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Abstract—Optimal trade execution under cardinality 

constraints, which limit the number of trades within a given 

period, presents a complex combinatorial challenge. This paper 

introduces a query-efficient algorithm to find the maximum 

achievable profit from exactly k non-intersecting trades within a 

specified time window. The method reframes the problem using 

Lagrangian Relaxation, which transforms the hard constraint on 

the number of trades into a penalized, unconstrained problem by 

adding a cost (λ) for each trade. To solve this relaxed problem 

efficiently across many queries, the approach employs a Segment 

Tree data structure combined with Dynamic Programming. 
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I.  INTRODUCTION 

Optimal trade execution is about smartly buying or selling 
large amounts of assets in financial markets. The goal is to do 
this in a way that costs the least money and causes the least 
disruption to the market. In today's fast-paced, computer-driven, 
high-frequency trading world, being able to trade well and 
quickly has a big impact on how much profit a company makes 
and how much risk it faces. A major challenge comes from 
practical rules that limit how trades can be made. These are 
called cardinality constraints. They limit the number of separate 
trades, orders, or specific times you're allowed to trade within a 
certain period. Such limits are common because of regulatory 
rules, operational difficulties, or simply to avoid being noticed 
by other traders. These constraints transform the optimization 
problem into a more complex combinatorial problem. 

Common ways to handle optimal trade execution often use 
methods like heuristics. While these methods work for some 
problems, they can become less optimal or challenging when 
dealing with huge amounts of data, long trading periods, or when 
cardinality constraints are directly included. The sheer number 
of possible choices for picking the best trading opportunities 
makes it hard to quickly get answers to new questions about the 
best way to trade. For example, if we need to repeatedly figure 
out the best strategy for different periods or different numbers of 
allowed trades (like asking, "what's the largest sum of sums for 
k non-overlapping parts of a segment?"), we need a really fast 
method. 

This paper focuses on making optimal trade execution under 
cardinality constraints much faster when you need to ask many 
questions. We suggest a new method that uses Lagrangian 
Relaxation. This technique helps turn a difficult problem with 
constraints into a simpler one. Lagrangian relaxation lets us 
break down the big, complex problem into smaller parts that are 
easier to solve. By combining this relaxation method with a 
smart way to answer queries quickly, our approach greatly 
reduces the time it takes to get answers for different trading 
scenarios and limits, such as different trading periods ([𝑙 … 𝑟]) 
and the maximum number of allowed trades (𝑘). 

II. THEORETICAL BASIS 

A. Divide and Conquer 

Divide and Conquer is a problem-solving paradigm that 

involves breaking down a large, complex problem into 

smaller, more manageable pieces. The core idea is to solve 
these smaller pieces independently and then combine their 

solutions to get the solution for the original big problem. 

Think of it like organizing a very large project: instead of 
one person trying to do everything, you break it into smaller 

tasks, assign them to different teams, and then bring all the 

completed parts together at the end. 
 

The Divide and Conquer strategy generally follows 

three steps: 
1. Divide: The original problem is split into two or more 

smaller sub-problems. These sub-problems are usually 

similar in type to the original problem but are simpler 
to solve because they are smaller. 

2. Conquer: Each of these smaller sub-problems is then 

solved. If a sub-problem is still too big, this step is 
repeated recursively (the Divide and Conquer process 

is applied again to the sub-problem). If a sub-problem 

is small enough, it is solved directly and simply. 
3. Combine: The solutions obtained from the individual 

sub-problems are then put together to form the final 

solution to the original, larger problem. This combining 
step is crucial, as it ensures that the work done on the 

smaller pieces correctly contributes to the overall 

answer. 

mailto:presleybenedict04@gmail.com
mailto:13523067@std.stei.itb.ac.id


Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

 
The main advantage of Divide and Conquer is that it 

often leads to efficient algorithms and can make very 

complicated problems easier to understand and tackle. 

B. Dynamic Programming 

Dynamic Programming (DP) is problem solving 

paradigm. This paradigm is used in problem that can be 
broken down into simpler sub-problems. While it shares 

some similarities with Divide and Conquer, its main 

strength lies in handling overlapping sub-problems. This 
means that when we break down a big problem, we might 

find ourselves trying to solve the exact same smaller 

problem multiple times. DP avoids this wasted effort. 
 

There are two core principles in Dynamic 

Programming. A problem must satisfy both principles for 
Dynamic Programming to apply. 

1. Optimal Substructure: This means that the best solution 

to the overall problem can be found by combining the 
best solutions to its smaller sub-problems. For example, 

if we want to find the shortest path from A to C, and it 

goes through B, then the path from A to B must also be 
the shortest path to B. 

2. Overlapping Sub-problems: This is the key 

distinguishing feature. In many problems, if we try to 
solve them using a simple recursive (repeated) 

approach, we end up re-calculating the answers to the 

same smaller problems again and again. Dynamic 
Programming tackles this by solving each unique sub-

problem only once and then storing its answer. This 

stored answer can then be looked up and reused 
whenever that specific sub-problem comes up again. 

 

There are two common ways to implement Dynamic 
Programming: 

1. Memoization (Top-down): This is a recursive 

approach. We start trying to solve the big problem. 
When we need the solution to a sub-problem, we first 

check if we've already solved it and stored its answer. 

If yes, we use the stored answer. If no, we solve it, store 
the result, and then use it. 

2. Tabulation (Bottom-up): This is an iterative approach. 

Instead of starting from the top (the big problem), we 
start by solving the smallest possible sub-problems 

first. We then build up solutions for progressively 

larger sub-problems by using the already computed 
answers of the smaller ones, typically filling out a table 

or array. 

