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Abstract—The Vertex Cover problem is a fundamental NP-

hard challenge in graph theory with significant practical 

applications. This paper presents a comparative study of three 

distinct algorithms for solving this problem: an exhaustive Brute-

Force search, a high-degree Greedy heuristic, and a guaranteed 2-

Approximation algorithm. Through implementation and testing 

on various graph structures, this work empirically analyzes the 

inherent trade-off between solution optimality and computational 

efficiency. The results demonstrate that while the Brute-Force 

method guarantees the minimum vertex cover, its exponential time 

complexity makes it infeasible for non-trivial graphs. Conversely, 

the Greedy and 2-Approximation algorithms offer polynomial-

time solutions but with different performance characteristics. The 

Greedy algorithm often finds optimal or near-optimal solutions 

quickly but lacks a reliable performance guarantee, whereas the 

2-Approximation algorithm, while sometimes less optimal, 

consistently provides a solution size provably within twice the 

minimum. This investigation concludes that the selection of an 

appropriate algorithm is not absolute but is contingent on the 

specific application's requirements, balancing the need for 

computational speed against the tolerance for sub-optimality 

Keywords—Vertex Cover; Graphs; NP-Complete; Brute-Force; 

Greedy; 2-Approximation 

I.  INTRODUCTION 

In the fields of computer science and discrete mathematics, 

graph theory stands as a cornerstone for modeling and 

analyzing complex networks and relationships. A graph, in its 

simplest form, is a collection of vertices (or nodes) connected 

by edges, representing a vast array of real-world scenarios, from 

social networks and transportation systems to computer 

networks and molecular biology. Within this domain lies a 

fundamental optimization problem known as the Vertex Cover 

problem. A vertex cover is defined as a subset of a graph's 

vertices such that every edge in the graph is incident to at least 

one vertex within this subset. This concept is not merely a 

theoretical curiosity; it has profound practical applications, 

such as placing the minimum number of security cameras to 

cover all hallways in a building or identifying a minimal set of 

key individuals in a network to monitor for information 

dissemination. 

The primary challenge, however, is not just finding any 

vertex cover, but finding a minimum vertex cover, that is, a 

vertex cover with the smallest possible number of vertices. 

Achieving this optimization is critical for efficiency and 

resource conservation. The difficulty of this task is formally 

captured by its classification as an NP-hard problem. This 

means that as the size of the graph grows, the time required to 

find the guaranteed optimal solution using any known method 

increases exponentially. For large, real-world graphs, finding 

the minimum vertex cover through exhaustive search becomes 

computationally infeasible, pushing the limits of even the most 

powerful computers. 

This inherent complexity necessitates a trade-off between 

optimality and efficiency, leading to the development of various 

algorithmic strategies. This project, "Explorations of algorithms 

to find the vertex cover of a graph," delves into this challenge 

by implementing and visualizing a spectrum of these 

algorithms. We will explore three distinct approaches: a Brute-

Force algorithm that guarantees optimality by exhaustively 

checking every possible subset of vertices; a Greedy algorithm 

that uses a simple heuristic of repeatedly selecting the vertex 

with the highest degree; and a 2-Approximation algorithm that 

provides a provable guarantee that its solution will be no more 

than twice the size of the true minimum. To bridge the gap 

between abstract theory and practical understanding, these 

algorithms are integrated into an interactive visualization tool, 

allowing for a step-by-step observation of how each method 

traverses the graph and constructs its solution. 

Through this comparative exploration and visualization, this 

project aims to provide clear insights into the behavior, 

performance, and trade-offs associated with different 

approaches to solving the vertex cover problem. By observing 

these algorithms in action, we can better appreciate the intricate 

balance between computational cost and the quality of a 

solution, a central theme in the study of algorithm design and 

combinatorial optimization. 

II. LITERATURE REVIEW 

A. Vertex Cover 

The Vertex Cover problem is a central and well-studied 

problem in the fields of graph theory and computational 

complexity. Formally, let 𝐺 = (𝑉, 𝐸) be an undirected graph, 

where is the set of vertices and 𝐸 is the set of edges. A vertex 

cover of 𝐺 is a subset of vertices 𝑉′ ⊆ 𝑉 such that for every 
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edge (𝑢, 𝑣) ∈ 𝐸, at least one of its endpoints is included in the 

subset, i.e., {𝑢, 𝑣} ∩ 𝑉′ = ∅. While any graph has several 

possible vertex covers (with the set of all vertices, V, always 

being a trivial one), the optimization challenge lies in finding a 

minimum vertex cover. This is a vertex cover that has the 

smallest possible cardinality, denoted by 𝜏(𝐺). The associated 

decision problem asks, for a given graph 𝐺 and an integer 𝑘, 

whether there exists a vertex cover of size at most 𝑘. 

