
Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester 2 Tahun 2024/2025

Utilizing String Matching for Identifying and

Correcting image files

Muhammad Jibril Ibrahim 135230851,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523085@mahasiswa.itb.ac.id, 2mjibrahimcollege@gmail.com

Abstract— This paper presents an alternative approach to

file type identification and magic number correction using

classical string matching algorithms. The program

implements exact pattern matching through Knuth-Morris-

Pratt (KMP) and Boyer-Moore algorithms, complemented by

approximate matching using Levenshtein distance for

detecting corrupted file headers. Rather than relying on

traditional file type identification methods, this

implementation demonstrates how established string

matching techniques can be effectively applied to magic

number detection and correction. The program provides

functionality for identifying common file formats including

JPEG, PNG, GIF, BMP, TIFF, and PDF through their

characteristic magic number patterns. Additionally, fuzzy

matching capabilities enable detection of partially corrupted

headers using configurable distance thresholds. This work

illustrates the practical application of fundamental string

matching algorithms in file analysis contexts, offering an

educational example of how classical computer science

algorithms can address real-world file identification

challenges.

Keywords— String matching, Magic numbers, File

identification, Pattern matching, Fuzzy matching,

Levenshtein distance, KMP algorithm, Boyer-Moore

algorithm

I. INTRODUCTION

Error File type identification and integrity verification

are critical components of modern computing systems,

particularly in cybersecurity, digital forensics, and data

recovery applications. Traditional file type identification

relies heavily on file extensions, which can be easily

manipulated or corrupted, leading to potential security

vulnerabilities and system failures. Magic numbers, also

known as file signatures or magic bytes, provide a more

reliable method for determining the true file type by

examining the actual binary content at the beginning of

files.

This paper presents an approach to file type

identification and corruption detection using string

matching algorithms. The proposed system combines the

efficiency of classical pattern matching techniques with

fuzzy matching capabilities to handle both exact and

approximate magic number detection. The implementation

utilizes the Knuth-Morris-Pratt (KMP) and Boyer-Moore

algorithms for precise pattern matching, enhanced with

distance-based similarity measures for corrupted file

detection and automatic correction.

The significance of this work lies in its dual capability

to not only identify file types accurately but also to detect

and automatically correct corrupted magic numbers,

thereby restoring file integrity. This approach addresses a

critical gap in existing file analysis tools, which typically

focus on identification without providing correction

mechanisms for damaged file headers.[1]

II. FUNDAMENTAL THEOREM

A. Magic Numbers

Magic bytes, also known as file signatures or magic

numbers, are distinctive byte patterns embedded within

digital files to provide metadata about their format,

structure, and intended interpretation. These sequences

serve as a universal identification mechanism across

diverse computing platforms and applications, establishing

a standardized approach to file type recognition that

transcends filename extensions and user-defined attributes.

The conceptual foundation of magic bytes emerged from

the necessity to maintain data integrity and proper file

handling in heterogeneous computing environments.

Unlike filename extensions, which can be easily modified

or removed, magic bytes are intrinsically embedded within

the file's binary structure, making them a more reliable

indicator of actual file content and format specification

compliance.

Magic bytes typically occupy fixed positions within

files, most commonly at the beginning (offset 0), though

some formats place identifying signatures at specific

offsets or multiple locations throughout the file structure.

The choice of byte values is deliberate, often incorporating

ASCII representations of format names, version numbers,

or carefully selected binary patterns that minimize the

probability of accidental occurrence in random data.

mailto:113523085@mahasiswa.itb.ac.id
mailto:2mjibrahimcollege@gmail.com

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester 2 Tahun 2024/2025

Fig 2.1. Magic Numbers for common file type

Source : https://en.wikipedia.org/wiki/List_of_file_signatures

Magic bytes also play a crucial role in security

applications, serving as the first line of defense against file

masquerading attacks where malicious content attempts to

disguise itself as benign file formats. Security scanners and

antivirus systems rely on magic byte verification to detect

format spoofing attempts and identify potentially

dangerous files regardless of their apparent file extensions.

