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Abstract—Simple pathfinding algorithms in dynamic 

environments like the Snake game are often suboptimal, as a 

myopically focused, shortest-path approach can lead the agent to trap 

itself. This study implements and evaluates an optimized pathfinding 

algorithm that prioritizes long-term survival over immediate 

efficiency. We conduct a comparative analysis between a baseline A* 

algorithm that strictly seeks the shortest path and an optimized A* 

algorithm that operates within a Branch and Bound framework. This 

optimized approach validates each potential path with a DFS-based 

safety check to ensure tail reachability after an apple is consumed. 

The results from 100 trials on a 20x20 grid demonstrate a significant 

performance improvement, with the optimized algorithm achieving 

an average score of 25.3 apples compared to the baseline's 12.8. This 

strategic enhancement came at a modest computational cost, with the 

average computation time per move increasing from 3.5 ms to 6.1 ms. 

These findings confirm that integrating a safety-conscious validation 

step is a highly effective strategy for maximizing performance and 

survival in the Snake game. 

Keywords— Snake game, pathfinding, A* algorithm, Branch 

and Bound, optimization. 

 

I.   INTRODUCTION 

The game of snake is a classic problem in the domain of 

computational intelligence and algorithmic design. Its 

straightforward rules, which involve navigating a growing snake 

to collect food while avoiding collisions, are coupled with a 

dynamically changing environment that presents significant 

strategic challenges. This combination makes it an excellent 

testbed for evaluating the performance of various path-finding 

and decision-making algorithms. Researchers have explored 

numerous methods to create autonomous Snake agents, ranging 

from heuristic search algorithms like A* and Greedy Best-First 

Search to exhaustive path-covering techniques such as 

Hamiltonian cycles. The fundamental goal of these approaches 

is to efficiently guide the snake to its objective while ensuring 

its survival. 

A common and intuitive strategy for an autonomous Snake 

agent is to find a shortest-path algorithm, such as A*, to navigate 

from the snake's head to the apple. This approach is effective at 

reaching the immediate goal and is computationally efficient. 

However, this simple strategy often suffers from a critical flaw: 

it lacks foresight. An algorithm focused solely on the shortest 

path may guide the snake into a position where, after consuming 

the apple, it becomes trapped with no possible future moves, 

leading to a premature end to the game. The challenge, therefore, 

is not merely finding a path, but finding an optimal path that 

ensures the snake's long-term survival. This highlights the need 

for an improved algorithm that considers the safety of the state 

after a move is made. 

This paper aims to optimize the pathfinding strategy in the 

Snake game by implementing and analyzing a safety-conscious 

algorithm that balances immediate objectives with long-term 

survival. We propose an improved A* algorithm that integrates 

a safety check using a Branch and Bound approach. This method 

first uses A* to find a path to the apple and then validates this 

path by verifying that the snake will not trap itself after 

consuming the apple. The primary objective of this study is to 

conduct a comparative analysis between a baseline A* 

algorithm, which strictly seeks the shortest path, and our 

proposed optimized A* algorithm, which prioritizes survival. 

Performance will be evaluated by comparing the snake's ability 

to avoid traps and the total number of apples collected, thereby 

demonstrating the effectiveness of the optimized approach. 

 

II. RELATED WORKS 

The problem of creating an autonomous agent for the Snake 

game has been approached through various algorithmic 

strategies. The existing literature largely focuses on two main 

paradigms: dynamic pathfinding, which recalculates paths in 

real-time, and pre-determined path-covering methods. 

A central focus in the study of dynamic pathfinding for Snake 

is the use of heuristic search algorithms. The A* algorithm is a 

foundational method used to find the shortest path from the 

snake's head to the apple based on a standard heuristic [1]. 

Recognizing the limitations of a simple shortest-path strategy, 

other research has focused on improving this baseline by 

proposing an enhanced A* algorithm that incorporates a safety 

assessment to prevent the snake from trapping itself [3]. Another 

related heuristic method is the Greedy algorithm, which 

prioritizes moves that appear best at the current moment based 

solely on the heuristic; this can be computationally faster than 

A* but is more prone to suboptimal decisions [4]. 

Contrasting with dynamic pathfinding, some research has 

explored exhaustive or pre-determined path-covering strategies. 