The computational difficulty of the vertex cover problem is 

one of its most defining characteristics. It was famously 

included in Richard Karp's list of 21 NP-complete problems in 

his seminal 1972 paper, "Reducibility Among Combinatorial 

Problems." The classification of a problem as NP-complete 

signifies that there is no known algorithm that can solve it in 

polynomial time for all inputs. Furthermore, if such an 

algorithm were ever discovered for vertex cover, it would imply 

that P=NP, which would resolve one of the most profound open 

questions in computer science. This inherent hardness makes 

finding the exact minimum vertex cover for large graphs 

computationally intractable, as any known exact algorithm, 

such as brute-force, has a runtime that grows exponentially with 

the number of vertices. Consequently, the study of vertex cover 

has largely focused on developing approximation algorithms 

and heuristics that can find near-optimal solutions in a 

reasonable amount of time 

B. Brute Force Algorithm 

The most direct approach to solving the vertex cover 
problem is through a brute-force algorithm. This method is a 
straightforward, exhaustive search paradigm that systematically 
enumerates every possible candidate for a solution and checks 
whether each candidate satisfies the problem's statement. For the 
vertex cover problem, the candidates are all possible subsets of 
the graph's vertex set, 𝑉. The total number of such subsets is 
2|𝑉|, where |𝑉| is the number of vertices. A brute-force 
implementation would generate each of these subsets and, for 
each one, verify if it constitutes a valid vertex cover by checking 
if every edge in the graph is covered. The algorithm would keep 
track of the smallest valid cover found during this exhaustive 
process. 

To find the minimum vertex cover specifically, the brute-

force strategy can be refined. Instead of generating all 2|𝑉| 
subsets at once, the algorithm can iterate through possible cover 
sizes, 𝑘, from 0 to |𝑉|. For each 𝑘, it generates all vertex subsets 
of size 𝑘 (i.e., all combinations of 𝑘 vertices) and checks if any 
of them form a valid vertex cover. The first value of 𝑘 for which 
a valid cover is found will correspond to the size of the minimum 
vertex cover, and the corresponding subset will be an optimal 
solution. While this method guarantees optimality, its runtime 

complexity of 𝑂(2|𝑉|. |𝐸|) makes it practical only for very small 
graphs, serving primarily as a baseline for understanding the 
problem's difficulty and for verifying the correctness of more 
sophisticated algorithms on small test cases. 

C. Greedy Algorithm 

Given the inefficiency of brute-force methods, heuristic 

approaches are often employed to find good, albeit not 

necessarily optimal, solutions quickly. The Greedy algorithm 

for vertex cover is a prime example of such a heuristic. Its 

strategy is intuitively simple: at each step, select the vertex that 

covers the most uncovered edges. This means the algorithm 

calculates the degree (the number of incident edges) of every 

vertex in the current graph state and adds the vertex with the 

highest degree to the vertex cover. After a vertex is chosen, it 

and all its incident edges are removed from the graph. This 

process is repeated until no edges remain. 

While this greedy approach is fast and often produces 

reasonably small vertex covers, it provides no guarantee of 

optimality. It is possible to construct graphs where this strategy 

yields a solution that is significantly larger than the minimum 

vertex cover. The ratio between the size of the cover found by 

the greedy algorithm and the size of the optimal cover can be as 

large as 𝑂(𝑙𝑜𝑔 ∣ 𝑉 ∣). Unlike the 2-approximation algorithm, it 

does not have a constant approximation ratio, meaning its 

performance relative to the optimal solution can degrade as the 

graph size increases. Nevertheless, its simplicity and efficiency 

make it a valuable tool for obtaining a quick estimate or an 

initial solution. 

 

D. 2-Approximation Algorithm 

In contrast to heuristics with no performance guarantees, 
approximation algorithms offer a provable bound on the quality 
of their solution relative to the optimal one. The 2-
Approximation algorithm for vertex cover is a classic and 
elegant example. The algorithm operates on a simple iterative 
process: as long as there are edges remaining in the graph, it 
picks an arbitrary edge, say (𝑢, 𝑣), adds both of its endpoints, 𝑢 
and 𝑣, to the vertex cover, and then removes both vertices and 
all their incident edges from the graph. This loop continues until 
all edges have been covered. 

