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Abstract—The Water Sort Puzzle, a captivating logic game, 

presents a unique challenge with its increasing complexity as the 

number of bottles and colours grows. This paper introduces a 

novel approach to solving this problem by developing an 

automated solver using the A* search algorithm in C++. A 

custom heuristic function was crafted to guide the search 

efficiently, identifying “colour breaks” within bottles to estimate 

the remaining cost to a solved state. The solver’s effectiveness in 

finding solutions across various puzzle configurations, from 3 to 

14 bottles, consistently yielding optimal or near-optimal solution 

lengths, underscores the power of the A* algorithm in navigating 

vast state spaces to solve combinatorial problems like the Water 

Sort Puzzle. This research introduces a robust, C++-based solver 

for the Water Sort Puzzle, capable of automatically determining 

the optimal sequence of moves. By detailing the underlying data 

structures, algorithms, and the strategic design of the heuristic 

function, this paper provides a transparent and reproducible 

framework for solving similar combinatorial problems. The 

practical applicability of the A* algorithm in real-world puzzle-

solving scenarios is underscored by a thorough performance 

analysis, which evaluates metrics such as solution length, states 

checked, and computation time across diverse configurations. 

The insights gained from this work reinforce the importance of 

informed search strategies in artificial intelligence and offer a 

valuable open-source solution for the Water Sort Puzzle 

community. 

Keywords—A* Algorithm; Water Sort Puzzle; Search 

Algorithm; Heuristics; C++; Path Finding 

I.  INTRODUCTION 

Puzzle games, particularly those in the logic puzzle 
category, offer engaging challenges that test a player’s 
analytical and strategic thinking. Among these, the Water Sort 
Puzzle stands out with its unique feature of sorting coloured 
water into individual bottles, each ultimately containing a 
single colour. The game’s mechanics involve pouring water 
from one bottle to another, adhering to rules such as pouring 
only onto the same colour or into an empty bottle, and ensuring 
the destination bottle has sufficient space. While the initial 
levels may appear straightforward, the puzzle’s complexity 
rapidly escalates with increased bottles and colours, rendering 
manual solutions increasingly challenging and time-
consuming. This inherent difficulty underscores a significant 
problem: the need for an efficient automated solution to 
navigate the vast state space. Consequently, a core 

computational challenge lies in discovering an optimal or near-
optimal sequence of moves to solve the puzzle efficiently. 

The relevance of developing a solver for the Water Sort 
Puzzle extends beyond mere amusement, serving as a 
compelling case study for the application and analysis of search 
algorithms in artificial intelligence. This problem provides a 
tangible and visual domain to explore the efficacy of various 
search strategies, such as the A* algorithm implemented in the 
provided solver, which is fundamental to AI in games and 
general problem-solving exercises. More broadly, the 
principles employed in solving this puzzle, such as state 
representation, move generation, and heuristic evaluation, 
directly apply to similar combinatorial problems encountered 
in logistics, scheduling, and robotics, where finding optimal 
paths or sequences of actions is critical. Furthermore, this 
project offers significant educational value, clearly 
demonstrating how informed search algorithms can efficiently 
navigate complex state spaces and, importantly, illustrating the 
practical implications of algorithm efficiency in real-world (or 
puzzle-world) scenarios, thereby enhancing the understanding 
and application of AI in various fields. 

This paper’s primary objective is to present an efficient A* 
search algorithm implementation specifically designed for 
solving the Water Sort Puzzle. To achieve this, our work makes 
several key contributions. Firstly, we detail the development of 
a robust C++-based solver capable of automatically 
determining the sequence of moves required to solve arbitrary 
configurations of the puzzle. Secondly, a comprehensive 
explanation of the underlying data structures and algorithms 
employed, including the strategic use of a priority queue for 
managing the open list, a map for efficient state tracking in the 
closed list, and the design of a practical heuristic function to 
guide the search. Thirdly, we present a thorough analysis of the 
solver’s performance. We evaluate metrics such as the number 
of states checked and the total time consumed across various 
puzzle configurations to demonstrate its efficiency. Finally, this 
research unequivocally reflects the effectiveness of the A* 
algorithm in consistently finding solutions for the Water Sort 
Puzzle, highlighting its practical applicability in combinatorial 
problem-solving. 

