
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

A Query-Efficient Algorithm for Optimal Trade

Execution under Cardinality Constraints via

Lagrangian Relaxation

Benedict Presley - 13523067

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: presleybenedict04@gmail.com , 13523067@std.stei.itb.ac.id

Abstract—Optimal trade execution under cardinality

constraints, which limit the number of trades within a given

period, presents a complex combinatorial challenge. This paper

introduces a query-efficient algorithm to find the maximum

achievable profit from exactly k non-intersecting trades within a

specified time window. The method reframes the problem using

Lagrangian Relaxation, which transforms the hard constraint on

the number of trades into a penalized, unconstrained problem by

adding a cost (λ) for each trade. To solve this relaxed problem

efficiently across many queries, the approach employs a Segment

Tree data structure combined with Dynamic Programming.

Keywords— Optimal Trade Execution, Cardinality Constraints,

Lagrangian Relaxation, Segment Tree, Dynamic Programming

I. INTRODUCTION

Optimal trade execution is about smartly buying or selling
large amounts of assets in financial markets. The goal is to do
this in a way that costs the least money and causes the least
disruption to the market. In today's fast-paced, computer-driven,
high-frequency trading world, being able to trade well and
quickly has a big impact on how much profit a company makes
and how much risk it faces. A major challenge comes from
practical rules that limit how trades can be made. These are
called cardinality constraints. They limit the number of separate
trades, orders, or specific times you're allowed to trade within a
certain period. Such limits are common because of regulatory
rules, operational difficulties, or simply to avoid being noticed
by other traders. These constraints transform the optimization
problem into a more complex combinatorial problem.

Common ways to handle optimal trade execution often use
methods like heuristics. While these methods work for some
problems, they can become less optimal or challenging when
dealing with huge amounts of data, long trading periods, or when
cardinality constraints are directly included. The sheer number
of possible choices for picking the best trading opportunities
makes it hard to quickly get answers to new questions about the
best way to trade. For example, if we need to repeatedly figure
out the best strategy for different periods or different numbers of
allowed trades (like asking, "what's the largest sum of sums for
k non-overlapping parts of a segment?"), we need a really fast
method.

This paper focuses on making optimal trade execution under
cardinality constraints much faster when you need to ask many
questions. We suggest a new method that uses Lagrangian
Relaxation. This technique helps turn a difficult problem with
constraints into a simpler one. Lagrangian relaxation lets us
break down the big, complex problem into smaller parts that are
easier to solve. By combining this relaxation method with a
smart way to answer queries quickly, our approach greatly
reduces the time it takes to get answers for different trading
scenarios and limits, such as different trading periods ([𝑙 … 𝑟])
and the maximum number of allowed trades (𝑘).

II. THEORETICAL BASIS

A. Divide and Conquer

Divide and Conquer is a problem-solving paradigm that

involves breaking down a large, complex problem into

smaller, more manageable pieces. The core idea is to solve
these smaller pieces independently and then combine their

solutions to get the solution for the original big problem.

Think of it like organizing a very large project: instead of
one person trying to do everything, you break it into smaller

tasks, assign them to different teams, and then bring all the

completed parts together at the end.

The Divide and Conquer strategy generally follows

three steps:
1. Divide: The original problem is split into two or more

smaller sub-problems. These sub-problems are usually

similar in type to the original problem but are simpler
to solve because they are smaller.

2. Conquer: Each of these smaller sub-problems is then

solved. If a sub-problem is still too big, this step is
repeated recursively (the Divide and Conquer process

is applied again to the sub-problem). If a sub-problem

is small enough, it is solved directly and simply.
3. Combine: The solutions obtained from the individual

sub-problems are then put together to form the final

solution to the original, larger problem. This combining
step is crucial, as it ensures that the work done on the

smaller pieces correctly contributes to the overall

answer.

mailto:presleybenedict04@gmail.com
mailto:13523067@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The main advantage of Divide and Conquer is that it

often leads to efficient algorithms and can make very

complicated problems easier to understand and tackle.

B. Dynamic Programming

Dynamic Programming (DP) is problem solving

paradigm. This paradigm is used in problem that can be
broken down into simpler sub-problems. While it shares

some similarities with Divide and Conquer, its main

strength lies in handling overlapping sub-problems. This
means that when we break down a big problem, we might

find ourselves trying to solve the exact same smaller

problem multiple times. DP avoids this wasted effort.

There are two core principles in Dynamic

Programming. A problem must satisfy both principles for
Dynamic Programming to apply.

1. Optimal Substructure: This means that the best solution

to the overall problem can be found by combining the
best solutions to its smaller sub-problems. For example,

if we want to find the shortest path from A to C, and it

goes through B, then the path from A to B must also be
the shortest path to B.

2. Overlapping Sub-problems: This is the key

distinguishing feature. In many problems, if we try to
solve them using a simple recursive (repeated)

approach, we end up re-calculating the answers to the

same smaller problems again and again. Dynamic
Programming tackles this by solving each unique sub-

problem only once and then storing its answer. This

stored answer can then be looked up and reused
whenever that specific sub-problem comes up again.

There are two common ways to implement Dynamic
Programming:

1. Memoization (Top-down): This is a recursive

approach. We start trying to solve the big problem.
When we need the solution to a sub-problem, we first

check if we've already solved it and stored its answer.

If yes, we use the stored answer. If no, we solve it, store
the result, and then use it.