The power of this algorithm lies in its approximation ratio of 
2. This means the size of the vertex cover it produces is 
guaranteed to be no more than twice the size of the true 
minimum vertex cover. This guarantee arises from a simple 
observation: for every edge (𝑢, 𝑣) chosen by the algorithm, at 
least one of its endpoints must be in any valid vertex cover, 
including the minimum one. Since the algorithm adds both 
endpoints, it adds at most twice as many vertices as would be 
required for an optimal cover of those same chosen edges. With 
a time complexity of 𝑂(|𝐸|), it provides a robust and efficient 
method for finding a good-quality solution with a predictable 
upper bound on its error.  

III. ALGORITHM IMPLEMENTATION 

A. Problem Statement  

The Minimum Vertex Cover problem states: Given a graph 
𝐺 = (𝑉, 𝐸), find the smallest subset of vertices 𝐶 ⊂ 𝑉 such that 
every edge in 𝐸 has at least one endpoint in 𝐶. The program will 
take in an undirected graph 𝐺 = (𝑉, 𝐸). Then the program will 
output a list of edges, 𝐶 ⊂ 𝑉 that is the vertex cover of the graph. 
That is, for every (𝑢, 𝑣) in 𝐸, then either 𝑢 or 𝑣 (or both) is in 𝐶. 
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Generally across the algorithms, to verify if a given 𝐶 is a 
solution to the Vertex Cover problem. That is 𝐶 meets the 
criteria of a vertex cover, we use the following procedure. 

FUNCTION IsVertexCover(Graph G, Subset S) 

INPUT: A graph G with edges E, and a subset of vertices S 
OUTPUT: true if S is a vertex cover, false otherwise 

FOR EACH edge (u, v) IN E: 

  IF (u is NOT IN S) AND (v is NOT IN S) 

THEN 

    RETURN false 

  END IF 

END FOR 

RETURN true 
  

The complexity of this function is 𝑂(𝑚) where 𝑚 denotes the 
number of edges in the graph. 

B. Brute Force Implementation 

1.) Problem Mapping 

a. Solution space 

For a graph with |𝑉| vertices, the total 

number of possible subsets is 2|𝑉|. All 

possible subset is a candidate for vertex 

cover. 

b. Generating Function 

The generating function generates all 

possible subsets of the vertices. The 

complexity for generating all subsets is 

𝑂(2|𝑉|) where |𝑉| is the number of vertices 

c. Validation Function 

For every subset of vertices that is generated, 

The IsVertexCover function is used to verify 

if the given subset is a vertex cover. 

2.) Complexity Analysis 

Since the algorithm generates 2|𝑉| possible solutions, 

and every solution is verified in 𝑂(|𝐸|) time. The total 

complexity for the brute force algorithm is 𝑂(2|𝑉||𝐸|). 
3.) Implementation 

The following is the pseudocode for the 

implementation of the brute force algorithm. 

FUNCTION BruteForceVertexCover(Graph G): 

INPUT: A graph G with vertices V and edges E 

OUTPUT: A minimum vertex cover V_cover 
FOR k FROM 0 TO size(V): 

  all_subsets_of_size_k = 

generate_combinations(V, k) 

  FOR EACH subset S IN 

all_subsets_of_size_k: 

    IF IsVertexCover(G, S) THEN 

      RETURN S 

    END IF 

  END FOR 

END FOR 

RETURN an empty set 
 

C. Greedy Implementation 

1.) Problem mapping 

a. Greedy Heuristic 

The greedy algorithm selects the vertex with 

the highest degree to cover the maximum 

number of edges. 

b. Solution Construction 

It iteratively builds a solution by adding the 

highest-degree vertex to the cover, then 

removing that vertex and all its incident 

edges from consideration. 

c. Termination and Validity 

The process repeats until no edges remain, 

guaranteeing that the final set of chosen 

vertices forms a valid vertex cover for the 

entire graph/ 

2.) Complexity Analysis 

The algorithm's main loop continues as long as there 

are edges in the graph. In the worst case, this loop can 

run |𝑉| times. Within each iteration, the most 

computationally expensive task is to find the vertex 

with the highest degree. This requires calculating the 

degrees of all vertices by iterating through the 

remaining edges, which takes 𝑂(|𝐸|) time. Therefore, 

the total time complexity for this implementation of 

the greedy algorithm is 𝑂(|𝑉| ⋅ |𝐸|). 
3.) Implementation 

The following is the pseudocode for the greedy 

algorithm. 