The remainder of this paper is structured to guide the reader 
through the comprehensive details of our Water Sort Puzzle 
solver. Section II thoroughly reviews existing literature and 
related work, setting the context for our approach. Section III 
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then delves into the proposed methodology, outlining the 
problem formalization, state representation, move operations, 
and the specifics of the A* search algorithm and its heuristic 
function. Section IV presents the experimental setup, which 
was designed with thoroughness and attention to detail, 
discusses the collected results, and analyzes the performance 
and effectiveness of the solver across various puzzle 
configurations. This thoroughness instills confidence in the 
rigor and reliability of our research. Finally, Section V 
concludes the paper by summarizing our findings, reiterating 
the contributions, and outlining potential avenues for future 
research and improvements. 

II. LITERATURE REVIEW 

A. Search Algorithm 

Search algorithms are fundamental tools for solving state-
space problems by systematically exploring possible states and 
transitions to find optimal solutions. State-space search views a 
problem as a graph where nodes represent different 
configurations of the problem (states), and edges represent 
actions or transitions that move from one state to another. The 
process begins with an initial state and aims to reach a goal 
state by following a path determined by a chosen search 
strategy[1]. These algorithms are crucial for various AI tasks, 
including pathfinding, puzzle-solving, and game-playing. 

BFS explores all nodes at one depth level before moving to 
the next, making it ideal for unweighted graphs. At the same 
time, DFS delves as deeply as possible into a branch before 
backtracking, often using less memory but not always 
guaranteeing completeness or optimality. More advanced 
algorithms like Dijkstra’s (or Uniform Cost Search) first 
expand the least costly node to ensure the lowest-cost solution. 
A* search combines path cost with a heuristic to efficiently 
find complete and optimal solutions[2]. The effectiveness of 
these algorithms is influenced by factors such as expansiveness 
(number of new states a given state can generate), branching 
factor (average number of successors per state), depth of the 
solution, completeness (guaranteeing a solution if one exists), 
optimality (finding the best solution), and time/space 
complexity. 

TABLE I.  COMPARISON OF SOME SEARCH ALGORITHMS 

Algorithm BFS DFS Dijkstra’s A* 

Optimal ✓ ✗ ✓ ✓ 

Time 
Complexity 

O(V+E) O(V+E) O(E) O(V2) 

Memory 
Complexity 

O(V) O(V) O(bd) O(V) 

 

Search algorithms are broadly categorized into informed 
and uninformed approaches. Uninformed search, also known as 
blind search, systematically explores the entire search space 

without external knowledge or heuristic information about the 
goal[3]. Algorithms like Breadth-First Search (BFS) and Depth-
First Search (DFS) fall into this category. While they guarantee 
to find a solution if one exists, their exhaustive nature makes 
them highly inefficient for large or complex state spaces, 
leading to significant time and memory consumption[4]. In 
contrast, informed search, or heuristic search, leverages 
additional information (heuristics) to guide the search process 
more efficiently by estimating the cost or distance to the goal. 
This allows algorithms to prioritize promising paths, 
significantly narrowing the search space[3]. Algorithms such as 
A* search are prime examples of informed search, combining 
the actual cost to reach a node with an estimated cost to the 
goal. This unique combination makes A*search exceptionally 
efficient for complex puzzles and pathfinding in large 
environments, as it focuses computational resources on the 
most probable solution trajectories. While uninformed methods 
are more straightforward to implement, the ability of informed 
search to intelligently direct its exploration often makes it the 
preferred and more scalable choice for real-world AI 
applications[4]. 

TABLE II.  DIFFERENCE BETWEEN UNINFORMED AND INFORMED SEARCH 

Aspect Uninformed Search Informed Search 

Heuristic 
Use 

Does not use any 
heuristics or extra 
information. 