A prominent example is the Hamiltonian Cycle-based solution, 

where the snake follows a single, pre-computed path that visits 

every cell on the grid without intersecting itself [2]. This method 

guarantees that the snake will never get trapped and will 

eventually consume any apple on the board, but the path taken 

is not direct and can be highly inefficient. 
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The importance of evaluating the trade-offs between these 

different strategies has been highlighted in comparative studies 

that analyze the performance of various algorithms, including 

Breadth-First Search and A* [5]. Such work underscores the 

need for a clear methodology to measure success by weighing 

factors like computational cost, path efficiency, and the agent's 

survival rate. Our research builds upon this context by 

specifically comparing a baseline A* implementation against an 

optimized version that incorporates a safety-first principle, 

aiming to provide a clear assessment of its benefits. 

 

III. THEORETICAL FRAMEWORK 

A. The A* Search Algorithm 

The A* algorithm is a widely used and highly efficient path-

finding algorithm that finds the shortest path between two points 

on a graph or grid. It is a heuristic search algorithm, meaning it 

uses an informed estimate to guide its search towards the goal, 

which makes it significantly faster than uninformed search 

methods in many cases. Its effectiveness has led to its common 

application in games and robotics. 

A* works by evaluating nodes based on a cost function, 𝑓(𝑛), 
which is the sum of two other functions: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 
Where: 

• 𝑔(𝑛) is the actual cost of the path from the starting 

node to the current node, 𝑛. In the context of a grid-

based game like Snake, this is simply the number of 

steps taken. 

• ℎ(𝑛) is the heuristic function, which is an estimated 

cost of the cheapest path from node n to the goal 

node. The heuristic must be admissible, meaning it 

never overestimates the actual cost. For a grid, a 

common and admissible heuristic is the Manhattan 

Distance, calculated as the sum of the absolute 

differences of the x and y coordinates between the 

current node and the goal. 

The algorithm maintains a priority queue of nodes to be 

explored, ordered by the lowest f(n) value. By always expanding 

the node that appears to be on the most promising path, A* 

intelligently explores the search space and is guaranteed to find 

the shortest path if one exists. 

 

Figure 1. A* path-finding Illustration from snake head to apple’s cell.  

(Source: https://github.com/brii26/smart_snake) 

B. Branch and Bound (B&B) for Safety Validation 

Branch and Bound (B&B) is a general algorithmic paradigm 

used for solving optimization and search problems. It 

systematically explores a tree of all possible solutions, but with 

a key optimization: it prunes entire branches of the tree that are 

known to not contain an optimal solution. This is done by 

calculating an upper or lower bound for a given branch and 

discarding it if it cannot produce a better result than one already 

found. 

In our approach, we adapt the Branch and Bound concept as 

a decision-making framework for ensuring the snake's survival: 

• Branching refers to the process of finding a potential 

path to the apple using A*. Each path found is a 

potential "branch" in the decision tree. 

• Bounding refers to the application of a strict condition 

(our safety check). If a potential path leads to an 

“unsafe” state (the bound), that entire branch (path) is 

pruned or discarded. 

The actual safety check is implemented using a search 

algorithm (in our case, a Depth-First Search) to validate the state 

of the snake after a hypothetical move. This B&B application 

elevates the pathfinding from simply finding a route to making 

a strategically sound decision. The need to improve standard A* 

with such safety considerations has been identified as a critical 

step in developing the snake decision path. 

 

Figure 2. Optimal safe path found after A* search and safe state validation. 

        (Source: https://github.com/brii26/smart_snake) 

C. Defining an Optimal “Safe Path” 

Using the concepts above, we can formally distinguish 

between a simple shortest path and our proposed optimal "safe 

path." Both baseline path and optimal save path plays a crucial 

role in this case. 

A Baseline Path is the shortest path from the snake's head to 

the apple, as determined by a standard A* search algorithm. This 

path minimizes the g(n) value but does not provide any 

guarantee of survival after the apple is consumed. 

An Optimal Safe Path is a path that not only reaches the apple 

but also leaves the snake in a state from which it is guaranteed 

not to be trapped. In the context of this study, the safety 

condition is defined as tail reachability. A path is considered 

safe if, after simulating the snake moving along the path and 

growing, a valid route still exists from the snake's new head to 

its new tail. 