2. Tabulation (Bottom-up): This is an iterative approach.

Instead of starting from the top (the big problem), we
start by solving the smallest possible sub-problems

first. We then build up solutions for progressively

larger sub-problems by using the already computed
answers of the smaller ones, typically filling out a table

or array.

By avoiding repeated calculations, Dynamic

Programming can significantly improve the speed of

algorithms, often turning problems that would otherwise
take an impossibly long time (exponential complexity) into

problems that can be solved in a reasonable amount of time

(polynomial complexity).

C. Binary Search

Binary Search is a highly efficient algorithm used to

locate a specific item within a sorted list or array. Its

efficiency significantly surpasses that of sequential item-by-
item checking, particularly for very long lists. We can

visualize its operation by considering the process of finding

a specific word in a thick dictionary: rather than
commencing from the first page and progressively flipping

through each, one would typically open to an approximate

middle, ascertain whether the target word precedes or
follows that point, and consequently narrow the search to

one half of the remaining dictionary. Binary Search operates

on this fundamental principle of progressive elimination.

The general procedure is as follows:

1. Find the middle
We begin by examining the element positioned at the

midpoint of our sorted list.

2. Comparison
The midpoint element is then compared against the

specific item we are seeking, referred to as our "target."

3. Search Space Reduction (Implicit Divide and Conquer)
If the midpoint element precisely match our target, the

search concludes successfully. If our target is smaller

than the midpoint element, we deduce that it must
reside exclusively within the first half of the list (owing

to the list's sorted property). Consequently, the latter

half of the list can be disregarded. Conversely, if our
target is larger than the midpoint element, it must be

located within the second half of the list. The first half

is then excluded from further consideration.
4. Iteration

Steps 1-3 are iteratively applied to the remaining half

of the list. This continuous halving of the search space
persists until either the target is identified or the search

space is entirely depleted, indicating the item's absence

from the list.

A critical prerequisite for the correct functioning of

Binary Search is that the list must be sorted. If the list is not
sorted, Binary Search will not yield accurate results. Due to

its consistent division of the search space by half, Binary

Search demonstrates exceptional speed, even when dealing
with large datasets. Its time complexity is characterized as

logarithmic 𝑂(log 𝑁), signifying that it requires a relatively

small number of operations for substantial amounts of data.

Binary search can also be conceptualized in terms of
functions. If we have a sorted list, it can be viewed as

representing a monotonic function 𝑓(𝑥), where 𝑥 denotes

the index and 𝑓(𝑥) corresponds to the value at that index. A

monotonic function is defined as one that consistently either
increases, decreases, or remains constant. When we perform

a binary search for a "target" value in a sorted list, we are

essentially endeavoring to determine an index 𝑥 such that

𝑓(𝑥) is equals to target. Even if the precise target value is

not present, Binary Search retains the capability to pinpoint

the interval where the function crosses a specific threshold

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

or where the target value would logically reside. This
functional interpretation proves particularly valuable when

employing Binary Search to ascertain optimal values in

problems where an objective function or a constraint
function exhibits monotonicity.

D. Segment Tree

A Segment Tree is a special data structure that helps
us efficiently store and query information about ranges or

"segments" within an array. It's particularly useful when we

need to quickly ask questions like "What is the sum of
numbers from index X to index Y?" or "What is the largest

value in the range from X to Y?" and also quickly update

individual values in the array.

The way a Segment Tree is built and works is a classic

example of the Divide and Conquer principle in action:

• Tree Structure

A Segment Tree is typically a binary tree. Each "node"

(or box) in this tree represents a specific range (or
segment) of the original array.

• Building the Tree (Divide)
The "root" node at the very top of the tree represents

the entire array. This root node then divides its range

into two halves, and each half becomes the range for
its two "child" nodes. This division process continues

recursively until we reach the "leaf" nodes at the

bottom of the tree. Each leaf node represents a single
element from the original array.

• Storing Information (Conquer/Combine)

Each internal node (a node that has children) stores
some aggregated information about the range it

represents. This information is typically combined

from the information stored in its children. For
example, if a node represents the sum of a range, its

value would be the sum of the sums from its left and

right child nodes. This is the "combine" part of Divide
and Conquer.

Once built, a Segment Tree allows for two main types
of operations:

• Querying a Range: To find information about a

specific range (e.g., sum from 𝑙 to 𝑟), we initiate a

query starting from the root node of the Segment Tree.
Each node in the tree covers a certain range of the

original array. During the query process, we compare

the range covered by the current node with the range

we are interested in (the query range, say [𝑄𝐿 , 𝑄𝑅]).

There are three possible scenarios for each node we
visit:

o No Overlap: If the node's range falls

completely outside the query range (e.g., the

node covers indices before 𝑄𝐿 or after 𝑄𝑅),

this node and its children are irrelevant to our
query. We simply stop traversing this branch

and return an identity value.

o Complete Overlap: If the node's range is
entirely contained within our query range (its

start and end indices are both within

[𝑄𝐿 , 𝑄𝑅]), then the aggregated information

already stored in this node is exactly what we

need for this part of the query. We return the
value stored in this node directly, without

needing to look at its children.

o Partial Overlap: If the node's range partially
overlaps with our query range (meaning

some part of its range is inside, and some part

is outside, or it spans across the query range),
we cannot use the node's stored value

directly. In this case, we recursively call the

query function on both its left child and its
right child. Once we get the results from both

children, we combine them according to the

type of query. This recursive process
efficiently collects all relevant parts from the

tree.

This recursive process ensures that we only visit the
necessary nodes to cover the desired query range,

leading to very fast query times (𝑂(log 𝑁) time).