FUNCTION GreedyVertexCover(Graph G): 

INPUT: A graph G with vertices V and edges E 

OUTPUT: A vertex cover V_cover 
V_coverV_cover = an empty set 

E_remaining = a copy of E 

WHILE E_remaining is not empty: 

  let v_max_degree = the vertex in 

V with the highest degree in the 

subgraph formed by E_remaining 

  add v_max_degree to V_cover 

  edges_to_remove = an empty set 

  FOR EACH edge (u, v) IN 

E_remaining: 

    IF u == v_max_degree OR v == 

v_max_degree THEN 

      add edge (u, v) to 

edges_to_remove 

    END IF 

  END FOR 

  E_remaining = E_remaining - 

edges_to_remove 

END WHILE 

RETURN V_cover 
 

D. 2-Approximation Implementation 

1.) Problem Mapping 

a. Core Idea 
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The algorithm is based on the principle that 

for any edge (𝑢, 𝑣), a valid vertex cover must 

contain either 𝑢 or 𝑣 (or both). This algorithm 

conservatively includes both endpoints of a 

selected edge to guarantee coverage. 

b. Solution Construction 

It iteratively picks an arbitrary uncovered 

edge, adds both of its vertices to the cover, 

and then removes all edges incident to either 

of these two vertices. 

c. Termination and Validity 

The process repeats until no edges remain, 

which ensures a valid cover. This method is a 

2-Approximation algorithm, meaning the 

size of the cover it produces is provably no 

more than twice the size of the optimal 

minimum vertex cover. 

2.) Complexity Analysis 

The algorithm processes each edge in the graph at 

most once. The main loop continues as long as there 

are uncovered edges. In each step, at least one edge is 

selected and removed, along with other incident edges. 

With an efficient implementation (e.g., using 

adjacency lists), the total time complexity is linear in 

the size of the graph, which is 𝑂(|𝑉| + |𝐸|). 
3.) Implementation 

The following is the pseudocode for the 

implementation of the 2-Approximation algorithm. 

FUNCTION TwoApproxVertexCover(Graph G): 

INPUT: A graph G with vertices V and edges E 

OUTPUT: A vertex cover V_cover 
V_cover = an empty set 

E_remaining = a copy of E 

WHILE E_remaining is not empty: 

  let (u, v) be an edge in 

E_remaining 

  add u to V_cover 

  add v to V_cover 

  edges_to_remove = an empty set 

  FOR EACH edge (x, y) IN 

E_remaining: 

    IF x == u OR x == v OR y == u 

OR y == v THEN 

      add edge (x, y) to 

edges_to_remove 

    END IF 

  END FOR 

  E_remaining = E_remaining - 

edges_to_remove 

END WHILE 

RETURN V_cover 

 

IV. TESTING 

A. Test Case 1 

The following is the graph input for the first test case 

 

Fig. 1. First Test Case 

Brute Force Result: 

 

Vertex Cover Size: 3 

Total Steps: 32 

Time Taken: 0.0002 

seconds 

Vertices: [1, 3, 5] 

 Greedy Result: 

 

Vertex Cover Size: 3 

Total Steps: 3 

Time Taken: 0.0001 

seconds 

Vertices: [2, 4, 6] 

2-Approximation Result: 

 

Vertex Cover Size: 6 

Total Steps: 3 

Time Taken: 0.0001 

seconds 

Vertices: [1, 2, 3, 4, 5, 

6] 

B. Test Case 2 

The following is the graph input for the second test case. 

 

Fig. 2. Second Test Case 

Brute Force Result: 

 

Vertex Cover Size: 2 

Total Steps: 18 

Time Taken: 0.0001 

seconds 

Vertices: [2, 3] 

 Greedy Result: 

 

Vertex Cover Size: 2 

Total Steps: 2 

Time Taken: 0.0001 

seconds 

Vertices: [2, 3] 

2-Approximation Result: 
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Vertex Cover Size: 4 

Total Steps: 2 

Time Taken: 0.0000 

seconds 

Vertices: [2, 3, 4, 6] 

C. Test Case 3 

The following is the graph input for the third test case. 