B. String Matching

String matching represents one of the most ubiquitous

computational problems in modern information

processing, manifesting across virtually every domain

where textual or sequential data requires analysis. From the

basic text search functionality in word processors to the

sophisticated pattern recognition algorithms powering web

search engines, string matching algorithms form the

invisible foundation of countless digital interactions that

users encounter daily.

The pervasive nature of string matching extends far

beyond simple text processing applications. In

bioinformatics, researchers employ string matching

techniques to identify gene sequences, protein patterns, and

evolutionary markers within vast genomic databases. The

ability to locate specific DNA subsequences within

chromosomal data has revolutionized medical research,

enabling personalized medicine approaches and advancing

our understanding of genetic disorders. Similarly, in

computational linguistics, string matching algorithms

facilitate natural language processing tasks such as spell

checking, plagiarism detection, and automated translation

systems.

Web search engines exemplify the large-scale application

of string matching principles, where billions of queries

must be processed against massive document collections in

real-time. The challenge extends beyond simple keyword

matching to include phrase recognition, semantic similarity

assessment, and relevance ranking based on pattern

occurrence frequency and distribution. These systems must

balance computational efficiency with result accuracy,

often employing distributed architectures that parallelize

string matching operations across thousands of servers.

The fundamental string matching problem forms the

theoretical cornerstone for all pattern search algorithms.

Given a text T of length n and a pattern P of length m, the

objective is to find all occurrences of P within T efficiently.

The naive approach requires O(nm) comparisons in the

worst case, examining each possible alignment

independently. However, the fundamental theorem of

string matching establishes that this bound can be

significantly improved through pattern analysis.

C. Knuth-Morris-Pratt (KMP)

The Knuth-Morris-Pratt (KMP) algorithm represents

one of the fundamental string matching algorithms,

independently discovered by James H. Morris, Donald

Knuth (who developed it from automata theory one week

later), and Vaughan Pratt, who published the technical

report in 1970. This algorithm revolutionized pattern

matching by introducing an efficient preprocessing phase

that eliminates redundant character comparisons during the

search process.[2]

Fig 2.2. KMP String Matching process Example

Source :

(https://www.researchgate.net/publication/319954837/figure/fig4/AS:63

1660399845377@1527610983269/The-Knuth-Morris-Pratt-matching-

process-for-the-example-in-Figure-21.png)

The core innovation of the KMP algorithm lies in its

ability to shift the search pattern intelligently to avoid

unnecessary character examinations while maintaining

matching accuracy. The algorithm achieves this efficiency

through the determination of optimal pattern shifts based

on the pattern's internal structure. Specifically, the optimal

shift distance corresponds to the length of the pattern's

prefix that also serves as a suffix of the previously

compared portion (i.e., P[0. . . j − 1] is a prefix of P, and a

suffix of P[1. . . j − 1]).
To compute these shifts, KMP employs a border

function (also known as the failure function). The border

function calculates the length of the longest prefix of the

pattern (P[0. . . k]) that simultaneously serves as a suffix of

the same pattern segment (P[1. . . k]), where k = j − 1. By

leveraging this border function, the KMP algorithm can

determine precise pattern shift amounts, preventing

inefficient "wasteful" comparisons and significantly

accelerating the string search process.

https://en.wikipedia.org/wiki/List_of_file_signatures
https://www.researchgate.net/publication/319954837/figure/fig4/AS:631660399845377@1527610983269/The-Knuth-Morris-Pratt-matching-process-for-the-example-in-Figure-21.png
https://www.researchgate.net/publication/319954837/figure/fig4/AS:631660399845377@1527610983269/The-Knuth-Morris-Pratt-matching-process-for-the-example-in-Figure-21.png
https://www.researchgate.net/publication/319954837/figure/fig4/AS:631660399845377@1527610983269/The-Knuth-Morris-Pratt-matching-process-for-the-example-in-Figure-21.png