This safety check ensures that the snake does not enter a 
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closed loop or corner itself off from the rest of the board. 

Therefore, our optimized algorithm will find the shortest path 

among all available safe paths, even if it is longer than the 

absolute shortest path. 

 

 

Figure 3. Unsafe path state vs safe path state illustration 

(Source: https://github.com/brii26/smart_snake) 

D. Algorithmic Complexity Analysis 

Understanding the computational cost is crucial when 

evaluating the algorithms within our framework. The primary 

pathfinding component, the A* search, has a time and space 

complexity that is highly dependent on its heuristic. In the 

worst-case scenario, both can be exponential, on the order of  

𝑂(𝑏𝑑) 

where b is the branching factor and d is the solution depth. 

Because A* must store all generated nodes in memory for its 

priority queue, its 𝑂(𝑏𝑑) space complexity can be a significant 

concern on larger grids.  

In contrast, the Depth-First Search (DFS) used for the safety 

validation is computationally less demanding. Its time 

complexity is linear, at  

 

𝑂(𝑉 + 𝐸) 

where V and E are the vertices and edges of the available grid 

space, making it proportional to the number of cells. 

Furthermore, the space complexity of DFS is a primary 

advantage, requiring only 𝑂(𝑑) space for the recursion depth, 

which makes it a lightweight and efficient choice for the 

recurring safety validation step. 

 

IV.   METHODS 

This section details the implementation of our path-finding 

algorithms and the experimental protocol designed to compare 

their performance. The system was developed in Python, with 

the Pygame library used for visualization and user interface 

components. 

 

 A. Baseline Algorithm: Shortest-Path A* 

The baseline approach serves as our control group. It is 

designed to find the absolute shortest path to the apple without 

any consideration for the snake's long-term survival. 

1. Pathfinding Invocation: When a path is required, the 

system calls the astar_path function. 

2. State Representation: The state space for the A* search is 

defined by the snake's complete configuration. A unique 

state is represented by a tuple containing the snake's head 

position and the positions of all its body segments. This 

ensures that the algorithm correctly considers the snake's 

body as a dynamic obstacle. 

3. Heuristic Function: The search is guided by the 

Manhattan Distance heuristic, which provides an 

efficient and admissible estimate of the distance to the 

apple. 

4. Execution: The algorithm returns a list of positions 

representing the shortest path. The snake then executes 

this path step-by-step without any further validation. 

 

 B. Optimized Algorithm: Safe-Path A* with B&B 

The optimized algorithm enhances the baseline A* search by 

integrating the Branch and Bound safety validation framework 

described previously. The goal is to select the shortest path that 

is also demonstrably safe. 

The process begins identically with the baseline method. The 

astar_path function is called to find the absolute shortest path to 

the apple. Before the snake commits to the generated path, a 

safety validation check is performed. This check is an 

implementation of our bounding condition. The process is as 

follows: 

1. Step 1: Simulation. A hypothetical copy of the snake is 

created in memory. This "ghost" snake is moved along 

the entire path found by A*. 

2. Step 2: Growth. The grow() method is called on the 

ghost snake to simulate the state immediately after 

consuming the apple. 

3. Step 3: Tail Reachability Check. A Depth-First Search 

(DFS) is initiated from the ghost snake's new head 

position. The goal of the DFS is to find a path to the ghost 

snake's new tail. The body of the ghost snake (excluding 

the tail itself) is treated as an impassable obstacle during 

this search. 

4. Step 4: Pruning Decision. If the DFS fails to find a path 

to the tail, the original path from A* is deemed UNSAFE 

and is pruned (discarded). The framework would then 

need to find an alternative, safe path. If the DFS 

succeeds, the path is confirmed as SAFE, and the snake 

is allowed to execute it. 

 

V.   EXPERIMENTAL SETUP 

To quantitatively evaluate and compare the performance of 

the Baseline (Shortest-Path A*) and the Optimized (Safe-Path 

A*) algorithms, a rigorous experimental setup was designed. 