Relies on heuristics to 
prioritize promising 
paths. 

Time 
Complexity 

Can have high time 
complexity, especially 
in large spaces. 

Lower time 
complexity compared 
to uninformed search. 

Space 
Complexity 

Requires a large 
amount of memory for 
exploration. 

Requires less memory, 
depending on the 
heuristic. 

Example 
Algorithm 

BFS, DFS, Dijkstra’s 
A*, GBFS, Hill 
Climbing 

 

Search algorithms find significant application in classic 
puzzles like the 8-puzzle and Rubik’s Cube, serving as crucial 
benchmarks for evaluating AI techniques. The 8-puzzle, a 3x3 
grid tile-sliding game, is a combinatorial optimization problem 
where algorithms like Breadth-First Search (BFS) guarantee 
optimal solutions but are memory-intensive. At the same time, 
Depth-First Search (DFS) is more memory-efficient but lacks 
optimality guarantees. The A* search algorithm, a popular 
choice for the 8-puzzle, leverages heuristic information such as 
the Misplaced Tiles and Manhattan Distance heuristics to 
efficiently guide the search towards optimal solutions, with 
Manhattan distance proving more accurate[5]. The Rubik’s 
Cube, with its vastly more complex state space, necessitates 
advanced informed search algorithms like Iterative Deepening 
A* (IDA*), which, as seen in Korf’s, Kociemba’s, and 
Feather’s algorithms, utilize sophisticated heuristics like 
pattern databases to prune the search space. Bidirectional 
search, exemplified by the “meet-in-the-middle” approach, also 
aids in solving the Rubik’s Cube by searching from both ends. 
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Furthermore, there has been a notable shift from general-
purpose algorithms to specialized techniques in solving 
Rubik’s Cube[6]. These specialized techniques integrate deep, 
domain-specific knowledge for efficient and optimal solutions 
in increasingly complex AI challenges. 

B. Heuristic Search and A* Algorithm 

The A* algorithm, a foundational method in artificial 
intelligence for graph traversal and pathfinding problems, is 
revered for its optimality, completeness, and balance between 
performance and precision. Its practical efficiency across 
diverse domains such as robotics, video games, and GIS is a 
testament to this balance. A*is a best-first search algorithm that 
prioritizes node expansion based on a cost function f(n) = g(n) 
+ h(n), where g(n) is the known cost from the start node to the 
current node, and h(n) is the heuristic estimate of the cost from 
the current node to the goal. Martelli’s early work (1977) laid 
foundational insights into the computational complexity of 
admissible search algorithms, reinforcing A*’s reliability in 
striking this balance[7]. 

The efficiency and optimality of A* heavily depend on the 
design of the heuristic function h(n). Two essential properties 
define an effective heuristic: admissibility and consistency. A 
heuristic is admissible if it never overestimates the actual cost 
to reach the goal, ensuring that A* always finds an optimal 
path. Consistency (or monotonicity) means that for every node 
nnn and its successor n′, the heuristic satisfies h(n) ≤ c(n,n′) + 
h(n′), where c(n,n′) is the step cost. This guarantees that the 
estimated cost does not decrease along a path, allowing A* to 
avoid revisiting nodes. Katz and Domshlak (2010) explore how 
abstraction heuristics can be optimally composed while 
maintaining admissibility and efficiency, demonstrating how 
well-structured heuristics can significantly reduce state 
evaluations and computational overhead[8]. 

When the strict conditions of the heuristic are relaxed, such 
as using semi-admissible heuristics to improve performance, 
the A* algorithm might prioritize speed over optimality. 
Passino and Antsaklis (1994) present a metric space 
formulation that precisely defines and evaluates heuristic 
functions in A*, strengthening the theoretical underpinnings of 
heuristic evaluation[9]. For practical applications, Sakcak et al. 
(2019) show how motion-planning heuristics, even when not 
perfectly consistent, can improve convergence in dynamic 
planning environments by guiding searches effectively within 
real-time constraints[10]. 