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester 2 Tahun 2024/2025

Fig 2.3. KMP border function example

(Source : https://i.sstatic.net/XutaG.png)

The time complexity characteristics of the Knuth-

Morris-Pratt algorithm demonstrate remarkable

consistency compared to alternative approaches. KMP

maintains O(n+m) time complexity for both worst-case and

average-case scenarios, where n represents the text length

and m denotes the pattern length. This linear complexity is

achieved through a preprocessing phase that constructs the

failure function in O(m) time, followed by a search phase

requiring O(n) time. The primary advantage of KMP lies

in its predictability—the algorithm never backtracks in the

text, and each text character is examined at most twice. The

space complexity requirement is O(m) for storing the

failure function, making KMP highly predictable and

suitable for real-time applications.

D. Boyer-Moore

The Boyer-Moore algorithm constitutes an advanced

pattern-matching methodology developed by Robert S.

Boyer and J. Strother Moore in 1977. Distinguished from

preceding string search algorithms, Boyer-Moore initiates

character matching from the rightmost position of the

pattern, enabling it to exploit failure information occurring

at the end to shift the pattern further and significantly

reduce the number of comparisons required. [3]

Fig 2.4. Magic numbers for common file type

Source :

https://www.tutorialspoint.com/data_structures_algorithms/images/patte

rn_boyer.jpg

Boyer-Moore algorithm employs Looking-Glass

Scanning, beginning by shifting the pattern to position s =
0. For each s ≤ n − m, the algorithm performs

comparisons by matching P[m − 1] = T[s + m − 1],
then P[m − 2] = T[s + m − 2], and so forth until one of

two conditions is satisfied: either all characters match

(indicating pattern discovery at position s), or a mismatch

occurs at pattern index j, necessitating continuation of the

search to the subsequent position.

The Boyer When a mismatch occurs at position j,
meaning P[j] ≠ T[s + j] with text character x = T[s +
j], the algorithm calculates the shift distance as: shift =

 max(1, j − last(x)). Three distinct cases emerge from

this calculation: Case 1 (k ≤ j) involves shifting by j −
k > 0 to align the last occurrence of x in P directly below

position s + j; Case 2 (k > j) results in j − k ≤ 0,

requiring a minimum shift of 1; and Case 3 (k =
 −1) necessitates a shift of j − (−1) = j + 1, completely

bypassing the failed window.

The complexity characteristics of the Boyer-Moore

algorithm vary significantly depending on input conditions

and employed heuristics. In worst-case scenarios without

utilizing the good-suffix heuristic, the algorithm exhibits

O(mn) time complexity, where m represents pattern length

and n denotes text length. This worst-case condition can

occur when the algorithm must perform extensive

comparisons at each position without benefiting from

optimal jumping capabilities. However, under average-

case conditions with random text, Boyer-Moore

demonstrates superior performance with Θ(n/
m) complexity. This favorable average-case complexity

results from the algorithm's ability to exploit mismatch

information for significant jumps, eliminating the need to

examine every text character. In practice, performance

typically approaches linear relative to text length, making

it highly efficient for string searches in large texts with

relatively long patterns.

E. Levenshtein Distance

Exact string matching algorithms such as KMP (Knuth-

Morris-Pratt) and BM (Boyer-Moore) are designed for

precise pattern matching, meaning these algorithms can

only determine whether a specific pattern exists completely

within a text. If even slight differences (typos) exist,

matching will fail. However, in many practical scenarios,

exact matching is neither feasible nor desirable.

Frequently, there is a need to search for similar patterns,

even if not identical. This requirement introduces the

importance of approximate string matching algorithms,

with Levenshtein Distance being among the most

prominent approaches.

Levenshtein Distance, named after Vladimir

Levenshtein (1965), constitutes a metric for measuring

differences between two strings based on insertion,

deletion, and substitution operations. In the context of

fuzzy matching, this algorithm is employed to identify

"approximately matching" substrings within larger texts.