• Updating an Element: If we change a value in the

original array, the Segment Tree can be updated
quickly. We simply find the leaf node corresponding

to the changed element and then update the values of

all its parent nodes up to the root (𝑂(log 𝑁) time).

Furthermore, the Segment Tree can be extended to
support a wide variety of aggregate queries beyond simple

sums or maximums, such as range minimum, range XOR,

or even more complex operations like matrix multiplication
over ranges. Advanced variations also exist, such as

Persistent Segment Trees, which allow us to query past

versions of the array efficiently, or Lazy Propagation, which
optimizes updates over large ranges.

E. Convex and Concave Functions

In mathematics, a function is considered convex if, for

any two points on its graph, the line segment connecting

these two points lies entirely on or above the graph of the
function. Imagine drawing a curve: if we pick any two

points on that curve and draw a straight line between them,

and that line never goes below the curve, then the curve
represents a convex function.

More formally, a function 𝑓(𝑥) is convex if for any

two points 𝑥1 and 𝑥2 in its domain, and for any value 𝛼

where 0 ≤ 𝛼 ≤ 1, the following condition holds

𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤ 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2)

 This inequality means that the function’s value at any

point along the line segment between 𝑥1 and 𝑥2 is less than

or equal to the value of the line connecting 𝑓(𝑥1) and 𝑓(𝑥2).

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 The opposite of a convex function is a concave

function. A function 𝑔(𝑥) is concave if the line segment

connecting any two points on its graph lies entirely on or

below the graph. This means for any two points 𝑥1 and 𝑥2

in its domain, and for any value 𝛼 where 0 ≤ 𝛼 ≤ 1, the

following holds

𝑔(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≥ 𝛼𝑔(𝑥1) + (1 − 𝛼)𝑔(𝑥2)

Maximizing a concave function is mathematically

equivalent to minimizing its negative (which would be a
convex function).

Key properties of both convex and concave functions

that make them important in optimization include:

• Unique Minimum/Maximum

For a convex function, any local minimum is also a

global minimum. Similarly, for a concave function,
any local maximum is also a global maximum. This is

a very powerful property, as it means we don't have to

worry about getting stuck in "bad" local solutions
when trying to find the absolute best (global) solution.

• Easy to Optimize
Algorithms for minimizing convex functions or

maximizing concave functions are generally much

more efficient and reliable than those for non-convex
or non-concave functions. Many optimization

techniques, including those related to subgradient

methods used in Lagrangian Relaxation, rely on these
well-behaved properties.

F. Lagrangian Relaxation

Lagrangian Relaxation is an advanced mathematical

technique used to solve very difficult optimization

problems, especially those that include "hard" constraints.
A hard constraint is a rule that must be followed, and if it's

violated, the solution is not valid. Often, these hard

constraints make a problem incredibly complex to solve
directly.

The fundamental idea behind Lagrangian Relaxation
is as follows:

• Transforming the Problem

Instead of strictly enforcing a hard constraint, we
"relax" it. This means we move that constraint out of

the strict rules section and instead incorporate it into

the main objective function (the formula we are trying
to maximize or minimize).

• The Penalty Factor (Lagrangian Multiplier)

When a constraint is relaxed and moved into the
objective function, it's typically multiplied by a non-

negative value called a Lagrangian multiplier (often

denoted by the Greek letter 𝜆). This multiplier acts as

a "penalty coefficient." If the solution violates the

relaxed constraint, the penalty term in the objective
function becomes large, making the solution less

desirable. Conversely, if the solution satisfies the
constraint well, the penalty is small or zero.

• Creating an Easier Subproblem

By doing this, the original, difficult problem is
transformed into a "Lagrangian subproblem." This

new subproblem is usually much easier to solve

because it has fewer or simpler constraints. For
instance, a problem that was hard due to a single

complex constraint might become a set of

independent, easily solvable parts once that constraint
is relaxed.

• Providing a Bound
The optimal solution found for the easier Lagrangian

subproblem provides a valuable "bound" for the

original, difficult problem. For minimization
problems, the Lagrangian subproblem's optimal value

will always be less than or equal to the original

problem's optimal value (a lower bound). For
maximization problems, it will be greater than or equal

to (an upper bound).

• Dual Problem
A significant advantage in Lagrangian Relaxation is

that the Lagrangian dual problem (which involves

finding the best 𝜆) has favorable mathematical

properties. The dual problem is always concave for

maximization or convex for minimization, regardless
of whether the original problem has these properties.

This makes the dual problem much easier to solve

efficiently using standard optimization methods.

• Iterative Adjustment

To find the best possible bound (the "tightest" one),

the Lagrangian multipliers (𝜆 values) are often

adjusted iteratively. Methods like subgradient

optimization are used to systematically change 𝜆

values, guiding the solution towards one that best
satisfies the original, relaxed constraint. In cases

where the dual function has specific properties (such

as convexity or concavity), Binary Search can also be
employed to efficiently find the optimal multiplier

values, significantly reducing the computational effort

required for convergence.

Lagrangian Relaxation is highly effective for

problems where direct methods are too slow. It offers a way
to find good approximate solutions and provides a

mathematical guarantee (the bound) on how far off these

approximations might be from the true optimal answer.

III. PROBLEM DEFINITION

A. Problem Definition

In the high-frequency trading (HFT) domain, a crucial
task is to strategically execute large trades or manage a

series of trading opportunities over specific time periods.