Contemporary refinements of the A* algorithm have 
expanded its capabilities to tackle multi-objective and real-time 
constraints. For instance, Mandow and De La Cruz (2008) 
examine multi-objective A* variants that utilize consistent 
heuristics to optimize multiple path criteria, enhancing their 
applicability in critical robotics and automated decision-
making systems[11]. Moreover, Farreny (1999) addresses how 
generalizations of admissibility and consistency can be 
extended to broader classes of heuristic search problems, 
offering a more flexible theoretical foundation for modern 
applications of A*[12]. These developments underscore the A* 
algorithm’s enduring significance, demonstrating that its 
performance is not solely tied to its algorithmic structure but is 

deeply influenced by the intelligence embedded in the heuristic 
function it employs. 

C. Water Sort Puzzle 

The Water Sort Puzzle (WSP) is a single-player logic game 
where players sort colored liquids into designated bins. Each 
bin has a fixed capacity, and the game starts with a mixed 
configuration and a few empty bins. The core rules state that 
only the topmost layer of liquid can be poured from a source 
bin to a target bin. A pour is valid only if the target bin is 
empty or its topmost color matches the poured color. All 
consecutive units of the same color at the top of a source bin 
are transferred simultaneously. The goal is to achieve a state 
where each non-empty bin contains only one uniform color[13]. 

 

Fig. 1. Water Sort Puzzle Game Interface 

Existing Water Sort Puzzle (WSP) solvers primarily utilize 
search-based algorithms, with Depth-First Search (DFS) being 
a common choice due to its simplicity and memory efficiency. 
Implementations like those by Tanjuntao using Python 
demonstrate DFS’s use[14]. However, it does not guarantee the 
shortest solution and can get stuck in loops if not correctly 
managed with visited state tracking. ColinGJohnson’s 
watersort-solver shows that Greedy search approaches make 
locally optimal choices, prioritizing immediate benefits[15]. 
Beyond traditional search, Reinforcement Learning (RL), 
specifically Deep Q-learning (DQN) and Double DQN has 
emerged as an alternative. RL agents learn optimal policies by 
interacting with the game, successfully solving more minor 
WSP instances. However, the need for scalable solutions for 
larger puzzles is urgent, as RL shows promise but still faces 
challenges in this area. 

The performance of WSP solvers is primarily evaluated by 
the number of moves to reach a solution and computational 
time. A search* is generally considered superior for finding 
optimal (shortest path) solutions due to its heuristic guidance, 
while Breadth-First Search (BFS) also guarantees optimality 
but can be memory-intensive. DFS, while memory-efficient, 
does not guarantee the shortest path. Real-world solvers face 
significant challenges beyond algorithmic efficiency, including 
robustly converting visual game states from screenshots into 
internal data structures using libraries like OpenCV. These 
challenges highlight the complexity of the problem and the 
need for innovative solutions. Empirical observations show that 
puzzle difficulty increases with more colours and bottles. Some 
levels are “impossible” without extra empty tubes. The 
presence of hidden layers in some puzzles presents a significant 
limitation for current solvers, as they require approaches for 
partially observable states rather than fully observable ones. 
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III. IMPLEMENTATIONS 

A. Problem Formalization 

The Water Sort Puzzle can be formally defined as a state-
space search problem, where each unique configuration of 
liquids within the bottles constitutes a distinct “state” in the 
problem space. Each “state” of the puzzle is represented by a 
vector<vector<char>> named board. In this representation, 
each inner vector<char> signifies a bottle, and the characters 
within it denote the colours of the liquids (e.g., ‘A’, ‘B’, ‘C’) or 
an empty slot (‘.’). This structured board representation offers 
several advantages, as it directly supports crucial operations 
such as efficiently checking if a state is solved (isSolved 
function) or applying moves by manipulating the liquid levels 
and colours (applyMove function). To facilitate state tracking 
and prevent redundant computations within the search 
algorithm, the matrixToStr function converts the 
vector<vector<char>> board state into a unique string 
representation. It is then used as a key in the closedList map to 
store visited states and their minimum costs. 