 

Fig. 3. Third Test Case 

Brute Force Result: 

 

Vertex Cover Size: 1 

Total Steps: 4 

Time Taken: 0.0001 

seconds 

Vertices: [1] 

 Greedy Result: 

 

Vertex Cover Size: 1 

Total Steps: 1 

Time Taken: 0.0001 

seconds 

Vertices: [1] 

2-Approximation Result: 

 

Vertex Cover Size: 2 

Total Steps: 1 

Time Taken: 0.0000 

seconds 

Vertices: [1, 2] 

D. Test Case 4 

The following is the graph input for the fourth test case. 

 

Fig. 4. Fourth Test Case 

Brute Force Result: 

 

Vertex Cover Size: 3 

Total Steps: 65 

Time Taken: 0.0004 

seconds 

Vertices: [2, 3, 6] 

 Greedy Result: 

 

Vertex Cover Size: 3 

Total Steps: 3 

Time Taken: 0.0001 

seconds 

Vertices: [2, 3, 6] 

2-Approximation Result: 

 

Vertex Cover Size: 6 

Total Steps: 3 

Time Taken: 0.0001 

seconds 

Vertices: [1, 2, 3, 4, 6, 

7] 

E. Test Case 5 

The following is the graph input for the fifth test case. 

 

Fig. 5. Fifth Test Case 

Brute Force Result: 

 

Vertex Cover Size: 7 

Total Steps: 2751 

Time Taken: 0.0172 

seconds 

Vertices: [1, 2, 6, 7, 8, 

9, 11] 

 Greedy Result: 

 

Vertex Cover Size: 7 

Total Steps: 7 

Time Taken: 0.0002 

seconds 

Vertices: [2, 3, 4, 6, 8, 

10, 11] 

2-Approximation Result: 

 

Vertex Cover Size: 8 

Total Steps: 4 

Time Taken: 0.0001 

seconds 

Vertices: [2, 3, 4, 7, 8, 

9, 10, 12] 

F. Test Case 6 

The following is the graph input for the fifth test case 

 

Fig. 6. Sixth Test Case 

Brute Force Result: 
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Vertex Cover Size: 5 

Total Steps: 779 

Time Taken: 0.0046 

seconds 

Vertices: [2, 3, 4, 5, 6] 

 Greedy Result: 

 

Vertex Cover Size: 6 

Total Steps: 6 

Time Taken: 0.0002 

seconds 

Vertices: [1, 2, 3, 4, 5, 

6] 

2-Approximation Result: 

 

Vertex Cover Size: 10 

Total Steps: 5 

Time Taken: 0.0001 

seconds 

Vertices: [1, 2, 3, 4, 5, 

6, 8, 9, 10, 11] 

V. RESULTS DISCUSSION 

TABLE I.  VERTEX COVER SIZE 

Test 

Case 

Algorithm 

Brute-Force Greedy 2-Approximation 

1 3 3 6 

2 2 2 4 

3 1 1 2 

4 3 3 6 

5 7 7 8 

6 5 6 10 

 

This table clearly illustrates the trade-off in solution 

quality. The Brute-Force algorithm provides the benchmark for 

the smallest possible cover size. The Greedy algorithm 

performs exceptionally well, finding the optimal solution in 5 

out of 6 cases and being off by only one vertex in the other two. 

In contrast, the 2-Approximation algorithm consistently 

produces larger covers, sometimes reaching its worst-case 

bound of being twice the size of the optimal solution (as seen in 

Test Cases 1, 2, 3, and 6), but never exceeding it. 

TABLE II.  TOTAL STEPS 

Test 

Case 

Algorithm 

Brute-Force Greedy 2-Approximation 

1 32 3 3 

2 18 2 2 

3 4 1 1 

4 65 3 3 

5 2751 7 4 

6 779 6 5 

TABLE III.  TIME TAKEN (SECONDS) 

Test 

Case 

Algorithm 

Brute-Force Greedy 2-Approximation 

1 0.0002 0.0001 0.0001 

2 0.0001 0.0001 0.0000 

3 0.0001 0.0001 0.0000 

4 0.0004 0.0001 0.0001 

5 0.0172 0.0002 0.0001 

6 0.0046 0.0002 0.0001 

 

The computational cost difference is starkly evident 

here. The "Total Steps" for the Brute-Force algorithm grows 

exponentially, as seen in the jump from 65 steps in Test Case 4 

to 2751 steps in Test Case 5. This highlights its inefficiency. 