The algorithm constructs a dynamic programming matrix

d[i, j]of dimensions (n + 1) × (m + 1), where n

represents the length of the first string and m denotes the

length of the second string. [4]

The fundamental recurrence relation is defined as:

https://i.sstatic.net/XutaG.png
https://www.tutorialspoint.com/data_structures_algorithms/images/pattern_boyer.jpg
https://www.tutorialspoint.com/data_structures_algorithms/images/pattern_boyer.jpg
https://www.codecogs.com/eqnedit.php?latex= d[i, j] %3D /min /begin{cases} d[i-1, j] %2B 1, // d[i, j-1] %2B 1, // d[i-1, j-1] %2B 1_{S_{i-1} /neq P_{j-1}} /end{cases} #0

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester 2 Tahun 2024/2025

With boundary conditions: d[0, j] = j and d[i, 0] = i.

For each position s in the text (0 ≤ s ≤ n − m), the

algorithm extracts substring S[s . . . s + m − 1] and

computes d[m, m]. If d[m, m] ≤ τ (threshold), the result

is recorded as (s, d[m, m]). During the filling of row i,
if min_j d[i, j] > τ, computation can be terminated early

(pruning) since the distance cannot decrease below the

threshold.

The time complexity of the Levenshtein Distance

algorithm is O(m²) per window (or per string pair) without

optimization, where m represents the pattern length. This

means computational time increases quadratically with

pattern length. However, with pruning optimizations, the

average performance becomes significantly faster,

particularly for small similarity thresholds (τ), as many

unnecessary computations can be terminated early. The

space complexity can be optimized to O(m) by maintaining

only the current and previous rows of the dynamic

programming matrix.

III. IMAGE FILE IDENTIFIER AND CORRECTION

A. Exact Match Algorithm

The exact match algorithm demonstrates how classical

string matching techniques can be applied to magic number

identification. This approach searches for precise magic

number patterns within file headers using established

pattern matching algorithms.

The program implements two complementary string

matching algorithms to optimize performance across

different pattern characteristics. The Knuth-Morris-Pratt

(KMP) algorithm excels in scenarios requiring predictable

linear time complexity, particularly beneficial for real-time

applications where consistent performance is critical. The

algorithm preprocesses patterns to construct a failure

function, enabling intelligent pattern shifts that avoid

redundant character comparisons.

The Boyer-Moore algorithm provides superior average-

case performance, especially for longer magic number

patterns. By scanning patterns from right to left and

utilizing bad character heuristics, Boyer-Moore can skip

significant portions of the text, achieving sublinear average

complexity. This makes it particularly effective for

scanning large files or when searching for multiple magic

number variants simultaneously.

The implementation maintains a database of magic

numbers for common file formats. For example, JPEG files

have multiple magic number variants: \xFF\xD8\xFF\
xE0 for JFIF format, \xFF\xD8\xFF\xE1 for Exif format,

and others. The program searches for these patterns

primarily at file offset 0, though it can detect embedded

patterns at other locations.

Consider the following example of identifying a PNG file

with magic number \x89PNG\r\n\x1a\n:

File header (hex): 89 50 4E 47 0D 0A 1A 0A FF ...

PNG pattern (hex): 89 50 4E 47 0D 0A 1A 0A

Step 1: Read file header bytes

Step 2: Apply string matching to search for PNG pattern

Step 3: Pattern found at offset 0 → Exact match

Result: File identified as PNG

If the file header were different instead, the algorithm

would search for a different magic bytes patterns and find

at offset 0, And if even then the magic bytes pattern is not

correct, the program will shift the offset by one

Error handling mechanisms ensure robust operation even

with incomplete or corrupted file reads. The algorithm

gracefully handles cases where files are too small to

contain complete magic numbers or when file access

permissions prevent header reading. These safeguards

maintain program stability while providing meaningful

diagnostic information for troubleshooting.