B. Operations and Transitions 

The core operations in the Water Sort Puzzle involve 
transferring liquid from one bottle to another, representing the 
“moves” that transition the puzzle from one state to another. 
The getPossibleMoves function orchestrates identifying these 
valid transitions, considering several critical conditions. A 
source bottle must not be empty (isEmpty(source)), and a 
destination bottle must not be complete (isFull(destination)). 
Furthermore, a pour is only valid if the top colour of the source 
bottle either matches the top colour of the destination bottle 
(topSrc == topDest) or the destination bottle is empty (topDest 
== ‘\0’), ensuring that liquids of different colours do not mix 
unless the destination is clear. Additionally, there must be at 
least one empty slot in the destination bottle to receive liquid 
(emptySlots(destination) > 0). 

Once a valid move is identified, the applyMove function 
plays a pivotal role in executing the water transfer and updating 
the board state. It calculates the pour amount by determining 
the minimum number of identical colours stacked at the top of 
the source bottle (countTopSameColors(source)) and the 
available empty slots in the destination bottle 
(emptySlots(destination)). The liquid is then virtually moved 
by updating the characters in the newBoard: the appropriate 
number of ‘.’ characters replace the poured liquid in the source 
bottle, and the destination bottle’s empty slots are filled with 
the transferred colour. Several utility functions support these 
operations: top retrieves the colour and index of the topmost 
liquid in a bottle; isFull and isEmpty check the bottle’s fill 
status; emptySlots counts available empty spaces; and 
countTopSameColors determines the contiguous stack of same-
coloured liquid at the top of a bottle. 

C. A* Search Algorithm 

The solve function is the heart of the A* search algorithm 
implementation, responsible for finding the optimal sequence 
of moves to solve the Water Sort Puzzle. The algorithm 
operates on State structs, each encapsulating the current board 
configuration, the path (sequence of moves) taken to reach that 

state, and its cost. The openList, implemented as a 
priority_queue, stores states to be explored, prioritizing them 
based on their cost (f = g + h, where g is the actual cost from 
the start and h is the heuristic estimate of the goal). 
Concurrently, the closedList, a map where string 
representations of the board are mapped to their minimum g-
costs, is crucial in preventing cycles and redundant exploration 
by storing already visited states and the lowest cost found to 
reach them. 

During the search, currentG represents the actual path cost 
(number of moves) to reach the currentState, while nextG is 
calculated by adding 1 to currentG for each new move, 
indicating the cost to reach a successor state. The algorithm 
iteratively extracts the lowest-cost state from openList, checks 
if it is the solved state, and if not, generates its possible 
successor states. For each successor, if it is either new or can 
be reached with a lower cost, it is added to openList and its 
cost is updated in closedList. The loop continues until a 
solution is found (isSolved(currentState.board) returns true) or 
openList becomes empty, indicating no solution exists. The 
stateChecked variable meticulously tracks the number of states 
processed throughout the search, providing a valuable 
performance metric for the algorithm. 

 

Fig. 2. Solving Algorithm (Source: https://github.com/qodriazka/watersort-

solver) 

D. Heuristic 

The heuristic function within the solve function serves as 
an estimate, represented by h, of the minimum number of 
moves required to reach a solved state from the current board 
configuration, guiding the A* algorithm’s search. This 
function’s core logic calculates h by iterating through each 
bottle from bottom to top, identifying “color breaks”. A “color 
break” occurs, and h is incremented whenever a currentColor 
differs from the prevColor in the sequence, provided both are 
actual colours and not empty slots. For instance, a bottle 
containing “AABB” would register one colour break (the 
transition from ‘A’ to ‘B’), resulting in h = 1 for that bottle, 
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while “AABA” would yield two breaks (from ‘A’ to ‘B’ and 
then from ‘B’ to ‘A’), contributing h = 2. This heuristic aims to 
quantify the disorder within the bottles, as each detected 
“break” signifies an unsorted section of liquid that will 
eventually require at least one move to be correctly aligned or 
poured out. This heuristic is chosen for its computational 
simplicity and effectiveness in providing a reasonable lower-
bound estimate of the remaining moves. It is considered 
admissible because each colour change or “break” typically 
corresponds to at least one operation needed to sort it, meaning 
the heuristic never overestimates the actual cost to reach the 
goal. Furthermore, it tends to be consistent, as a single move 
usually resolves at most one colour break, ensuring that the 
heuristic difference between a parent state and its child is not 
greater than the cost of the move, thus preserving A*’s 
optimality guarantee. 