We can imagine the market's behavior or our trading
system's potential at discrete time intervals as a sequence of

numbers. Each number 𝑎𝑖 in our array 𝐴 represents the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

expected profit or loss if we initiate a trade or observe a
market signal at that precise moment. A "segment" of this

array, say from time l to time r, signifies a particular window

or horizon during which we are interested in making trades.
A key challenge in HFT is that we often face

limitations on how many separate trading actions we can

take within a given window. These "cardinality constraints"
are important for several reasons: they help manage

transaction costs, comply with regulatory rules on the

number of messages sent to exchanges, reduce our overall
impact on the market, and avoid revealing our strategy to

other traders. Therefore, for any given trading window

(from time 𝑙 to 𝑟), we are not simply looking for the most

profitable trades, but specifically the most profitable set of

exactly 𝑘 distinct, non-overlapping trading actions. Each

trading action might span a short period (a subsegment of
time) and its total value is the sum of all individual

profit/loss values within that subsegment. Our goal is to find

these 𝑘 actions such that their combined profit is

maximized.

Formally, we define the problem as follows,

We are given an array 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑁] of 𝑁 real

numbers. A segment of the array, denoted as [𝑙 … 𝑟], refers

to the contiguous subarray 𝑎𝑙 , 𝑎𝑙+1, … , 𝑎𝑟, where 1 ≤ 𝑙 ≤
𝑟 ≤ 𝑛.

We are presented with a series of q independent

queries, Each query is defined by an ordered triple (𝑙, 𝑟, 𝑘),

where:

• 1 ≤ 𝑙 ≤ 𝑟 ≤ 𝑛: This defines the start and end

indices of the specific segment of interest within

the array 𝐴.

• 1 ≤ 𝑘 ≤ 𝑟 − 𝑙 + 1: This specifies the exact
number of non-empty, non-intersecting

subsegments that must be selected from the

segment [𝑙 … 𝑟].
For each query (𝑙, 𝑟, 𝑘), our objective is to determine

the largest possible sum achievable by selecting precisely 𝑘

non-empty, non-intersecting subsegments from the array

segment [𝑙 … 𝑟]. The sum we aim to maximize is the sum of

the sums of elements within these 𝑘 chosen subsegments.

Mathematically, for a given query (𝑙, 𝑟, 𝑘), we seek to

maximize:

∑ ∑ 𝑎𝑖

𝑒𝑗

𝑖=𝑠𝑗

𝑘

𝑗=1

 subject to the following conditions:

• Each selected subsegment [𝑠𝑗 … 𝑒𝑗] must be non-

empty, i.e., 𝑠𝑗 ≤ 𝑒𝑗.

• All selected subsegments must be contained within

the query segment [𝑙 … 𝑟], i.e., 𝑙 ≤ 𝑠𝑗 ≤ 𝑒𝑗 ≤ 𝑟 for all

𝑗 = 1, … , 𝑘.

• The selected subsegments must be non-intersecting.

This implies that for any two distinct subsegments

[𝑠𝑗 … 𝑒𝑗] and [𝑠𝑝 … 𝑒𝑝] with 𝑗 ≠ 𝑝, their intervals do

not overlap. Formally, either 𝑒𝑗 < 𝑠𝑝 or 𝑒𝑝 < 𝑠𝑗 .

Without loss of generality, if we order the

subsegments by their starting indices (𝑠1 ≤ 𝑠2 ≤ ⋯ ≤
𝑠𝑘), then this condition simplifies to 𝑒𝑗 < 𝑠𝑗+1 for all

𝑗 = 1, … , 𝑘 − 1.

IV. SOLUTION

To address the problem of finding the optimal sum of

𝑘 non-intersecting subsegments within a given range

[𝑙 … 𝑟], we will use an algorithm that combines Lagrangian
Relaxation, Dynamic Programming, Segment Tree, and

Parametric Search.

A. Lagrangian Relaxation Reformulation

Let 𝐹(𝑘) denote the maximum achievable sum using

exactly 𝑘 non-empty, non-intersecting subsegments within

a query range [𝑙 … 𝑟]. A fundamental property of this

function is its concavity. That is, the marginal gain from

selecting an additional subsegment is non-increasing:

𝐹(𝑘) − 𝐹(𝑘 − 1) ≥ 𝐹(𝑘 + 1) − 𝐹(𝑘). This is due to that

fact that we will always choose segments with larger sum

first before choosing those with smaller sum. This property
is key to our approach.

 Instead of directly solving for a specific 𝑘, we use

Lagrangian relaxation to transform the constrainted

optimization problem into an unconstrained one. We

introduce a Lagrange multiplier, 𝜆, which can be interpreted

a penalty or cost for each subsegment selected. The
objective function becomes:

𝐺(𝜆) = max
𝑆

(∑ 𝑠𝑢𝑚(𝑠) − 𝜆|𝑆|

𝑠∈𝑆

)

 where S is any set of non-empty, non-intersecting

subsegments. This can be expressed in terms of 𝐹(𝑘) as

𝐺(𝜆) = max
𝑖≥0

𝐹(𝑖) − 𝜆𝑖

Maximizing 𝐺(𝜆) is equivalent to finding the

maximum-weight set of subsegments where each segment

incurs a fixed cost 𝜆. The function that maps the penalty 𝜆

to the optimal number of segments chosen for 𝐺(𝜆), let’s

call it 𝑐(𝜆), is monotonically non-increasing. A higher

penalty 𝜆 will lead to selecting fewer segments. This

monotonicity allows us to use binary search on the value of

𝜆 to find a penalty that encourage the selection of exactly 𝑘

subsegments.