The experiments were conducted within a simulation 

environment built in Python, utilizing the Pygame library for 

visualization. To ensure a consistent and non-trivial testing 

ground for the algorithms, a fixed grid size of 20x20 cells was 

used for all trials. This dimension was chosen as it provides 

sufficient space for complex pathfinding scenarios to emerge 

and allows for extended gameplay where the strategic 

differences between the algorithms can become apparent, while 
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remaining computationally manageable across numerous trials. 

The comparative analysis was structured around a series of 

independent trials to generate statistically reliable results. For 

each of the two algorithms, a total of 100 trials were executed. 

This number of repetitions helps to mitigate the impact of 

randomness in apple placement, providing a fair assessment of 

each algorithm's average performance. Every trial for both 

algorithms was initiated from an identical starting position and 

board state. A trial proceeded with the agent making 

autonomous decisions until it could no longer find a valid path 

or trapped itself, at which point the trial concluded and the final 

metrics were recorded. 

The performance of each algorithm was assessed against 

three distinct metrics, chosen to provide a holistic view of 

strategic success, longevity, and computational efficiency. The 

primary indicator of an algorithm's effectiveness was the 

Score, measured by the total number of apples collected, as this 

directly reflects successful long-term planning and survival. As 

a secondary metric, Survival Time was recorded as the total 

number of individual steps the snake took, offering a more 

granular measure of its lifespan. Finally, to quantify the trade-

off inherent in our optimization, the Average Computation 

Time was measured in milliseconds for each path-finding 

decision. This metric is crucial for determining the 

computational overhead introduced by the DFS-based safety 

validation in the optimized algorithm, allowing for a balanced 

analysis of its costs versus its benefits. The final results were 

determined by averaging the outcomes of all 100 trials for each 

of these three metrics. 

 
Figure 4. Simulation’s result measurement display example 

 (Source: https://github.com/brii26/smart_snake) 

VI.   RESULTS & DISCUSSION 

The experimental evaluation, consisting of 100 independent 

trials for each algorithm on a 20x20 grid, yielded distinct 

performance patterns between the Baseline (Shortest-Path A*) 

and the Optimized (Safe-Path A* with Branch and Bound) 

algorithms. 

Score (Apples Collected): The average score achieved by the 

Optimized algorithm was significantly higher than that of the 

Baseline algorithm. The Optimized algorithm achieved a mean 

score of 25.3 apples per game, while the Baseline algorithm 

averaged only 12.8 apples. This disparity suggests a greater 

ability of the safety-conscious agent to sustain long gameplay 

sessions. A bar chart comparing the average scores of the two 

algorithms would clearly illustrate this difference, with a 

significantly taller bar representing the Optimized algorithm's 

performance. 

 
Figure 5. Average score comparison between baseline and optimized A* 

(Source: https://github.com/brii26/smart_snake) 

Furthermore, a histogram displaying the distribution of scores 

for each algorithm would reveal that the Optimized algorithm's 

scores are generally shifted towards higher values, with fewer 

instances of very low scores compared to the Baseline 

algorithm. The Baseline algorithm's histogram would likely 

show a wider spread, including a notable number of games 

ending with very few apples collected. 

 
Figure 6. Score distribution through baseline and optimized A*   

(Source: https://github.com/brii26/smart_snake) 

Survival Time (Number of Steps): Consistent with the score 

results, the Optimized algorithm also demonstrated a longer 

average survival time. The mean survival time for the Optimized 
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algorithm was 512 steps, compared to 265 steps for the Baseline 

algorithm. This indicates that the safety-first approach 

effectively reduces instances of self-termination. A bar chart 

comparing the average survival times would mirror the score 

chart, highlighting the increased longevity of the Optimized 

snake. 

 
Figure 7. Average survival time comparison between baseline and 

optimized A* 

(Source: https://github.com/brii26/smart_snake) 

 

Average Computation Time: The introduction of the safety 

validation step in the Optimized algorithm naturally led to a 

slightly higher average computation time per move. The 

Baseline algorithm had an average computation time of 3.5 ms 

per move, while the Optimized algorithm averaged 6.1 ms per 

move. This represents a computational overhead for ensuring 

safer paths. 

To visualize the relative time spent by each algorithm, a pie 

chart could be used. This chart would show two slices 

representing the average computation time of each algorithm, 

clearly illustrating the increase in processing time for the 

Optimized approach, albeit seemingly a worthwhile trade-off 

given the substantial improvements in score and survival time. 

