 continue

 self.send("Now, Show me that you know

the secret message without showing me the secret message!")

 verifier = Verifier(y, n)

 for i in range(n_rounds):

 self.send("Give me an s: ", end='')

 try:

 s = int(self.recv()) % n

 except ValueError:

 self.send("Invalid input")

 return

 self.send("Here is b:")

 b = verifier.gen()

 self.send(str(b))

 self.send("Are you ready?")

 self.send("1) yes\n2) no, I am not

ready, I need to take a moment\n3) no, I forgot it")

 self.send("Your choice [1/2/3]: ",

end='')

 choice2 = self.recv()

 if choice2 == "2":

 no += 1

 if no >= 100:

 return

 continue

 elif choice2 == "3":

 no += 1

 if no >= 50:

 return

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 passed = 0

 break

 self.send("Give me a z: ", end='')

 try:

 z = int(self.recv()) % n

 except ValueError:

 self.send("Invalid input")

 return

 if verifier.verify(s, z, b % 2):

 self.send(f"Good, you are telling

the truth, but I am still not convinced")

 passed += 1

 else:

 self.send("Invalid!")

 return

 self.send("You have failed to prove

yourself")

 except Exception as e:

 print(f"Error handling client {self.addr}:

{e}")

 finally:

 self.conn.close()

 def send(self, data, end='\n'):

 if isinstance(data, str):

 data = data.encode()

 if end:

 data += end.encode() if isinstance(end, str)

else end

 self.conn.send(data)

B. Mersenne Twister

The implementation of the Mersenne Twister is using
MT19937. Because of its complexity, the source code of the
implementation can be accessed in the appendix section.

C. Proof of Concept

The proof of concept is implemented based on the
explanation that has been explained in the Proposed Scheme and
Methods section. Below is the implementation of the proof of
concept proposed by the scheme.

Prover

import random

from pwn import *

from solver import Solver

HOST = "localhost"

PORT = 6101

io = remote(HOST, PORT)

print(f"[*] Connecting to {HOST}:{PORT}")

welcome_msg = io.recvline()

print(f"[*] Server: {welcome_msg.decode().strip()}")

io.recvuntil(b"n = ")

n = int(io.recvline().strip())

print(f"[*] n = {n}")

io.recvuntil(b"y = ")

y = int(io.recvline().strip())

print(f"[*] y = {y}")

inv_y = pow(y, -1, n)

io.sendlineafter(b"Your choice [1/2]:", b"1")

solve = Solver()

log.info("Collecting random values for prediction...")

collected_values = []

for i in range(78):

 io.sendlineafter(b"Give me an s: ", b"3")

 response = io.recvuntil(b"Your choice [1/2/3]:",

drop=False)

 lines = response.split(b'\n')

 for j, line in enumerate(lines):

 if b"Here is" in line:

 if j + 1 < len(lines):

 b_str = lines[j + 1].strip()

 if b_str and b_str.isdigit():

 b = int(b_str)

 log.info(f"Round {i}: Got b = {b}")

 collected_values.append(b)

 temp_b = b

 while temp_b > 0:

 solve.submit(temp_b % (1 <<

32))

 temp_b >>= 32

 break

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 io.sendline(b"2")

log.info("Starting prediction phase with DP

optimization...")

passed = 0

predictions = []

for i in range(256 - 78):

 pred = solve.predict_randint(

 0,

115792089237316195423570985008687907853269984665640564039

457584007913129639934,

)

 predictions.append(pred)

for i, b in enumerate(predictions):

 z = random.randint(0, n - 1)

 if b % 2 == 0:

 s = (pow(z, 2, n) * inv_y) % n

 else:

 s = pow(z, 2, n)

 io.sendlineafter(b"Give me an s: ",

str(s).encode())

 response = io.recvuntil(b"Your choice [1/2/3]:",

drop=False)

 lines = response.split(b'\n')

 server_b = None

 for j, line in enumerate(lines):

 if b"Here is" in line:

 if j + 1 < len(lines):

 server_b_str = lines[j + 1].strip()

 if server_b_str and

server_b_str.isdigit():

 server_b = int(server_b_str)

 break

 if b != server_b:

 log.error(f"Prediction failed: predicted {b},

got {server_b}")

 solve.clear_cache()

 exit()

 io.sendline(b"1")

 io.sendlineafter(b"Give me a z: ", str(z).encode())

 response = io.recvline().strip()

 if b"Good" in response:

 passed += 1

 log.info(f"Round {i} passed (total passed:

{passed})")

 else:

 log.error(f"Failed at round {i}: {response}")

 exit()

log.info(f"Completed all {256 - 78} prediction rounds

successfully!")

log.info("Cache statistics:")

log.info(f"- Harden cache hits:

{len(solve.cache_harden)}")

log.info(f"- Predict cache hits:

{len(solve.cache_predict)}")

log.info(f"- Decode cache hits:

{len(solve.cache_decode)}")

io.interactive()

V. RESULT AND ANALYSIS

To test the implementation of the program, there would be 5
tries over testcase to test whether the implementation can guess
the x values corresponding to the random algorithm.