B. Dynamic Programming on Segment Tree

To compute 𝐺(𝜆) for any given range [𝑙 … 𝑟]

efficiently, we employ dynamic programming (DP). To

avoid re-computing for each query, the DP is pre-calculated
and stored in a segment tree data structure built over the

initial array 𝐴.

Each node in the segment tree represents a contiguous

subsegment of 𝐴. For each node, we store DP states that

encapsulate the optimal solution for its corresponding

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

range. A critical aspect is handling the merging of
subsegments across the boundaries of adjacent nodes. To

facilitate this, our DP state must capture whether the

endpoints of a node's range are part of an "open"
subsegment.

For each node in the segment tree, we maintain a 2 × 2

matrix of DP information, let's call it 𝒟𝑢𝑣. The entry 𝒟𝑢𝑣,

where 𝑢, 𝑣 ∈ {0, 1}, stores the optimal solutions for the

node's range under different boundary conditions:

• 𝑢 = 0: The left boundary of the node's range is not

covered by a selected subsegment.

• 𝑢 = 1: The left boundary is covered by a
subsegment that could potentially merge with a

subsegment from an adjacent node to the left.

• 𝑣 = 0: The right boundary is not covered.

• 𝑣 = 1: The right boundary is covered.

Each entry 𝒟𝑢𝑣 is a vector representing the concave

function 𝐹(𝑖). Specifically, it stores the maximum sum for

each possible number of subsegments 𝑖 under the state's

boundary conditions.

C. Segment Tree Merging

The use of segment tree here is to combine, or merge,

the results from two child nodes to computer the result for

their parent. Suppose a parent node covers range [𝑖 … 𝑗], and

its left and right children cover [𝑖 … 𝑚] and [𝑚 + 1 … 𝑗]

respectively. To computer the parent’s DP state 𝒟𝑢𝑣
𝑝𝑎𝑟𝑒𝑛𝑡

, we

combine the children’s states. For example:

𝒟𝑢𝑣
𝑝𝑎𝑟𝑒𝑛𝑡

= max(𝒟𝑢0
𝑙𝑒𝑓𝑡

 ⨁ 𝒟0𝑣
𝑟𝑖𝑔ℎ𝑡

, 𝒟𝑢1
𝑙𝑒𝑓𝑡

 ⨁ 𝒟1𝑣
𝑟𝑖𝑔ℎ𝑡

)

Where ⨁ denotes the merge operation for the DP

vectors. The first term corresponds to the case where no

subsegment crosses the midpoint boundary 𝑚, while the

second corresponds to the case where a subsegment from

the left child merges with one from the right child.
A naive merge operation (convolution) would be too

slow. However, due to the concavity of the underlying

functions, we can perform the merge much more efficiently.
Instead of the vectors of values, we can operate on the

vectors of their slopes (the differences between consecutive

values). Merging two concave vectors is equivalent to
merging their sorted slope arrays and reconstructing the

result via a cumulative sum. This allows the merge

operation for two nodes to be completed in time linear to the
sum of their lengths. The entire segment tree can thus be

built in 𝑂(𝑁 log 𝑁) time.

D. Answering Queries

For a given penalty 𝜆, we can query segment tree over

the range [𝑙 … 𝑟] to find the value of 𝐺(𝜆) and the

corresponding optimal number of segments 𝑐(𝜆). This

query takes 𝑂(log2 𝑁) time.

We perform a binary search on a range of possible

values for 𝜆 to find the critical penalty, 𝜆𝑐𝑟𝑖𝑡, that separates

the choice of fewer than 𝑘 segments from the choice of at

least 𝑘 segments. Specifically, we find the smallest integer

penalty 𝜆𝑐𝑟𝑖𝑡 such that 𝑐(𝜆𝑐𝑟𝑖𝑡) ≥ 𝑘. From the binary search,

we know that for the penalty 𝜆𝑐𝑟𝑖𝑡 − 1, the optimal number

of segments is 𝜆𝑝𝑟𝑒𝑣 < 𝑘.

 At this point, we have two anchor points on our

concave function 𝐹:

• For a penalty of 𝜆𝑐𝑟𝑖𝑡 − 1, the optimal solution

uses 𝑐𝑝𝑟𝑒𝑣 segments. The maximum sum is

𝐹(𝑐𝑝𝑟𝑒𝑣) = 𝐺(𝜆𝑐𝑟𝑖𝑡 − 1) + (𝜆𝑐𝑟𝑖𝑡 − 1)𝑐𝑝𝑟𝑒𝑣.

• For a penalty of 𝜆𝑐𝑟𝑖𝑡, the optimal solution uses

𝑐𝑐𝑟𝑖𝑡 segments. The maximum sum is 𝐹(𝑐𝑐𝑟𝑖𝑡) =
𝐺(𝜆𝑐𝑟𝑖𝑡) + 𝜆𝑐𝑟𝑖𝑡𝑐𝑐𝑟𝑖𝑡.

Since 𝐹(𝑘) is concave and we are seeking 𝐹(𝑘) for

𝑐𝑝𝑟𝑒𝑣 < 𝑘 ≤ 𝑐𝑐𝑟𝑖𝑡, we can exploit the fact that the function

is linear between the points on the convex hull defined by

these penalties. We can therefore determine the value of

𝐹(𝑘) precisely via linear interpolation:

𝐹(𝑘) = 𝐹(𝑐𝑝𝑟𝑒𝑣) +
𝐹(𝑐𝑐𝑟𝑖𝑡) − 𝐹(𝑐𝑝𝑟𝑒𝑣)

𝑐𝑐𝑟𝑖𝑡 − 𝑐𝑝𝑟𝑒𝑣

(𝑘 − 𝑐𝑝𝑟𝑒𝑣)

This combination of techniques provides a query-

efficient algorithm. The preprocessing takes 𝑂(𝑁 log 𝑁),

and each query is answered in 𝑂(log2 𝑁 log 𝑉), where 𝑉 is

the range of possible sums.