 
By avoiding repeated calculations, Dynamic 

Programming can significantly improve the speed of 

algorithms, often turning problems that would otherwise 
take an impossibly long time (exponential complexity) into 

problems that can be solved in a reasonable amount of time 

(polynomial complexity). 

C. Binary Search 

Binary Search is a highly efficient algorithm used to 

locate a specific item within a sorted list or array. Its 

efficiency significantly surpasses that of sequential item-by-
item checking, particularly for very long lists. We can 

visualize its operation by considering the process of finding 

a specific word in a thick dictionary: rather than 
commencing from the first page and progressively flipping 

through each, one would typically open to an approximate 

middle, ascertain whether the target word precedes or 
follows that point, and consequently narrow the search to 

one half of the remaining dictionary. Binary Search operates 

on this fundamental principle of progressive elimination. 
 

The general procedure is as follows: 

1. Find the middle 
We begin by examining the element positioned at the 

midpoint of our sorted list. 

2. Comparison 
The midpoint element is then compared against the 

specific item we are seeking, referred to as our "target." 

3. Search Space Reduction (Implicit Divide and Conquer) 
If the midpoint element precisely match our target, the 

search concludes successfully. If our target is smaller 

than the midpoint element, we deduce that it must 
reside exclusively within the first half of the list (owing 

to the list's sorted property). Consequently, the latter 

half of the list can be disregarded. Conversely, if our 
target is larger than the midpoint element, it must be 

located within the second half of the list. The first half 

is then excluded from further consideration. 
4. Iteration 

Steps 1-3 are iteratively applied to the remaining half 

of the list. This continuous halving of the search space 
persists until either the target is identified or the search 

space is entirely depleted, indicating the item's absence 

from the list. 
 

A critical prerequisite for the correct functioning of 

Binary Search is that the list must be sorted. If the list is not 
sorted, Binary Search will not yield accurate results. Due to 

its consistent division of the search space by half, Binary 

Search demonstrates exceptional speed, even when dealing 
with large datasets. Its time complexity is characterized as 

logarithmic 𝑂(log 𝑁), signifying that it requires a relatively 

small number of operations for substantial amounts of data. 

Binary search can also be conceptualized in terms of 
functions. If we have a sorted list, it can be viewed as 

representing a monotonic function 𝑓(𝑥), where 𝑥 denotes 

the index and 𝑓(𝑥) corresponds to the value at that index. A 

monotonic function is defined as one that consistently either 
increases, decreases, or remains constant. When we perform 

a binary search for a "target" value in a sorted list, we are 

essentially endeavoring to determine an index 𝑥 such that 

𝑓(𝑥) is equals to target. Even if the precise target value is 

not present, Binary Search retains the capability to pinpoint 

the interval where the function crosses a specific threshold 
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or where the target value would logically reside. This 
functional interpretation proves particularly valuable when 

employing Binary Search to ascertain optimal values in 

problems where an objective function or a constraint 
function exhibits monotonicity. 

D. Segment Tree 

A Segment Tree is a special data structure that helps 
us efficiently store and query information about ranges or 

"segments" within an array. It's particularly useful when we 

need to quickly ask questions like "What is the sum of 
numbers from index X to index Y?" or "What is the largest 

value in the range from X to Y?" and also quickly update 

individual values in the array. 
 

The way a Segment Tree is built and works is a classic 

example of the Divide and Conquer principle in action: 

• Tree Structure 

A Segment Tree is typically a binary tree. Each "node" 

(or box) in this tree represents a specific range (or 
segment) of the original array. 

• Building the Tree (Divide) 
The "root" node at the very top of the tree represents 

the entire array. This root node then divides its range 

into two halves, and each half becomes the range for 
its two "child" nodes. This division process continues 

recursively until we reach the "leaf" nodes at the 

bottom of the tree. Each leaf node represents a single 
element from the original array. 

• Storing Information (Conquer/Combine) 

Each internal node (a node that has children) stores 
some aggregated information about the range it 

represents. This information is typically combined 

from the information stored in its children. For 
example, if a node represents the sum of a range, its 

value would be the sum of the sums from its left and 

right child nodes. This is the "combine" part of Divide 
and Conquer. 

 

Once built, a Segment Tree allows for two main types 
of operations: 

• Querying a Range: To find information about a 

specific range (e.g., sum from 𝑙 to 𝑟), we initiate a 

query starting from the root node of the Segment Tree. 
Each node in the tree covers a certain range of the 

original array. During the query process, we compare 

the range covered by the current node with the range 

we are interested in (the query range, say [𝑄𝐿 , 𝑄𝑅]). 

There are three possible scenarios for each node we 
visit: 

o No Overlap: If the node's range falls 

completely outside the query range (e.g., the 

node covers indices before 𝑄𝐿 or after 𝑄𝑅), 

this node and its children are irrelevant to our 
query. We simply stop traversing this branch 

and return an identity value. 

o Complete Overlap: If the node's range is 
entirely contained within our query range (its 

start and end indices are both within 

[𝑄𝐿 , 𝑄𝑅]), then the aggregated information 

already stored in this node is exactly what we 

need for this part of the query. We return the 
value stored in this node directly, without 

needing to look at its children. 

o Partial Overlap: If the node's range partially 
overlaps with our query range (meaning 

some part of its range is inside, and some part 

is outside, or it spans across the query range), 
we cannot use the node's stored value 

directly. In this case, we recursively call the 

query function on both its left child and its 
right child. Once we get the results from both 

children, we combine them according to the 

type of query. This recursive process 
efficiently collects all relevant parts from the 

tree. 