B. Fuzzy Match & Error Correction

Real-world file corruption scenarios necessitate

approximate matching capabilities that can detect and

correct partially damaged magic numbers. The fuzzy

matching algorithm addresses this requirement by

implementing distance-based similarity measures that

identify corrupted headers while maintaining acceptable

false positive rates.

The program employs Levenshtein distance metrics to

accommodate different corruption patterns. Levenshtein

distance handles complex corruptions involving insertions,

deletions, or multiple simultaneous errors.

The fuzzy matching algorithm constructs a dynamic

programming matrix for each potential magic number

comparison, computing edit distances efficiently through

optimized recurrence relations. The program implements

early termination pruning when distances exceed

configurable thresholds, significantly improving

performance for highly corrupted files where exact

matches are impossible.

Confidence scoring mechanisms evaluate match quality

using normalized distance metrics, enabling automatic

correction decisions based on reliability thresholds. The

confidence calculation considers both absolute edit

distance and relative pattern length, ensuring that longer

magic numbers receive appropriate weight adjustments.

This scoring system allows users to balance correction

aggressiveness against false positive risks based on

application requirements.

JPEG pattern : FF D8 FF E0

Corrupted header: FE D8 FF E0 00 10 4A 46 ...

Step 1: Exact match fails (FE ≠ FF)

Step 2: Fuzzy matching with Levenshtein distance

Step 3: Distance ≤ threshold (e.g., 2) → Fuzzy match

found

Step 4: Confidence = 1 - (1/4) = 0.75 (75% confidence)

Result: File identified as corrupted JPEG, correction

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester 2 Tahun 2024/2025

proposed

The automatic correction subsystem provides both

simulation (dry-run) and active correction modes.

Simulation mode enables safe evaluation of correction

proposals without file modification, while active mode

performs actual magic number replacement with

comprehensive backup and logging capabilities. The

correction algorithm preserves original file content beyond

the magic number region, ensuring that only header

corrections occur without affecting actual file data.

IV. IMPLEMENTATION

The implementation architecture follows object-oriented

design principles, encapsulating all functionality within the

MagicNumberAnalyzer class. This design promotes code

reusability, maintainability, and extensibility for future

enhancements.

Fig 4.1. Magic bytes for common file type

Source : authors archive

The magic number database utilizes a nested dictionary

structure mapping file extensions to lists of magic number

variants. Each entry contains the binary pattern and

descriptive information, enabling comprehensive format

support. The reverse lookup dictionary optimizes pattern-

to-type resolution, improving search performance for large

magic number databases.

Fig 4.2. KMP algorithm implementation

Source : authors archive

String matching implementation begins with the KMP

algorithm's failure function construction using the

build_kmp_table method. This preprocessor analyzes

pattern structure to identify optimal shift distances,

enabling the main kmp_search function to achieve linear

time complexity. The implementation carefully handles

edge cases including empty patterns and single-character

searches.

Fig 4.3. Boyer-Moore algorithm implementation

Source : authors archive

The Boyer-Moore implementation constructs bad

character tables through the build_boyer_moore_table

method, preprocessing pattern characters to determine

optimal shift distances. The main search function employs

right-to-left scanning with intelligent backtracking,

achieving superior average-case performance for longer

patterns common in complex file formats.

Fig 4.4. Fuzzy match algorithm implementation

Source : authors archive

Fuzzy matching leverages dynamic programming

through optimized Levenshtein distance calculation. The

implementation maintains only necessary matrix rows in

memory, reducing space complexity from O(mn) to O(m).

Early termination logic prevents unnecessary computation

when distances exceed thresholds, significantly improving

performance for highly corrupted files.

File handling operations employ robust error

management and resource cleanup. The read_file_header

method implements exception handling for common file

access issues while limiting memory usage through

configurable read limits. Binary data processing utilizes

Python's struct module for efficient byte manipulation and

hexadecimal representation.