E. Focus on Value-Only Optimization

A notable characteristic of the proposed algorithm is

that it is optimized solely for finding the maximum

achievable sum, not for reconstructing the set of
subsegments that produces this sum. This design choice is

fundamental to the method's efficiency.

The primary reason for this lies in the information
compression that occurs during the DP state merges within

the segment tree. The merge operation on two DP vectors

(representing the concave functions from child nodes)
combines them by merging their sorted arrays of slopes.

While this correctly computes the shape and values of the

parent node's concave function, it discards the information
about which specific combinations of subsegments from the

child nodes gave rise to each optimal value. For any given

point on the parent's function, there may have been
numerous valid combinations from the children; the

algorithm only propagates the maximum sum, not the path

taken to achieve it.
Furthermore, the final interpolation step to calculate

𝐹(𝑘) is a mathematical abstraction. It leverages the global

property of concavity to find a value that lies on a line

between two points (𝐹(𝑐𝑝𝑟𝑒𝑣) and 𝐹(𝑐𝑐𝑟𝑖𝑡)) derived from

different penalty values. The resulting value 𝐹(𝑘) does not
directly correspond to any single set of segments computer

during the parametric search.

To reconstruct the actual segments, one would need to
store back-pointers or other path-related metadata at every

stage of the DP calculation and merging process. This

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

would significantly increase both the memory complexity

(from 𝑂(𝑁 log 𝑁) to potentially 𝑂(𝑁2)) and the time

complexity of the merge and query operations, thereby
negating the high query efficiency that is the central goal of

this algorithm.

V. IMPLEMENTATION

A. Constants and Structs
#define ll long long
#define ld long double

const ll INF = 1e18;

struct Query {
 int l, r, k;
};

struct Result {
 ld value;
 int count;

 bool operator<(const Result& other) const {
 if (value != other.value) {
 return value < other.value;
 }
 return count < other.count;
 }
};

struct DPState {
 std::vector<ll> f[2][2];
 int len = 0;

 void init_leaf(ll val) {
 len = 1;
 for (int i = 0; i < 2; ++i) {
 for (int j = 0; j < 2; ++j) {
 f[i][j] = std::vector<ll>(2, -INF);
 }
 }
 f[0][0][0] = 0;
 f[0][0][1] = val;
 f[0][1][1] = val;
 f[1][0][1] = val;
 f[1][1][1] = val;
 }
};

These three structures work together to manage the

flow of information throughout the algorithm.

• A Query object represents the initial problem

statement, defining the target segment [l, r] and the

required number of subsegments k.

• The DPState is the most complex structure, serving as

the memory of the segment tree nodes. It encapsulates

the dynamic programming results for a specific range
of the array, including all possible maximum sums for

any number of subsegments, while also tracking

boundary conditions necessary for merging with
adjacent nodes.

• A Result object is a lightweight, temporary container

used during the parametric search. For a given penalty
lambda, it holds the two key pieces of information

needed to guide the search: the optimal value of the

relaxed objective function and the number of segments
used to achieve it.

B. Solver
class TradeExecutionSolver {
private:
 int n, q;
 int tree_size;
 std::vector<ll> a;
 std::vector<Query> queries;
 std::vector<DPState> seg_tree;
 std::vector<ll> answers;

 std::vector<ll> merge_vectors(const std::vector<ll>& v1, const
std::vector<ll>& v2) {

 if (v1.empty() || v2.empty()) {
 return {};
 }

 std::vector<ll> slopes1, slopes2;
 for (size_t i = 1; i < v1.size(); ++i) slopes1.push_back(v1[i]
- v1[i-1]);
 for (size_t i = 1; i < v2.size(); ++i) slopes2.push_back(v2[i]
- v2[i-1]);

 std::vector<ll> merged_slopes;
 std::merge(slopes1.begin(), slopes1.end(), slopes2.begin(),
slopes2.end(),
 std::back_inserter(merged_slopes),
std::greater<ll>());

 std::vector<ll> result;
 result.push_back(v1[0] + v2[0]);
 for (ll slope : merged_slopes) {
 result.push_back(result.back() + slope);
 }

 return result;
 }

 DPState merge_nodes(const DPState& left, const DPState& right) {
 if (left.len == 0) return right;
 if (right.len == 0) return left;

 DPState res;
 res.len = left.len + right.len;
 for (int i = 0; i < 2; ++i) {
 for (int j = 0; j < 2; ++j) {
 res.f[i][j] = std::vector<ll>(res.len + 1, -INF);
 }
 }

 for (int i = 0; i < 2; ++i) {
 for (int j = 0; j < 2; ++j) {
 auto merged_0 = merge_vectors(left.f[i][0],
right.f[0][j]);
 if (!merged_0.empty()) {
 for (size_t l = 0; l < merged_0.size(); ++l) {
 res.f[i][j][l] = std::max(res.f[i][j][l],
merged_0[l]);
 }
 }

 auto merged_1 = merge_vectors(left.f[i][1],
right.f[1][j]);
 if (!merged_1.empty()) {
 for (size_t l = 1; l < merged_1.size(); ++l) {
 if (l > 0 && merged_1[l] > -INF/2) {
 res.f[i][j][l-1] =
std::max(res.f[i][j][l-1], merged_1[l]);
 }
 }
 }
 }
 }
 return res;
 }

 void build() {
 tree_size = 1;
 while (tree_size < n) tree_size *= 2;
 seg_tree.assign(2 * tree_size, DPState());

 for (int i = 0; i < n; ++i) {
 seg_tree[tree_size + i].init_leaf(a[i]);
 }
 for (int i = tree_size - 1; i > 0; --i) {
 seg_tree[i] = merge_nodes(seg_tree[2 * i], seg_tree[2 * i
+ 1]);
 }
 }