This recursive process ensures that we only visit the 
necessary nodes to cover the desired query range, 

leading to very fast query times (𝑂(log 𝑁) time). 

• Updating an Element: If we change a value in the 

original array, the Segment Tree can be updated 
quickly. We simply find the leaf node corresponding 

to the changed element and then update the values of 

all its parent nodes up to the root (𝑂(log 𝑁) time). 

 

Furthermore, the Segment Tree can be extended to 
support a wide variety of aggregate queries beyond simple 

sums or maximums, such as range minimum, range XOR, 

or even more complex operations like matrix multiplication 
over ranges. Advanced variations also exist, such as 

Persistent Segment Trees, which allow us to query past 

versions of the array efficiently, or Lazy Propagation, which 
optimizes updates over large ranges. 

 

E. Convex and Concave Functions 

In mathematics, a function is considered convex if, for 

any two points on its graph, the line segment connecting 

these two points lies entirely on or above the graph of the 
function. Imagine drawing a curve: if we pick any two 

points on that curve and draw a straight line between them, 

and that line never goes below the curve, then the curve 
represents a convex function. 

More formally, a function 𝑓(𝑥) is convex if for any 

two points 𝑥1 and 𝑥2 in its domain, and for any value 𝛼 

where 0 ≤ 𝛼 ≤ 1, the following condition holds 

 

𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤ 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2) 

 
 This inequality means that the function’s value at any 

point along the line segment between 𝑥1 and 𝑥2 is less than 

or equal to the value of the line connecting 𝑓(𝑥1) and 𝑓(𝑥2). 
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 The opposite of a convex function is a concave 

function. A function 𝑔(𝑥) is concave if the line segment 

connecting any two points on its graph lies entirely on or 

below the graph. This means for any two points 𝑥1 and 𝑥2 

in its domain, and for any value 𝛼 where 0 ≤ 𝛼 ≤ 1, the 

following holds 
 

𝑔(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≥ 𝛼𝑔(𝑥1) + (1 − 𝛼)𝑔(𝑥2) 

 

Maximizing a concave function is mathematically 

equivalent to minimizing its negative (which would be a 
convex function). 

Key properties of both convex and concave functions 

that make them important in optimization include: 

• Unique Minimum/Maximum 

For a convex function, any local minimum is also a 

global minimum. Similarly, for a concave function, 
any local maximum is also a global maximum. This is 

a very powerful property, as it means we don't have to 

worry about getting stuck in "bad" local solutions 
when trying to find the absolute best (global) solution. 

• Easy to Optimize 
Algorithms for minimizing convex functions or 

maximizing concave functions are generally much 

more efficient and reliable than those for non-convex 
or non-concave functions. Many optimization 

techniques, including those related to subgradient 

methods used in Lagrangian Relaxation, rely on these 
well-behaved properties. 

 

F. Lagrangian Relaxation 

Lagrangian Relaxation is an advanced mathematical 

technique used to solve very difficult optimization 

problems, especially those that include "hard" constraints. 
A hard constraint is a rule that must be followed, and if it's 

violated, the solution is not valid. Often, these hard 

constraints make a problem incredibly complex to solve 
directly. 

 

The fundamental idea behind Lagrangian Relaxation 
is as follows: 

• Transforming the Problem 

Instead of strictly enforcing a hard constraint, we 
"relax" it. This means we move that constraint out of 

the strict rules section and instead incorporate it into 

the main objective function (the formula we are trying 
to maximize or minimize). 

• The Penalty Factor (Lagrangian Multiplier) 

When a constraint is relaxed and moved into the 
objective function, it's typically multiplied by a non-

negative value called a Lagrangian multiplier (often 

denoted by the Greek letter 𝜆). This multiplier acts as 

a "penalty coefficient." If the solution violates the 

relaxed constraint, the penalty term in the objective 
function becomes large, making the solution less 

desirable. Conversely, if the solution satisfies the 
constraint well, the penalty is small or zero. 

• Creating an Easier Subproblem 

By doing this, the original, difficult problem is 
transformed into a "Lagrangian subproblem." This 

new subproblem is usually much easier to solve 

because it has fewer or simpler constraints. For 
instance, a problem that was hard due to a single 

complex constraint might become a set of 

independent, easily solvable parts once that constraint 
is relaxed. 

• Providing a Bound 
The optimal solution found for the easier Lagrangian 

subproblem provides a valuable "bound" for the 

original, difficult problem. For minimization 
problems, the Lagrangian subproblem's optimal value 

will always be less than or equal to the original 

problem's optimal value (a lower bound). For 
maximization problems, it will be greater than or equal 

to (an upper bound). 

• Dual Problem 
A significant advantage in Lagrangian Relaxation is 

that the Lagrangian dual problem (which involves 

finding the best 𝜆) has favorable mathematical 

properties. The dual problem is always concave for 

maximization or convex for minimization, regardless 
of whether the original problem has these properties. 

This makes the dual problem much easier to solve 

efficiently using standard optimization methods. 

• Iterative Adjustment 

To find the best possible bound (the "tightest" one), 

the Lagrangian multipliers (𝜆 values) are often 

adjusted iteratively. Methods like subgradient 

optimization are used to systematically change 𝜆 

values, guiding the solution towards one that best 
satisfies the original, relaxed constraint. In cases 

where the dual function has specific properties (such 

as convexity or concavity), Binary Search can also be 
employed to efficiently find the optimal multiplier 

values, significantly reducing the computational effort 

required for convergence. 
 

Lagrangian Relaxation is highly effective for 

problems where direct methods are too slow. It offers a way 
to find good approximate solutions and provides a 

mathematical guarantee (the bound) on how far off these 

approximations might be from the true optimal answer. 