The Greedy and 2-Approximation algorithms remain highly 

efficient, with their step counts staying low and scaling much 

more gracefully with the size and complexity of the graph. 

Time is the real-world manifestation of computational 

steps. The execution time for the Brute-Force algorithm, while 

small here, clearly increases at a much faster rate than the other 

two algorithms. The Greedy and 2-Approximation algorithms 

are nearly instantaneous for graphs of this size, reinforcing their 

practicality for larger, more complex problems where the Brute-

Force method would take an unacceptably long time. 

TABLE IV.  VERTICES IN FINAL COVER 

Test 

Case 

Algorithm 

Brute-Force Greedy 2-Approximation 

1 [1, 3, 5] [2, 4, 6] [1, 2, 3, 4, 5, 6] 

2 [2, 3] [2, 3] [2, 3, 4, 6] 

3 [1] [1] [1, 2] 

4 [2, 3, 6] [2, 3, 6] [1, 2, 3, 4, 6, 7] 

5 
[1, 2, 6, 7, 8, 9, 

11] 
[2, 3, 4, 6, 10, 11] 

[2, 3, 4, 7, 8, 9, 10, 
12] 

6 [2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6] 
[1, 2, 3, 4, 5, 6, 8, 

9, 10] 

 

This table provides the qualitative data behind the 

numbers. It allows us to see the different "strategies" each 

algorithm took. In Test Case 1, we see that both [1, 3, 5] 

and [2, 4, 6] are valid optimal solutions. In Test Case 6, 

we can trace the Greedy algorithm's suboptimal choice of vertex 

1, which led to a larger final cover compared to the Brute-Force 

solution. This level of detail is crucial for understanding how an 

algorithm arrives at its solution and why its performance varies 

depending on the graph's structure. 

The testing phase of this project provides a clear and 

practical demonstration of the theoretical concepts governing 

the vertex cover problem. By comparing the Brute-Force, 

Greedy, and 2-Approximation algorithms across a variety of 

graph structures, we can empirically observe the fundamental 

trade-off between computational cost and solution optimality. 

The results from the six test cases not only validate the 
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theoretical performance guarantees and complexities of each 

algorithm but also offer nuanced insights into how graph 

topology influences their behavior. 

A. Brute Force 

Across all test cases, the Brute-Force algorithm successfully 
identified the minimum vertex cover, serving as the essential 
benchmark against which the other algorithms are measured. Its 
strength lies in its exhaustive search, which guarantees 
optimality by systematically checking every possible subset of 
vertices. For instance, in Test Case 1 (a 6-cycle graph), it 
correctly found a minimum cover of size 3, and in Test Case 3 
(a star graph), it identified the single-vertex optimal cover. 

However, the empirical data starkly illustrates the 
algorithm's prohibitive computational cost, which is its defining 
weakness. The Time Taken and Total Steps metrics scale 
exponentially with the number of vertices (|𝑉|). This is evident 
when comparing the simple 6-vertex graph in Test Case 1 (32 
steps) to the more complex 12-vertex graph in Test Case 5, 
which required 2751 steps and a significantly longer 
computation time. While the times recorded are small on these 

limited test cases, they reflect the 𝑂(2|𝑉||𝐸|) complexity. This 

exponential growth renders the Brute-Force approach 
computationally infeasible for all but the smallest or simplest of 
graphs, reinforcing its classification as an NP-hard problem and 
underscoring the necessity for more efficient heuristic and 
approximation methods in practical, real-world applications. 

B. Greedy 

The Greedy algorithm, which iteratively selects the vertex 
with the highest degree, demonstrates a fascinating and varied 
performance across the test cases. Its primary allure is its speed 
and simplicity, consistently outperforming the Brute-Force 
method in terms of steps and time. However, its effectiveness in 
finding a near-optimal solution is highly dependent on the 
structure of the input graph. 

However The algorithm's performance was optimal in 
several instances. In Test Case 3, the star graph, the Greedy 
algorithm immediately identifies the central vertex (node 1) as 
the optimal one-vertex cover. This is a classic example where 
the greedy heuristic excels, as covering the single, high-degree 
central node is the most efficient solution. Similarly, in the tree 
structure of Test Case 2 and the more complex graph of Test 
Case 4, the Greedy algorithm found the optimal solution. In 
these cases, the highest-degree vertices happened to be part of 
an optimal vertex cover. 