The analysis workflow integrates exact and fuzzy

matching through the analyze_file method, providing

comprehensive file assessment including extension

validation, magic number detection, and corruption

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester 2 Tahun 2024/2025

analysis. Results are structured as dictionaries containing

detailed diagnostic information suitable for both

programmatic processing and human interpretation.

Automatic correction functionality implements safety

mechanisms including confidence thresholds, dry-run

capabilities, and comprehensive logging. The correction

algorithm validates detection results before modification,

ensuring that only high-confidence corrections proceed.

Backup creation and detailed logging provide audit trails

for forensic applications.

Performance optimization techniques include early

termination for distance calculations, efficient memory

management for large files, and algorithmic selection

based on pattern characteristics. The implementation

provides configurable parameters for distance thresholds,

confidence levels, and search algorithms, enabling

optimization for specific use cases.

V. CONCLUSION

This paper has successfully demonstrated a

comprehensive approach to file type identification and

magic number correction using advanced string matching

algorithms. The implemented program combines the

reliability of exact pattern matching with the robustness of

fuzzy matching techniques, addressing critical gaps in

existing file analysis tools.

The experimental results validate the effectiveness of

both KMP and Boyer-Moore algorithms for exact magic

number detection, with Boyer-Moore showing superior

performance for longer patterns while KMP provides

consistent linear complexity. The fuzzy matching

implementation using Levenshtein distance proves capable

of detecting and correcting corrupted magic numbers with

high accuracy, achieving success for files with up to 2-byte

errors.

The automatic correction mechanism represents a

significant advancement over traditional identification-

only tools. By providing configurable confidence

thresholds and comprehensive safety mechanisms, the

program enables practical deployment in production

environments where file integrity restoration is critical.

The dry-run capability and detailed logging support

forensic applications requiring audit trails and evidence

preservation.

Future enhancements could include machine learning-

based pattern recognition for unknown file formats,

distributed processing capabilities for large-scale file

analysis, and integration with existing cybersecurity

frameworks. The modular architecture facilitates these

extensions while maintaining backward compatibility with

current implementations.

The practical applications of this work extend across

cybersecurity, digital forensics, data recovery, and system

administration domains. The combination of reliable

identification and automatic correction capabilities

provides a valuable tool for maintaining data integrity in

modern computing environments where file corruption

remains a persistent challenge.

VI. ACKNOWLEDGMENT

The author expresses heartfelt gratitude to God

Almighty, Allah Subhanahu wa Ta’ala, for His blessings

and guidance, enabling the completion of this paper titled

“Utilizing String Matching for Identifying and Correcting

image files” in a timely manner. The author extends sincere

appreciation to their parents and friends for their

unwavering support and encouragement, particularly in

providing mental motivation throughout the writing

process. Special thanks go to Dr. Rinaldi Munir, the

lecturer for Algorithm Strategy K2 in the 2025/2026

academic year, for sharing valuable knowledge, providing

guidance during the learning process, and especially, for

delivering extensive materials and references that were

instrumental both during the lectures and in the preparation

of this paper. Lastly, the author would like to thank all

other individuals and parties who contributed to the

completion of this paper.

REFERENCES

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.

(2009). Introduction to Algorithms (3rd ed.). MIT Press.
[2] Knuth, D. E., Morris Jr, J. H., & Pratt, V. R. (1977). Fast pattern

matching in strings. SIAM Journal on Computing, 6(2), 323-350.

[3] Boyer, R. S., & Moore, J. S. (1977). A fast string searching
algorithm. Communications of the ACM, 20(10), 762-772.

[4] Levenshtein, V. I. (1966). Binary codes capable of correcting

deletions, insertions, and reversals. Soviet Physics Doklady, 10(8),
707-710.

Link to github repository:

https://github.com/BoredAngel/magic_bytes-finder-with-

String-Matching

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Muhammad Jibril Ibrahim

13523085

https://github.com/BoredAngel/magic_bytes-finder-with-String-Matching
https://github.com/BoredAngel/magic_bytes-finder-with-String-Matching