III. PROBLEM DEFINITION 

A. Problem Definition 

In the high-frequency trading (HFT) domain, a crucial 
task is to strategically execute large trades or manage a 

series of trading opportunities over specific time periods. 

We can imagine the market's behavior or our trading 
system's potential at discrete time intervals as a sequence of 

numbers. Each number 𝑎𝑖 in our array 𝐴 represents the 
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expected profit or loss if we initiate a trade or observe a 
market signal at that precise moment. A "segment" of this 

array, say from time l to time r, signifies a particular window 

or horizon during which we are interested in making trades. 
A key challenge in HFT is that we often face 

limitations on how many separate trading actions we can 

take within a given window. These "cardinality constraints" 
are important for several reasons: they help manage 

transaction costs, comply with regulatory rules on the 

number of messages sent to exchanges, reduce our overall 
impact on the market, and avoid revealing our strategy to 

other traders. Therefore, for any given trading window 

(from time 𝑙 to 𝑟), we are not simply looking for the most 

profitable trades, but specifically the most profitable set of 

exactly 𝑘 distinct, non-overlapping trading actions. Each 

trading action might span a short period (a subsegment of 
time) and its total value is the sum of all individual 

profit/loss values within that subsegment. Our goal is to find 

these 𝑘 actions such that their combined profit is 

maximized. 

 
Formally, we define the problem as follows, 

We are given an array 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑁] of 𝑁 real 

numbers. A segment of the array, denoted as [𝑙 … 𝑟], refers 

to the contiguous subarray 𝑎𝑙 , 𝑎𝑙+1, … , 𝑎𝑟, where 1 ≤ 𝑙 ≤
𝑟 ≤ 𝑛. 

We are presented with a series of q independent 

queries, Each query is defined by an ordered triple (𝑙, 𝑟, 𝑘), 

where: 

• 1 ≤ 𝑙 ≤ 𝑟 ≤ 𝑛: This defines the start and end 

indices of the specific segment of interest within 

the array 𝐴. 

• 1 ≤ 𝑘 ≤ 𝑟 − 𝑙 + 1: This specifies the exact 
number of non-empty, non-intersecting 

subsegments that must be selected from the 

segment [𝑙 … 𝑟]. 
For each query (𝑙, 𝑟, 𝑘), our objective is to determine 

the largest possible sum achievable by selecting precisely 𝑘 

non-empty, non-intersecting subsegments from the array 

segment [𝑙 … 𝑟]. The sum we aim to maximize is the sum of 

the sums of elements within these 𝑘 chosen subsegments. 

Mathematically, for a given query (𝑙, 𝑟, 𝑘), we seek to 

maximize: 

∑ ∑ 𝑎𝑖

𝑒𝑗

𝑖=𝑠𝑗

𝑘

𝑗=1

 

 subject to the following conditions: 

• Each selected subsegment [𝑠𝑗 … 𝑒𝑗] must be non-

empty, i.e., 𝑠𝑗 ≤ 𝑒𝑗. 

• All selected subsegments must be contained within 

the query segment [𝑙 … 𝑟], i.e., 𝑙 ≤ 𝑠𝑗 ≤ 𝑒𝑗 ≤ 𝑟 for all 

𝑗 = 1, … , 𝑘. 

• The selected subsegments must be non-intersecting. 

This implies that for any two distinct subsegments 

[𝑠𝑗 … 𝑒𝑗] and [𝑠𝑝 … 𝑒𝑝] with 𝑗 ≠ 𝑝, their intervals do 

not overlap. Formally, either 𝑒𝑗 < 𝑠𝑝  or 𝑒𝑝 < 𝑠𝑗 . 

Without loss of generality, if we order the 

subsegments by their starting indices (𝑠1 ≤ 𝑠2 ≤ ⋯ ≤
𝑠𝑘), then this condition simplifies to 𝑒𝑗 < 𝑠𝑗+1 for all 

𝑗 = 1, … , 𝑘 − 1. 

 

IV. SOLUTION 

 
To address the problem of finding the optimal sum of 

𝑘 non-intersecting subsegments within a given range 

[𝑙 … 𝑟], we will use an algorithm that combines Lagrangian 
Relaxation, Dynamic Programming, Segment Tree, and 

Parametric Search. 

A. Lagrangian Relaxation Reformulation 

Let 𝐹(𝑘) denote the maximum achievable sum using 

exactly 𝑘 non-empty, non-intersecting subsegments within 

a query range [𝑙 … 𝑟]. A fundamental property of this 

function is its concavity. That is, the marginal gain from 

selecting an additional subsegment is non-increasing: 

𝐹(𝑘) − 𝐹(𝑘 − 1) ≥ 𝐹(𝑘 + 1) − 𝐹(𝑘). This is due to that 

fact that we will always choose segments with larger sum 

first before choosing those with smaller sum. This property 
is key to our approach. 

 Instead of directly solving for a specific 𝑘, we use 

Lagrangian relaxation to transform the constrainted 

optimization problem into an unconstrained one. We 

introduce a Lagrange multiplier, 𝜆, which can be interpreted 

a penalty or cost for each subsegment selected. The 
objective function becomes: 

𝐺(𝜆) = max
𝑆

(∑ 𝑠𝑢𝑚(𝑠) − 𝜆|𝑆|

𝑠∈𝑆

) 

 where S is any set of non-empty, non-intersecting 

subsegments. This can be expressed in terms of 𝐹(𝑘) as 

 

𝐺(𝜆) = max
𝑖≥0

𝐹(𝑖) − 𝜆𝑖 

 

Maximizing 𝐺(𝜆) is equivalent to finding the 

maximum-weight set of subsegments where each segment 

incurs a fixed cost 𝜆. The function that maps the penalty 𝜆 

to the optimal number of segments chosen for 𝐺(𝜆), let’s 

call it 𝑐(𝜆), is monotonically non-increasing. A higher 

penalty 𝜆 will lead to selecting fewer segments. This 

monotonicity allows us to use binary search on the value of 

𝜆 to find a penalty that encourage the selection of exactly 𝑘 

subsegments. 