Conversely, Test Case 6 reveals the algorithm's potential for 
suboptimal choices. The graph is a "star-of-stars" or a multi-star 
graph. The central node (1) has the highest initial degree. The 
Greedy algorithm selects it first. However, after removing node 
1, five disconnected edges remain, forcing the algorithm to 
select one endpoint from each, resulting in a total cover of size 
6. The Brute-Force algorithm found a smaller cover of size 5 by 
selecting the "satellite" vertices (2, 3, 4, 5, 6), which perfectly 
cover all edges. This illustrates the myopic nature of the greedy 
choice; selecting the vertex with the highest degree is a locally 
optimal decision that does not guarantee a globally optimal 
result. This aligns with the theoretical understanding that the 

Greedy algorithm's approximation ratio is 𝑂(log(|𝑉|)), 
meaning its solution can be significantly worse than the optimal 
one as the graph grows. 

C. 2-Approximation 

The 2-Approximation algorithm offers a formal contract: it 
will deliver a valid vertex cover that is no more than twice the 
size of the minimum cover. The test results consistently uphold 
this theoretical guarantee. In every single test case, a size of the 
vertex cover produced by this algorithm was less than or equal 
to two times the size of the optimal cover found by the Brute-
Force method 

Its mechanism—picking an arbitrary edge and adding both 
its vertices to the cover—is simple and fast, with a linear time 
complexity of 𝑂(|𝑉| + |𝐸|). This efficiency is evident in the 
low number of steps and near-instantaneous execution times. 
However, the results also show that this guarantee often comes 
at the cost of solution quality when compared to the Greedy 
algorithm. 

A "worst-case" scenario for the 2-Approximation algorithm 
is vividly demonstrated in Test Case 1, the 6-cycle graph. The 
optimal cover size is 3. The 2-Approximation algorithm, by 
picking three disjoint edges, selects both endpoints for each, 
resulting in a cover of size 6, exactly twice the size of the optimal 
solution. This occurs because for each edge (𝑢, 𝑣) selected, an 
optimal cover might only need one of those vertices (e.g., vertex 
𝑢), but the algorithm conservatively adds both. A similar result 
is seen in Test Case 3 (the star graph), where it produces a cover 
of size 2 while the optimal is size 1. By picking an edge like (1, 
2), it adds both nodes, where only node 1 was necessary. 

This behavior highlights the trade-off inherent in this 
algorithm. While it avoids the catastrophic failures that a 
heuristic like Greedy could produce on certain graphs, it also 
lacks the "cleverness" to identify obviously better choices. Its 
strength is not in finding the best possible solution, but in 
providing a reliable, efficient, and mathematically-provable 
boundary on how far its solution can deviate from the true 
optimum. 

In conclusion, the empirical results derived from the test 
cases align perfectly with the established theoretical foundations 
of algorithm analysis. They confirm the NP-hard nature of the 
vertex cover problem, demonstrate the practical limitations of 
brute-force solutions, and provide a tangible comparison of 
heuristic and approximation strategies. The visualization and 
testing have successfully bridged the gap between abstract 
complexity theory and the concrete performance of algorithms, 
offering clear insights into the crucial balance between speed, 
resource consumption, and the quality of a final solution. 

VI. CONCLUSION 

This investigation into the Vertex Cover problem 

through the implementation and testing of Brute-Force, Greedy, 

and 2-Approximation algorithms successfully demonstrated the 

fundamental trade-off between solution optimality and 

computational efficiency. The empirical results confirmed that 

while the Brute-Force method guarantees a minimum vertex 

cover, its exponential complexity renders it impractical for all 
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but the smallest graphs. In contrast, both the Greedy and 2-

Approximation algorithms provide efficient, polynomial-time 

alternatives, though with differing strengths: the Greedy 

heuristic often yields optimal or near-optimal results but lacks 

a performance guarantee, whereas the 2-Approximation 

algorithm, while sometimes producing larger covers, provides 

a reliable and mathematically-proven upper bound on its 

solution size. Ultimately, the findings establish that the optimal 

choice of algorithm is not absolute but is contingent on the 

specific application's tolerance for sub-optimality versus its 

need for performance guarantees, clearly illustrating the 

practical implications of theoretical computer science 

principles. 

VII. APPENDIX 

VIDEO LINK AT YOUTUBE 

The link to the YouTube video can be found in the following: 

https://www.youtube.com/watch?v=bvgVjbuS1gY  
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