 Result get_optimal_for_lambda(const std::vector<ll>& v, ld
lambda) {
 if (v.empty() || v[0] == -INF) {
 return {-1e18, 0};
 }
 int best_idx = 0;
 ld max_val = -1e18;
 if (v[0] != -INF) {
 max_val = (ld)v[0] - lambda * 0;
 }

 int low = 0, high = v.size() - 1;
 while(high - low >= 3) {
 int m1 = low + (high-low)/3;
 int m2 = high - (high-low)/3;
 ld v1 = (v[m1] == -INF) ? -1e18 : (ld)v[m1] - lambda * m1;
 ld v2 = (v[m2] == -INF) ? -1e18 : (ld)v[m2] - lambda * m2;

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 if(v1 < v2) low = m1;
 else high = m2;
 }

 for(int i = low; i <= high; ++i) {
 if (v[i] != -INF) {
 ld current_val = (ld)v[i] - lambda * i;
 if(current_val > max_val) {
 max_val = current_val;
 best_idx = i;
 }
 }
 }
 return {max_val, best_idx};
 }

 DPState query_range_for_lambda(int node_idx, int cur_l, int cur_r,
int target_l, int target_r) {
 if (cur_l > target_r || cur_r < target_l) {
 return DPState();
 }
 if (cur_l >= target_l && cur_r <= target_r) {
 return seg_tree[node_idx];
 }

 int mid = cur_l + (cur_r - cur_l) / 2;
 DPState left_res = query_range_for_lambda(2 * node_idx, cur_l,
mid, target_l, target_r);
 DPState right_res = query_range_for_lambda(2 * node_idx + 1,
mid + 1, cur_r, target_l, target_r);

 return merge_nodes(left_res, right_res);
 }

 Result calculate_for_lambda(int l, int r, ld lambda) {
 DPState query_res_node = query_range_for_lambda(1, 0,
tree_size - 1, l - 1, r - 1);
 return get_optimal_for_lambda(query_res_node.f[0][0],
lambda);
 }

 void solve_query(const Query& q) {
 ld low = -1.5e9, high = 1.5e9;

 for(int i = 0; i < 100; ++i) {
 ld mid = low + (high - low) / 2;
 if (mid == low || mid == high) break;
 Result res = calculate_for_lambda(q.l, q.r, mid);
 if (res.count >= q.k) {
 low = mid;
 } else {
 high = mid;
 }
 }

 Result res_low = calculate_for_lambda(q.l, q.r, low);
 Result res_high = calculate_for_lambda(q.l, q.r, high);

 ll sum_at_low = round(res_low.value + low * res_low.count);
 ll sum_at_high = round(res_high.value + high *
res_high.count);

 ll count_at_low = res_low.count;
 ll count_at_high = res_high.count;

 if (count_at_low == count_at_high) {
 answers.push_back(sum_at_low);
 } else {
 ll ans = sum_at_high + (ll)round((ld)(sum_at_low -
sum_at_high) * (ld)(q.k - count_at_high) / (ld)(count_at_low -
count_at_high));
 answers.push_back(ans);
 }
 }

public:
 TradeExecutionSolver() = default;

 void run() {
 std::ios_base::sync_with_stdio(0);
 std::cin.tie(0);
 std::cout.tie(0);
 std::cout << std::fixed << std::setprecision(0);

 std::cin >> n >> q;
 a.resize(n);
 for (int i = 0; i < n; ++i) std::cin >> a[i];

 queries.resize(q);
 for (int i = 0; i < q; ++i) {
 std::cin >> queries[i].l >> queries[i].r >> queries[i].k;
 }

 build();

 for (const auto& query : queries) {
 solve_query(query);
 }

 for (const auto& ans : answers) {
 std::cout << ans << "\n";
 }
 }
};

This class acts as the main engine and orchestrator for
the entire solution.

Private Member Variables

• int n, q: Store the number of elements in the input array

and the number of queries, respectively.

• int tree_size: The base size of the segment tree,

calculated as the smallest power of 2 greater than or

equal to n. This simplifies the tree's indexing and
structure.

• std::vector<ll> a: Stores the input array of profit/loss

values.

• std::vector<Query> queries: A vector to hold all the

Query objects read from the input.

• std::vector<DPState> seg_tree: The segment tree
itself, stored as a flat vector. Its size is 2 * tree_size.

• std::vector<ll> answers: A vector to store the final
computed answer for each query.

Private Methods

• build(): Constructs the segment tree iteratively. It first

populates the leaf nodes with the initial array values

and then works its way up, merging child nodes to
create parent nodes until the root is built.

• merge_nodes(...): Takes two DPState objects (from

left and right child nodes) and computes the DPState
for their parent. It considers all possible ways of

combining subsegments, including merging them

across the children's boundary.