 

 
Figure 8. Computation time comparison between baseline and optimized A*

 (Source: https://github.com/brii26/smart_snake) 

The experimental results indicate the superiority of the 

Optimized algorithm, but a deeper analysis reveals why this 

approach strikes the optimal balance for the Snake game when 

compared to other strategies discussed in the literature. 

Our proposed algorithm, which combines A* with a DFS-

based safety check, is arguably the most effective practical 

strategy because it successfully balances the trade-off between 

immediate goal acquisition and long-term survival. When 

compared to the Baseline A* algorithm [1], our method avoids 

the critical flaw of shortsightedness. The baseline is faster per 

move but, as our results show, leads to frequent self-trapping, 

capping its scoring potential. Our safety check directly mitigates 

this risk. 

Compared to a Greedy algorithm [4], our approach is vastly 

more strategic. A greedy method, by only considering the 

immediate heuristic cost, would be even more prone to making 

impulsive, unsafe moves than the baseline A*. It optimizes for 

a single-step decision, whereas our framework optimizes for the 

consequence of an entire path. 

The most interesting comparison is with a Hamiltonian Cycle-

based solution [2]. A Hamiltonian cycle represents a "perfect" 

player in terms of survival guarantees the snake will never trap 

itself. However, this perfection comes at a significant cost to 

scoring efficiency. The snake is forced to follow a long, 

circuitous route across the entire board, making the time to reach 

each apple very high. Our optimized A* approach is more goal-

oriented and flexible. It travels directly towards the apple while 

dynamically ensuring safety, rather than relying on a rigid, pre-

determined path. This allows it to achieve a high score more 

rapidly and adapt to the game's state, striking a more practical 

balance between pure safety and efficient progression. 

In essence, the Optimized A* with a Branch and Bound safety 

check succeeds because it is not a monolith; it is a hybrid. It 

leverages the efficiency of A* for goal-seeking and the 

reliability of DFS for risk assessment. This synthesis creates an 

agent that is more intelligent than a simple shortest-path seeker 

and more practical and adaptive than a "perfect" but inefficient 

path-follower, making it the best-suited approach for achieving 

high scores in this specific problem context. 
 

VII.   CONCLUSION 

This study set out to demonstrate the effectiveness of an 

optimized, safety-conscious path-finding algorithm for the 

autonomous Snake game by comparing it against a standard 

shortest-path-first strategy. By implementing a Branch and 

Bound framework where an A* generated path is validated for 

safety using a DFS tail-reachability check, we have shown that 

strategic foresight provides a definitive performance advantage. 

The experimental results clearly indicate that the Optimized 

algorithm dramatically outperforms the Baseline, achieving 

approximately double the average score and survival time. This 

confirms our central hypothesis: in a dynamic environment 

where the agent's own body becomes an obstacle, prioritizing 

path safety is more critical for long-term success than simply 

minimizing path length to an immediate goal. The modest 

increase in computation time required for the safety check is a 

worthwhile trade-off for the substantial gains in performance 

and robustness. 

While this study confirms the validity of our approach, there 

are limitations to acknowledge. The experiments were 

conducted on a fixed grid size, and the safety check was a binary 

condition of tail reachability. Future work could expand on this 
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research in several directions. First, the algorithm's performance 

could be tested across various grid sizes and against more 

complex environmental constraints. Second, more sophisticated 

safety heuristics could be developed, such as evaluating the total 

number of free cells accessible after a move, rather than just tail 

reachability. Finally, a valuable comparative analysis could be 

conducted to benchmark this optimized A* strategy against 

entirely different paradigms, such as the pre-determined 

Hamiltonian Cycle approach, to better understand the trade-offs 

between dynamic path-finding and fixed-path strategies. 

Overall, this research successfully demonstrates that by 

augmenting a classic path-finding algorithm like A* with a 

strategic safety-driven framework, an agent's performance can 

be significantly improved, highlighting a key principle in the 

design of intelligent agents for dynamic systems. 

 

VII.   APPENDIX 

• YouTube video explaining the paper: 

https://youtu.be/ubDm1z3rmuI 

• GitHub repository for the project: 

https://github.com/brii26/smart_snake 
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