B. Dynamic Programming on Segment Tree 

To compute 𝐺(𝜆) for any given range [𝑙 … 𝑟] 

efficiently, we employ dynamic programming (DP). To 

avoid re-computing for each query, the DP is pre-calculated 
and stored in a segment tree data structure built over the 

initial array 𝐴. 

Each node in the segment tree represents a contiguous 

subsegment of 𝐴. For each node, we store DP states that 

encapsulate the optimal solution for its corresponding 
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range. A critical aspect is handling the merging of 
subsegments across the boundaries of adjacent nodes. To 

facilitate this, our DP state must capture whether the 

endpoints of a node's range are part of an "open" 
subsegment. 

For each node in the segment tree, we maintain a 2 × 2 

matrix of DP information, let's call it 𝒟𝑢𝑣. The entry 𝒟𝑢𝑣, 

where 𝑢, 𝑣 ∈ {0, 1}, stores the optimal solutions for the 

node's range under different boundary conditions: 
 

• 𝑢 = 0: The left boundary of the node's range is not 

covered by a selected subsegment. 

• 𝑢 = 1: The left boundary is covered by a 
subsegment that could potentially merge with a 

subsegment from an adjacent node to the left. 

• 𝑣 = 0: The right boundary is not covered. 

• 𝑣 = 1: The right boundary is covered. 

 

Each entry 𝒟𝑢𝑣 is a vector representing the concave 

function 𝐹(𝑖). Specifically, it stores the maximum sum for 

each possible number of subsegments 𝑖 under the state's 

boundary conditions. 

C. Segment Tree Merging 

The use of segment tree here is to combine, or merge, 

the results from two child nodes to computer the result for 

their parent. Suppose a parent node covers range [𝑖 … 𝑗], and 

its left and right children cover [𝑖 … 𝑚] and [𝑚 + 1 … 𝑗] 

respectively. To computer the parent’s DP state 𝒟𝑢𝑣
𝑝𝑎𝑟𝑒𝑛𝑡

, we 

combine the children’s states. For example: 

 

𝒟𝑢𝑣
𝑝𝑎𝑟𝑒𝑛𝑡

= max(𝒟𝑢0
𝑙𝑒𝑓𝑡

 ⨁ 𝒟0𝑣
𝑟𝑖𝑔ℎ𝑡

, 𝒟𝑢1
𝑙𝑒𝑓𝑡

 ⨁ 𝒟1𝑣
𝑟𝑖𝑔ℎ𝑡

) 

 

Where ⨁ denotes the merge operation for the DP 

vectors. The first term corresponds to the case where no 

subsegment crosses the midpoint boundary 𝑚, while the 

second corresponds to the case where a subsegment from 

the left child merges with one from the right child. 
A naive merge operation (convolution) would be too 

slow. However, due to the concavity of the underlying 

functions, we can perform the merge much more efficiently. 
Instead of the vectors of values, we can operate on the 

vectors of their slopes (the differences between consecutive 

values). Merging two concave vectors is equivalent to 
merging their sorted slope arrays and reconstructing the 

result via a cumulative sum. This allows the merge 

operation for two nodes to be completed in time linear to the 
sum of their lengths. The entire segment tree can thus be 

built in 𝑂(𝑁 log 𝑁) time. 

D. Answering Queries 

For a given penalty 𝜆, we can query segment tree over 

the range [𝑙 … 𝑟] to find the value of 𝐺(𝜆) and the 

corresponding optimal number of segments 𝑐(𝜆). This 

query takes 𝑂(log2 𝑁) time. 

We perform a binary search on a range of possible 

values for 𝜆 to find the critical penalty, 𝜆𝑐𝑟𝑖𝑡, that separates 

the choice of fewer than 𝑘 segments from the choice of at 

least 𝑘 segments. Specifically, we find the smallest integer 

penalty 𝜆𝑐𝑟𝑖𝑡 such that 𝑐(𝜆𝑐𝑟𝑖𝑡) ≥ 𝑘. From the binary search, 

we know that for the penalty 𝜆𝑐𝑟𝑖𝑡 − 1, the optimal number 

of segments is 𝜆𝑝𝑟𝑒𝑣 < 𝑘. 

 At this point, we have two anchor points on our 

concave function 𝐹: 

• For a penalty of 𝜆𝑐𝑟𝑖𝑡 − 1, the optimal solution 

uses 𝑐𝑝𝑟𝑒𝑣  segments. The maximum sum is 

𝐹(𝑐𝑝𝑟𝑒𝑣) = 𝐺(𝜆𝑐𝑟𝑖𝑡 − 1) + (𝜆𝑐𝑟𝑖𝑡 − 1)𝑐𝑝𝑟𝑒𝑣. 

• For a penalty of 𝜆𝑐𝑟𝑖𝑡, the optimal solution uses 

𝑐𝑐𝑟𝑖𝑡 segments. The maximum sum is 𝐹(𝑐𝑐𝑟𝑖𝑡) =
𝐺(𝜆𝑐𝑟𝑖𝑡) + 𝜆𝑐𝑟𝑖𝑡𝑐𝑐𝑟𝑖𝑡. 