• merge_vectors(...): An efficient helper function that

merges two vectors representing concave functions. It
operates on the vectors' slopes, which is much faster

than a direct convolution.

• get_optimal_for_lambda(...): Given a DP vector

(representing a concave function 𝐹(𝑖)) and a penalty

lambda, this function uses a ternary search to
efficiently find the number of segments i that

maximizes the expression 𝐹(𝑖) − 𝜆𝑖.
• query_range_for_lambda(...): Performs a standard

range query on the segment tree. Given a target range

[𝑙 … 𝑟], it traverses the tree and merges the DPStates

of the relevant nodes to produce a single DPState for
that exact range.

• calculate_for_lambda(...): A convenience wrapper

that takes a query range [𝑙 … 𝑟] and a lambda, calls

query_range_for_lambda to get the DP state for that

range, and then uses get_optimal_for_lambda to return
the final Result.

• solve_query(...): This method implements the solution

for a single query. It performs the binary search

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

(parametric search) on lambda to find the critical
penalty value. It then calculates the final answer using

the linear interpolation method described before.

Public Methods

• run(): The main public entry point for the class. It

orchestrates the entire process:
o Handles all I/O operations.

o Initializes the tree_size.

o Calls build() to construct the segment
tree.

o Loops through each query and calls

solve_query() for it.
o Prints all the stored answers.

The full code can be accessed here:
https://github.com/BP04/Makalah-Strategi-Algoritma.

VI. TEST AND RESULTS

Given the test below
// Number of elements
6
// Array A
3, -5, 4, 2, -7, 6
// Number of queries
4
// Query# 1
1 6 1
// Query #2
1 6 2
// Query #3
2 5 2
// Query #4
2 5 3

Running the test case given above, we get

We can verify the answer to each query by finding the

expected answer respectively.

• 1st query

Choose the range [3 … 4] with sum 6.

• 2nd query

Choose the range [3 … 4] and [6 … 6] with sum 12.

• 3rd query

• Choose the range [3 … 3] and [4 … 4] with sum 6.

• 4th query

• Choose the range [3 … 3], [4 … 4], [5 … 5] with sum 1.

VII. CONCLUSION

The algorithm presented offers a potent solution to a non-
trivial optimization problem, providing a query-efficient

method for determining the maximum potential value from a

series of trading opportunities under cardinality constraints.

While the model makes certain abstractions, its utility in
strategy development, evaluation, and even in fields beyond

finance is significant.

The algorithm's design makes two important trade-offs that
are critical to its performance and practical application.

• Utility of Value-Only Optimization: The algorithm is

intentionally designed to optimize for a single value—
the maximum possible sum, rather than reconstructing

the specific segments that produce this sum. In many

HFT contexts, the primary need is for rapid, high-level
decision-making. The optimal value serves as a

theoretical upper bound for benchmarking live

strategies and for quickly assessing whether the
potential profit in a given window justifies the

associated risks and costs.

• Utility in an Uncertain Market: The model assumes the

input array of profits and losses is known beforehand.

In a live market, this is not the case. The algorithm's
value, therefore, lies not in direct execution but in

modeling and backtesting. The input array can

represent the forecasted returns from a predictive
model. By running this algorithm on historical signal

outputs, a firm can quantitatively determine the

maximum theoretical profit that signal could have
generated, providing an invaluable tool for comparing

and refining different predictive models.

The framework of this algorithm is generalizable to a
variety of domains beyond finance. At its core, it solves the

problem of selecting a fixed number of non-overlapping

intervals from a sequence to maximize a cumulative metric.
Future research could extend this work by incorporating

more complex, real-world constraints, such as risk limits,

transaction costs that are dependent on segment size, or
granular liquidity considerations across different time intervals.

In summary, the combination of Lagrangian relaxation with

a segment tree data structure provides a method for query-
efficient range optimization problem. It transforms a difficult

optimization and combinatorial problem into a manageable,

queryable form, offering a valuable analytical instrument for
assessing the potential of sequential opportunities in a

constrained environment.

APPENDIX

GitHub: https://github.com/BP04/Makalah-Strategi-Algoritma

ACKNOWLEDGEMENTS

The author sincerely thanks God Almighty for providing the
strength and opportunity to complete this paper successfully.

The author also extends deep appreciation to Dr. Ir. Rinaldi,

M.T., lecturer for IF2211 Algorithmic Strategies, for his
guidance, encouragement, and support throughout the semester

and while preparing this paper. Additionally, the author thanks

Mr. Dewana Gustavus for his help in discussing the algorithm
described in this paper.

REFERENCES

https://github.com/BP04/Makalah-Strategi-Algoritma
https://github.com/BP04/Makalah-Strategi-Algoritma

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

[1] TOKI, “Pemrograman Kompetitif Dasar,” OSN TOKI. [Online].

Available: https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf.

[Accessed: Jun. 20, 2025].

[2] A. Laaksonen, Competitive Programmer's Handbook. Helsinki, Finland:

Springer International Publishing AG, 2017. [Online]. Available:

https://cses.fi/book.pdf. [Accessed: Jun. 20, 2025].

[3] S. İ. Birbil, “Lagrangian Relaxation,” March 6, 2016. [Online]. Available:

https://personal.eur.nl/birbil/bolbilim/teaa/02_Lag_Rel.pdf. [Accessed:

Jun. 20, 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini
adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Benedict Presley

13523067

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://cses.fi/book.pdf
https://personal.eur.nl/birbil/bolbilim/teaa/02_Lag_Rel.pdf