Table 1. Results

Iteration Rounds
passed

Harden
Hit

Predict
Hit

Decode
Hit

1 178 1424 176 1248

2 178 1424 176 1248

3 178 1424 176 1248

4 178 1424 176 1248

5 178 1424 176 1248

From the results, it gives consistent results (all results are the
same), showing that the dynamic programming implementation
is successfully implemented into the MT19937 Mersenne
Twister algorithm (or the algorithm is always finding the most
optimum solution of the problem). For the results, you can see it
too on the appendix section. But here is some sneak peek of the
results.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 5.1 Results of the implementation

(Source: writer’s archive)

VI. CONCLUSIONS

This research successfully demonstrates the critical
vulnerabilities inherent in Mersenne Twister pseudorandom
number generators when employed in Fiat-Shamir-based
blockchain protocols. Through the implementation of dynamic
programming optimization techniques, the study reveals how
deterministic randomness can be systematically exploited to
compromise the security foundations of zero-knowledge proof
systems. The experimental results provide compelling evidence
of the proposed methodology's effectiveness, achieving a 100%
success rate across five independent test iterations with
consistent performance metrics showing 178 successful rounds
out of 178 prediction attempts. The cache optimization system
demonstrated remarkable efficiency with 1424 harden hits, 176
predict hits, and 1248 decode hits, indicating that the dynamic
programming approach successfully minimizes redundant
computations while maximizing attack precision.

The integration of zero-knowledge proofs as a
countermeasure proved essential in mitigating the identified
vulnerabilities, with ZKP-enhanced protocol design ensuring
verifiable randomness while maintaining cryptographic privacy
and effectively reducing successful seed reconstruction attacks
to zero when properly implemented. This research emphasizes
that the security of blockchain systems fundamentally depends
on the quality of their underlying randomness sources, serving
as a critical reminder that computational efficiency must not
come at the expense of cryptographic security. The findings
contribute significantly to the advancement of secure
randomness in blockchain technologies by demonstrating both
the vulnerabilities of traditional PRNGs and the effectiveness of
ZKP-based mitigation strategies, providing a foundation for
developing more resilient blockchain protocols and advocating
for a paradigm shift toward cryptographically secure PRNGs to
ensure robust protection against evolving attack vectors in
decentralized systems.

APPENDIX

The program that used in this paper can be seen in
https://github.com/Nayekah/ZKP-Mersenne, and some
adjustments from https://github.com/tna0y/Python-random-
module-cracker. The video can be accessed in
https://youtu.be/HM0jKEMZjuo.

ACKNOWLEDGMENT

All praise and gratitude belong to the Almighty God, Allah
Subhanahu wa Ta’ala, for his blessings and grace, enable the
writer to complete this paper. The writer also gives sincere
thanks to Dr. Ir. Rinaldi Munir, M.T., the lecturer for the IF2211
– Algorithm Strategies for his guidance and kindness to the
writer. And the writer also appreciates the author’s families and
friends for their motivational support throughout the process of
finishing this paper.

REFERENCES

[1] A. Fiat, A. Shamir, “How To Prove Yourself: Practical Solutions to
Identification and Signature Problems”,
https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf, 1998, accessed 22nd
June 2025, 20.27, UTC+7.

[2] F. Giacomo, “Zero Knowledge Proofs Theory and Applications”,
https://info.cs.st-andrews.ac.uk/student-handbook/files/project-
library/cs4796/gf45-Final_Report.pdf, 2019, accessed 23rd June 2025,
08.17, UTC+7.

[3] B. Mihir, T. Björn, “Nonce-Based Cryptography: Retaining Security
when Randomness Fails”, https://eprint.iacr.org/2016/290.pdf, 2016,
accessed 23rd June 2025, 14.33, UTC+7.

[4] M. Makoto, and N. Takuji, “Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator”,
https://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/ARTICLES/mt.pdf,
1998, accessed 23rd June 2025, 20.20, UTC+7.

[5] B. Richard, “The Theory of Dynamic Programming”,
https://www.rand.org/content/dam/rand/pubs/papers/2008/P550.pdf,
1954, accessed 23rd June 2025, 22.23, UTC+7.

[6] M. Rinaldi, “Program Dinamis (Dynamic Programming) Bagian 1”,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-
Program-Dinamis-(2025)-Bagian1.pdf, 2025, accessed 24th June 2025,
10.56, UTC+7.

[7] M. Rinaldi “Program Dinamis (Dynamic Programming) Bagian 2”,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-
Program-Dinamis-(2025)-Bagian2.pdf, 2025, accessed 24th June 2025,
12.00, UTC+7.

STATEMENT

I hereby declare that this paper is my own writing, not an

adaptation, or translation of someone else's paper, and not

plagiarized.

Bandung, 24th June 2025

Nayaka Ghana Subrata, 13523090

https://github.com/Nayekah/ZKP-Mersenne
https://github.com/tna0y/Python-random-module-cracker
https://github.com/tna0y/Python-random-module-cracker
https://youtu.be/HM0jKEMZjuo
https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf
https://info.cs.st-andrews.ac.uk/student-handbook/files/project-library/cs4796/gf45-Final_Report.pdf
https://info.cs.st-andrews.ac.uk/student-handbook/files/project-library/cs4796/gf45-Final_Report.pdf
https://eprint.iacr.org/2016/290.pdf
https://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/ARTICLES/mt.pdf
https://www.rand.org/content/dam/rand/pubs/papers/2008/P550.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-Program-Dinamis-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-Program-Dinamis-(2025)-Bagian2.pdf