 

Since 𝐹(𝑘) is concave and we are seeking 𝐹(𝑘) for 

𝑐𝑝𝑟𝑒𝑣 < 𝑘 ≤ 𝑐𝑐𝑟𝑖𝑡, we can exploit the fact that the function 

is linear between the points on the convex hull defined by 

these penalties. We can therefore determine the value of 

𝐹(𝑘) precisely via linear interpolation: 

𝐹(𝑘) = 𝐹(𝑐𝑝𝑟𝑒𝑣) +
𝐹(𝑐𝑐𝑟𝑖𝑡) − 𝐹(𝑐𝑝𝑟𝑒𝑣)

𝑐𝑐𝑟𝑖𝑡 − 𝑐𝑝𝑟𝑒𝑣

(𝑘 − 𝑐𝑝𝑟𝑒𝑣) 

 

This combination of techniques provides a query-

efficient algorithm. The preprocessing takes 𝑂(𝑁 log 𝑁), 

and each query is answered in 𝑂(log2 𝑁 log 𝑉), where 𝑉 is 

the range of possible sums. 

E. Focus on Value-Only Optimization 

A notable characteristic of the proposed algorithm is 

that it is optimized solely for finding the maximum 

achievable sum, not for reconstructing the set of 
subsegments that produces this sum. This design choice is 

fundamental to the method's efficiency. 

The primary reason for this lies in the information 
compression that occurs during the DP state merges within 

the segment tree. The merge operation on two DP vectors 

(representing the concave functions from child nodes) 
combines them by merging their sorted arrays of slopes. 

While this correctly computes the shape and values of the 

parent node's concave function, it discards the information 
about which specific combinations of subsegments from the 

child nodes gave rise to each optimal value. For any given 

point on the parent's function, there may have been 
numerous valid combinations from the children; the 

algorithm only propagates the maximum sum, not the path 

taken to achieve it. 
Furthermore, the final interpolation step to calculate 

𝐹(𝑘) is a mathematical abstraction. It leverages the global 

property of concavity to find a value that lies on a line 

between two points (𝐹(𝑐𝑝𝑟𝑒𝑣) and 𝐹(𝑐𝑐𝑟𝑖𝑡)) derived from 

different penalty values. The resulting value 𝐹(𝑘) does not 
directly correspond to any single set of segments computer 

during the parametric search. 

To reconstruct the actual segments, one would need to 
store back-pointers or other path-related metadata at every 

stage of the DP calculation and merging process. This 
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would significantly increase both the memory complexity 

(from 𝑂(𝑁 log 𝑁) to potentially 𝑂(𝑁2)) and the time 

complexity of the merge and query operations, thereby 
negating the high query efficiency that is the central goal of 

this algorithm. 

 

V. IMPLEMENTATION 

A. Constants and Structs 
#define ll long long 
#define ld long double 
 
const ll INF = 1e18; 
 
struct Query { 
    int l, r, k; 
}; 
 
struct Result { 
    ld value; 
    int count; 
 
    bool operator<(const Result& other) const { 
        if (value != other.value) { 
            return value < other.value; 
        } 
        return count < other.count; 
    } 
}; 
 
struct DPState { 
    std::vector<ll> f[2][2]; 
    int len = 0; 
 
    void init_leaf(ll val) { 
        len = 1; 
        for (int i = 0; i < 2; ++i) { 
            for (int j = 0; j < 2; ++j) { 
                f[i][j] = std::vector<ll>(2, -INF); 
            } 
        } 
        f[0][0][0] = 0; 
        f[0][0][1] = val; 
        f[0][1][1] = val; 
        f[1][0][1] = val; 
        f[1][1][1] = val; 
    } 
}; 

These three structures work together to manage the 

flow of information throughout the algorithm. 

• A Query object represents the initial problem 

statement, defining the target segment [l, r] and the 

required number of subsegments k. 

• The DPState is the most complex structure, serving as 

the memory of the segment tree nodes. It encapsulates 

the dynamic programming results for a specific range 
of the array, including all possible maximum sums for 

any number of subsegments, while also tracking 

boundary conditions necessary for merging with 
adjacent nodes. 

• A Result object is a lightweight, temporary container 

used during the parametric search. For a given penalty 
lambda, it holds the two key pieces of information 

needed to guide the search: the optimal value of the 

relaxed objective function and the number of segments 
used to achieve it. 

 

B. Solver 
class TradeExecutionSolver { 
private: 
    int n, q; 
    int tree_size; 
    std::vector<ll> a; 
    std::vector<Query> queries; 
    std::vector<DPState> seg_tree; 
    std::vector<ll> answers; 
 
    std::vector<ll> merge_vectors(const std::vector<ll>& v1, const 
std::vector<ll>& v2) { 

        if (v1.empty() || v2.empty()) { 
            return {}; 
        } 
 
        std::vector<ll> slopes1, slopes2; 
        for (size_t i = 1; i < v1.size(); ++i) slopes1.push_back(v1[i] 
- v1[i-1]); 
        for (size_t i = 1; i < v2.size(); ++i) slopes2.push_back(v2[i] 
- v2[i-1]); 
         
        std::vector<ll> merged_slopes; 
        std::merge(slopes1.begin(), slopes1.end(), slopes2.begin(), 
slopes2.end(), 
                   std::back_inserter(merged_slopes), 
std::greater<ll>()); 
 
        std::vector<ll> result; 
        result.push_back(v1[0] + v2[0]); 
        for (ll slope : merged_slopes) { 
            result.push_back(result.back() + slope); 
        } 
 
        return result; 
    } 
 
    DPState merge_nodes(const DPState& left, const DPState& right) { 
        if (left.len == 0) return right; 
        if (right.len == 0) return left; 
 