IV. EXPERIMENT 

A. Test Case 

The solver’s performance was evaluated on a standard 
desktop workstation with an Intel Core i7-10700K CPU 
operating at 3.80 GHz and 16 GB of DDR4 RAM. The 
operating system used was Windows 10 (64-bit). A wide range 
of test cases was employed to thoroughly assess the 
algorithm’s efficacy and scalability, varying the number of 
bottles (N) and the initial complexity of the liquid 
arrangements. These test cases were generated manually by 
inputting specific challenging configurations directly into the 
program and systematically creating puzzles with increasing 
levels of disorder. For instance, simple configurations involved 
several bottles (e.g., N=4 or N=5) with relatively clear-cut 
sorting paths. At the same time, more complex scenarios 
featured a higher bottle count (e.g., N=7 or N=8) and highly 
intermingled colours, requiring a greater number of moves and 
extensive state exploration. Specific examples of initial board 
configurations included cases with completely unsorted bottles, 
partially sorted bottles, and configurations designed to force the 
algorithm into deep search paths. 

Three key metrics were meticulously collected for each 
tested puzzle configuration to quantify the solver’s 
performance and efficiency. The first metric, the number of 
steps, directly indicates the length of the solution path found by 
the A* algorithm, corresponding to solutions.size(). This metric 
reflects the optimality or near-optimality of the generated 
solution. The second metric, states checked, represents the 
number of distinct board configurations the algorithm 
processed and evaluated during its search, explicitly tracked by 
the stateChecked variable in the code. This metric is crucial for 
understanding the computational effort of exploring the state 
space. Finally, time consumed measures the wall-clock time 
the solve function takes to find a solution, recorded in seconds 
using elapsed.count(). This measures the solver’s real-world 
execution speed, ensuring its practicality in various 
applications. 

 

 

TABLE III.  TEST CASE RESULT 

Number 
of Bottles 

Bottles 
Configuration 

Solution 
Length 

States 
Checked 

Time (s) 

3 AAAB 
.... 
BBBA 

3 6 0.000001 

4 AB.. 
BAA. 
.... 
BAB. 

5 13 0.000002 

5 ABCA 
BBCA 
CCAB 
.... 
.... 

8 479 0.023448 

7 AABC 
BBDD 
AEEC 
CCEB 
DAED 
.... 
.... 

12 4055 0.2865 

8 ABCA 
.... 
BDEF 
BAD. 
ECDA 
FB.. 
CFFC 
DEE. 

17 6980 0.475642 

11 ABCA 
DEFD 
AGEG 
DEFE 
HCFB 
IIHB 
.... 
.... 
GGCD 
CIHF 
IABH 

28 170193 16.9714 

14 ABAC 
DCEF 
GHBB 
IJED 
.... 
BGKJ 
JLED 
KCJH 
.... 
CLKA 
KAHL 
IFGI 
FHFL 
DGIE 

38 494745 53.8602 
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B. Analysis 

The test cases demonstrate that the solver consistently finds 
solutions for all tested cases, ranging from 3 to 14 bottles, as 
evidenced by valid entries across the “Solution Length,” 
“States Checked,” and “Time (s)” columns. Puzzle complexity, 
primarily indicated by the number of bottles, directly impacts 
solver performance. As the number of bottles increases, the 
solution length, states checked, and time taken all show a 
significant, often non-linear or exponential, increase. For 
example, moving from 11 to 14 bottles drastically increases the 
states checked from 170,193 to 494,745 and time from 16.9714 
seconds to 53.8602 seconds. 