        DPState res; 
        res.len = left.len + right.len; 
        for (int i = 0; i < 2; ++i) { 
            for (int j = 0; j < 2; ++j) { 
                res.f[i][j] = std::vector<ll>(res.len + 1, -INF); 
            } 
        } 
 
        for (int i = 0; i < 2; ++i) { 
            for (int j = 0; j < 2; ++j) { 
                auto merged_0 = merge_vectors(left.f[i][0], 
right.f[0][j]); 
                if (!merged_0.empty()) { 
                    for (size_t l = 0; l < merged_0.size(); ++l) { 
                        res.f[i][j][l] = std::max(res.f[i][j][l], 
merged_0[l]); 
                    } 
                } 
 
                auto merged_1 = merge_vectors(left.f[i][1], 
right.f[1][j]); 
                if (!merged_1.empty()) { 
                    for (size_t l = 1; l < merged_1.size(); ++l) { 
                        if (l > 0 && merged_1[l] > -INF/2) { 
                            res.f[i][j][l-1] = 
std::max(res.f[i][j][l-1], merged_1[l]); 
                        } 
                    } 
                } 
            } 
        } 
        return res; 
    } 
 
    void build() { 
        tree_size = 1; 
        while (tree_size < n) tree_size *= 2; 
        seg_tree.assign(2 * tree_size, DPState()); 
 
        for (int i = 0; i < n; ++i) { 
            seg_tree[tree_size + i].init_leaf(a[i]); 
        } 
        for (int i = tree_size - 1; i > 0; --i) { 
            seg_tree[i] = merge_nodes(seg_tree[2 * i], seg_tree[2 * i 
+ 1]); 
        } 
    } 
 
    Result get_optimal_for_lambda(const std::vector<ll>& v, ld 
lambda) { 
        if (v.empty() || v[0] == -INF) { 
            return {-1e18, 0}; 
        } 
        int best_idx = 0; 
        ld max_val = -1e18; 
        if (v[0] != -INF) { 
            max_val = (ld)v[0] - lambda * 0; 
        } 
 
        int low = 0, high = v.size() - 1; 
        while(high - low >= 3) { 
            int m1 = low + (high-low)/3; 
            int m2 = high - (high-low)/3; 
            ld v1 = (v[m1] == -INF) ? -1e18 : (ld)v[m1] - lambda * m1; 
            ld v2 = (v[m2] == -INF) ? -1e18 : (ld)v[m2] - lambda * m2; 
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            if(v1 < v2) low = m1; 
            else high = m2; 
        } 
 
        for(int i = low; i <= high; ++i) { 
            if (v[i] != -INF) { 
                ld current_val = (ld)v[i] - lambda * i; 
                if(current_val > max_val) { 
                    max_val = current_val; 
                    best_idx = i; 
                } 
            } 
        } 
        return {max_val, best_idx}; 
    } 
 
    DPState query_range_for_lambda(int node_idx, int cur_l, int cur_r, 
int target_l, int target_r) { 
        if (cur_l > target_r || cur_r < target_l) { 
            return DPState(); 
        } 
        if (cur_l >= target_l && cur_r <= target_r) { 
            return seg_tree[node_idx]; 
        } 
 
        int mid = cur_l + (cur_r - cur_l) / 2; 
        DPState left_res = query_range_for_lambda(2 * node_idx, cur_l, 
mid, target_l, target_r); 
        DPState right_res = query_range_for_lambda(2 * node_idx + 1, 
mid + 1, cur_r, target_l, target_r); 
 
        return merge_nodes(left_res, right_res); 
    } 
 
    Result calculate_for_lambda(int l, int r, ld lambda) { 
        DPState query_res_node = query_range_for_lambda(1, 0, 
tree_size - 1, l - 1, r - 1); 
        return get_optimal_for_lambda(query_res_node.f[0][0], 
lambda); 
    } 
 
    void solve_query(const Query& q) { 
        ld low = -1.5e9, high = 1.5e9; 
 
        for(int i = 0; i < 100; ++i) { 
            ld mid = low + (high - low) / 2; 
            if (mid == low || mid == high) break; 
            Result res = calculate_for_lambda(q.l, q.r, mid); 
            if (res.count >= q.k) { 
                low = mid; 
            } else { 
                high = mid; 
            } 
        } 
 
        Result res_low = calculate_for_lambda(q.l, q.r, low); 
        Result res_high = calculate_for_lambda(q.l, q.r, high); 
 
        ll sum_at_low = round(res_low.value + low * res_low.count); 
        ll sum_at_high = round(res_high.value + high * 
res_high.count); 
 
        ll count_at_low = res_low.count; 
        ll count_at_high = res_high.count; 
 
        if (count_at_low == count_at_high) { 
            answers.push_back(sum_at_low); 
        } else { 
            ll ans = sum_at_high + (ll)round((ld)(sum_at_low - 
sum_at_high) * (ld)(q.k - count_at_high) / (ld)(count_at_low - 
count_at_high)); 
            answers.push_back(ans); 
        } 
    } 
 
public: 
    TradeExecutionSolver() = default; 
 
    void run() { 
        std::ios_base::sync_with_stdio(0); 
        std::cin.tie(0); 
        std::cout.tie(0); 
        std::cout << std::fixed << std::setprecision(0); 
 
        std::cin >> n >> q; 
        a.resize(n); 
        for (int i = 0; i < n; ++i) std::cin >> a[i]; 
 
        queries.resize(q); 
        for (int i = 0; i < q; ++i) { 
            std::cin >> queries[i].l >> queries[i].r >> queries[i].k; 
        } 
 
        build(); 

 
        for (const auto& query : queries) { 
            solve_query(query); 
        } 
 
        for (const auto& ans : answers) { 
            std::cout << ans << "\n"; 
        } 
    } 
}; 

This class acts as the main engine and orchestrator for 
the entire solution. 

 

Private Member Variables 

• int n, q: Store the number of elements in the input array 

and the number of queries, respectively. 

• int tree_size: The base size of the segment tree, 

calculated as the smallest power of 2 greater than or 

equal to n. This simplifies the tree's indexing and 
structure. 

• std::vector<ll> a: Stores the input array of profit/loss 

values. 

• std::vector<Query> queries: A vector to hold all the 

Query objects read from the input. 

• std::vector<DPState> seg_tree: The segment tree 
itself, stored as a flat vector. Its size is 2 * tree_size. 

• std::vector<ll> answers: A vector to store the final 
computed answer for each query. 

 

Private Methods 

• build(): Constructs the segment tree iteratively. It first 

populates the leaf nodes with the initial array values 

and then works its way up, merging child nodes to 
create parent nodes until the root is built. 

• merge_nodes(...): Takes two DPState objects (from 

left and right child nodes) and computes the DPState 
for their parent. It considers all possible ways of 

combining subsegments, including merging them 

across the children's boundary. 

• merge_vectors(...): An efficient helper function that 

merges two vectors representing concave functions. It 
operates on the vectors' slopes, which is much faster 

than a direct convolution. 

• get_optimal_for_lambda(...): Given a DP vector 

(representing a concave function 𝐹(𝑖)) and a penalty 

lambda, this function uses a ternary search to 
efficiently find the number of segments i that 

maximizes the expression 𝐹(𝑖) − 𝜆𝑖. 
• query_range_for_lambda(...): Performs a standard 

range query on the segment tree. Given a target range 

[𝑙 … 𝑟], it traverses the tree and merges the DPStates 

of the relevant nodes to produce a single DPState for 
that exact range. 

• calculate_for_lambda(...): A convenience wrapper 

that takes a query range [𝑙 … 𝑟] and a lambda, calls 

query_range_for_lambda to get the DP state for that 

range, and then uses get_optimal_for_lambda to return 
the final Result. 

• solve_query(...): This method implements the solution 

for a single query. It performs the binary search 
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(parametric search) on lambda to find the critical 
penalty value. It then calculates the final answer using 

the linear interpolation method described before. 

 
Public Methods 

• run(): The main public entry point for the class. It 

orchestrates the entire process: 
o Handles all I/O operations. 

o Initializes the tree_size. 

o Calls build() to construct the segment 
tree. 

o Loops through each query and calls 

solve_query() for it. 
o Prints all the stored answers. 

 

The full code can be accessed here: 
https://github.com/BP04/Makalah-Strategi-Algoritma. 

VI. TEST AND RESULTS 

Given the test below 
// Number of elements 
6 
// Array A 
3, -5, 4, 2, -7, 6 
// Number of queries 
4 
// Query# 1 
1 6 1 
// Query #2 
1 6 2 
// Query #3 
2 5 2 
// Query #4 
2 5 3 

 

Running the test case given above, we get 

 
 

We can verify the answer to each query by finding the 

expected answer respectively. 

• 1st query 

Choose the range [3 … 4] with sum 6. 

• 2nd query 

Choose the range [3 … 4] and [6 … 6] with sum 12. 

• 3rd query 

• Choose the range [3 … 3] and [4 … 4] with sum 6. 

• 4th query 

• Choose the range [3 … 3], [4 … 4], [5 … 5] with sum 1. 

VII. CONCLUSION 

The algorithm presented offers a potent solution to a non-
trivial optimization problem, providing a query-efficient 

method for determining the maximum potential value from a 

series of trading opportunities under cardinality constraints. 

While the model makes certain abstractions, its utility in 
strategy development, evaluation, and even in fields beyond 

finance is significant. 

The algorithm's design makes two important trade-offs that 
are critical to its performance and practical application. 

• Utility of Value-Only Optimization: The algorithm is 

intentionally designed to optimize for a single value—
the maximum possible sum, rather than reconstructing 

the specific segments that produce this sum. In many 

HFT contexts, the primary need is for rapid, high-level 
decision-making. The optimal value serves as a 

theoretical upper bound for benchmarking live 

strategies and for quickly assessing whether the 
potential profit in a given window justifies the 

associated risks and costs. 

• Utility in an Uncertain Market: The model assumes the 

input array of profits and losses is known beforehand. 

In a live market, this is not the case. The algorithm's 
value, therefore, lies not in direct execution but in 

modeling and backtesting. The input array can 

represent the forecasted returns from a predictive 
model. By running this algorithm on historical signal 

outputs, a firm can quantitatively determine the 

maximum theoretical profit that signal could have 
generated, providing an invaluable tool for comparing 

and refining different predictive models. 

The framework of this algorithm is generalizable to a 
variety of domains beyond finance. At its core, it solves the 

problem of selecting a fixed number of non-overlapping 

intervals from a sequence to maximize a cumulative metric. 
Future research could extend this work by incorporating 

more complex, real-world constraints, such as risk limits, 

transaction costs that are dependent on segment size, or 
granular liquidity considerations across different time intervals. 

In summary, the combination of Lagrangian relaxation with 

a segment tree data structure provides a method for query-
efficient range optimization problem. It transforms a difficult 

optimization and combinatorial problem into a manageable, 

queryable form, offering a valuable analytical instrument for 
assessing the potential of sequential opportunities in a 

constrained environment. 

APPENDIX 

GitHub: https://github.com/BP04/Makalah-Strategi-Algoritma  
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