The A* algorithm, when paired with an admissible 
heuristic, proves to be a robust performer, especially for a 
smaller number of bottles (3, 4, 5, 7, 8), where solutions are 
found in microseconds or milliseconds. Even for larger bottle 
counts (11, 14), the algorithm considers still solutions, albeit 
with a noticeable increase in time and states checked. Using an 
admissible heuristic likely contributes to the algorithm’s ability 
to find optimal solutions in terms of solution length. The 
increase in solution length with the number of bottles further 
underscores the A* algorithm’s effectiveness in handling more 
complex problems. 

Despite its effectiveness, the solver exhibits apparent 
limitations as the number of bottles increases. The most 
significant limitation is the rapid, potentially exponential 
growth in “States Checked” and “Time (s),” leading to 
prohibitively long computation times for larger N values (e.g., 
16, 18, or 20 bottles). This exponential growth also poses a 
substantial risk of memory issues, such as the system running 
out of available memory, as the storage required for the open 
and closed lists in A* could quickly become enormous, leading 
to out-of-memory errors, which can cause the program to crash 
or become unresponsive. 

The solver will likely struggle with configurations 
involving many bottles or inherently requiring a very long 
solution path. The quality of the heuristic is crucial for 
performance. An admissible heuristic guarantees optimal 
solutions, and a more informative heuristic (one that estimates 
the cost to the goal more accurately without overestimating) 
significantly reduces the number of states checked, 
consequently decreasing the computation time. A weaker 
heuristic would result in much higher “States Checked” and 
“Time (s)” for the same problem complexity. 

V. CONCLUSION 

 The Water Sort Puzzle, a captivating logic game, presents a 
unique challenge with its increasing complexity as the number 
of bottles and colours grows. This paper introduces a novel 
approach to solving this problem by developing an automated 
solver using the A* search algorithm in C++. A custom 
heuristic function was crafted to guide the search efficiently, 
identifying “colour breaks” within bottles to estimate the 
remaining cost to a solved state. The solver’s effectiveness in 
finding solutions across various puzzle configurations, from 3 
to 14 bottles, consistently yielding optimal or near-optimal 
solution lengths, underscores the power of the A* algorithm in 

navigating vast state spaces to solve combinatorial problems 
like the Water Sort Puzzle. 

This research introduces a robust, C++-based solver for the 
Water Sort Puzzle, capable of automatically determining the 
optimal sequence of moves. By detailing the underlying data 
structures, algorithms, and the strategic design of the heuristic 
function, this paper provides a transparent and reproducible 
framework for solving similar combinatorial problems. The 
practical applicability of the A* algorithm in real-world puzzle-
solving scenarios is underscored by a thorough performance 
analysis, which evaluates metrics such as solution length, states 
checked, and computation time across diverse configurations. 
The insights gained from this work reinforce the importance of 
informed search strategies in artificial intelligence and offer a 
valuable open-source solution for the Water Sort Puzzle 
community. 

While the current solver effectively handles a range of 
puzzle complexities, several avenues exist for future work to 
enhance its performance and utility. One key area is exploring 
more sophisticated or domain-specific heuristics, which could 
further reduce the number of states checked and computation 
time, especially for highly complex puzzles. Experimenting 
with different search algorithms, such as Iterative Deepening 
A* (IDA*) or metaheuristics, could offer alternative 
approaches to compare performance and explore trade-offs 
between optimality and speed. Another crucial direction is 
improving scalability to handle an even larger number of 
bottles or varying bottle capacities. Furthermore, developing a 
user-friendly graphical interface (GUI) would make the solver 
more accessible and interactive for a broader audience. 
Implementing a puzzle generator to create challenging and 
guaranteed solvable puzzles would also be a valuable addition. 
Finally, investigating parallel computing techniques for the 
search process could significantly reduce execution time for the 
most demanding puzzle instances, paving the way for exciting 
future developments. 
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