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Abstract— This paper presents an alternative approach to 

file type identification and magic number correction using 

classical string matching algorithms. The program 

implements exact pattern matching through Knuth-Morris-

Pratt (KMP) and Boyer-Moore algorithms, complemented by 

approximate matching using Levenshtein distance for 

detecting corrupted file headers. Rather than relying on 

traditional file type identification methods, this 

implementation demonstrates how established string 

matching techniques can be effectively applied to magic 

number detection and correction. The program provides 

functionality for identifying common file formats including 

JPEG, PNG, GIF, BMP, TIFF, and PDF through their 

characteristic magic number patterns. Additionally, fuzzy 

matching capabilities enable detection of partially corrupted 

headers using configurable distance thresholds. This work 

illustrates the practical application of fundamental string 

matching algorithms in file analysis contexts, offering an 

educational example of how classical computer science 

algorithms can address real-world file identification 

challenges. 
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I.   INTRODUCTION 

Error File type identification and integrity verification 

are critical components of modern computing systems, 

particularly in cybersecurity, digital forensics, and data 

recovery applications. Traditional file type identification 

relies heavily on file extensions, which can be easily 

manipulated or corrupted, leading to potential security 

vulnerabilities and system failures. Magic numbers, also 

known as file signatures or magic bytes, provide a more 

reliable method for determining the true file type by 

examining the actual binary content at the beginning of 

files. 

This paper presents an approach to file type 

identification and corruption detection using string 

matching algorithms. The proposed system combines the 

efficiency of classical pattern matching techniques with 

fuzzy matching capabilities to handle both exact and 

approximate magic number detection. The implementation 

utilizes the Knuth-Morris-Pratt (KMP) and Boyer-Moore 

algorithms for precise pattern matching, enhanced with 

distance-based similarity measures for corrupted file 

detection and automatic correction. 

The significance of this work lies in its dual capability 

to not only identify file types accurately but also to detect 

and automatically correct corrupted magic numbers, 

thereby restoring file integrity. This approach addresses a 

critical gap in existing file analysis tools, which typically 

focus on identification without providing correction 

mechanisms for damaged file headers.[1] 

 

II.   FUNDAMENTAL THEOREM 

A. Magic Numbers 

Magic bytes, also known as file signatures or magic 

numbers, are distinctive byte patterns embedded within 

digital files to provide metadata about their format, 

structure, and intended interpretation. These sequences 

serve as a universal identification mechanism across 

diverse computing platforms and applications, establishing 

a standardized approach to file type recognition that 

transcends filename extensions and user-defined attributes. 

The conceptual foundation of magic bytes emerged from 

the necessity to maintain data integrity and proper file 

handling in heterogeneous computing environments. 

Unlike filename extensions, which can be easily modified 

or removed, magic bytes are intrinsically embedded within 

the file's binary structure, making them a more reliable 

indicator of actual file content and format specification 

compliance. 

Magic bytes typically occupy fixed positions within 

files, most commonly at the beginning (offset 0), though 

some formats place identifying signatures at specific 

offsets or multiple locations throughout the file structure. 

The choice of byte values is deliberate, often incorporating 

ASCII representations of format names, version numbers, 

or carefully selected binary patterns that minimize the 

probability of accidental occurrence in random data. 
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Fig 2.1. Magic Numbers for common file type 

Source : https://en.wikipedia.org/wiki/List_of_file_signatures 

 

Magic bytes also play a crucial role in security 

applications, serving as the first line of defense against file 

masquerading attacks where malicious content attempts to 

disguise itself as benign file formats. Security scanners and 

antivirus systems rely on magic byte verification to detect 

format spoofing attempts and identify potentially 

dangerous files regardless of their apparent file extensions. 

 

 

B. String Matching 

String matching represents one of the most ubiquitous 

computational problems in modern information 

processing, manifesting across virtually every domain 

where textual or sequential data requires analysis. From the 

basic text search functionality in word processors to the 

sophisticated pattern recognition algorithms powering web 

search engines, string matching algorithms form the 

invisible foundation of countless digital interactions that 

users encounter daily. 

The pervasive nature of string matching extends far 

beyond simple text processing applications. In 

bioinformatics, researchers employ string matching 

techniques to identify gene sequences, protein patterns, and 

evolutionary markers within vast genomic databases. The 

ability to locate specific DNA subsequences within 

chromosomal data has revolutionized medical research, 

enabling personalized medicine approaches and advancing 

our understanding of genetic disorders. Similarly, in 

computational linguistics, string matching algorithms 

facilitate natural language processing tasks such as spell 

checking, plagiarism detection, and automated translation 

systems. 

Web search engines exemplify the large-scale application 

of string matching principles, where billions of queries 

must be processed against massive document collections in 

real-time. The challenge extends beyond simple keyword 

matching to include phrase recognition, semantic similarity 

assessment, and relevance ranking based on pattern 

occurrence frequency and distribution. These systems must 

balance computational efficiency with result accuracy, 

often employing distributed architectures that parallelize 

string matching operations across thousands of servers. 

The fundamental string matching problem forms the 

theoretical cornerstone for all pattern search algorithms. 

Given a text T of length n and a pattern P of length m, the 

objective is to find all occurrences of P within T efficiently. 

The naive approach requires O(nm) comparisons in the 

worst case, examining each possible alignment 

independently. However, the fundamental theorem of 

string matching establishes that this bound can be 

significantly improved through pattern analysis. 

 

C. Knuth-Morris-Pratt (KMP) 

The Knuth-Morris-Pratt (KMP) algorithm represents 

one of the fundamental string matching algorithms, 

independently discovered by James H. Morris, Donald 

Knuth (who developed it from automata theory one week 

later), and Vaughan Pratt, who published the technical 

report in 1970. This algorithm revolutionized pattern 

matching by introducing an efficient preprocessing phase 

that eliminates redundant character comparisons during the 

search process.[2] 

 

 
Fig 2.2. KMP String Matching process Example 

Source : 

(https://www.researchgate.net/publication/319954837/figure/fig4/AS:63

1660399845377@1527610983269/The-Knuth-Morris-Pratt-matching-

process-for-the-example-in-Figure-21.png) 

 

The core innovation of the KMP algorithm lies in its 

ability to shift the search pattern intelligently to avoid 

unnecessary character examinations while maintaining 

matching accuracy. The algorithm achieves this efficiency 

through the determination of optimal pattern shifts based 

on the pattern's internal structure. Specifically, the optimal 

shift distance corresponds to the length of the pattern's 

prefix that also serves as a suffix of the previously 

compared portion (i.e., P[0. . . j − 1] is a prefix of P, and a 

suffix of P[1. . . j − 1]). 
To compute these shifts, KMP employs a border 

function (also known as the failure function). The border 

function calculates the length of the longest prefix of the 

pattern (P[0. . . k]) that simultaneously serves as a suffix of 

the same pattern segment (P[1. . . k]), where k =  j − 1. By 

leveraging this border function, the KMP algorithm can 

determine precise pattern shift amounts, preventing 

inefficient "wasteful" comparisons and significantly 

accelerating the string search process. 
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Fig 2.3. KMP border function example 

(Source : https://i.sstatic.net/XutaG.png) 

 

The time complexity characteristics of the Knuth-

Morris-Pratt algorithm demonstrate remarkable 

consistency compared to alternative approaches. KMP 

maintains O(n+m) time complexity for both worst-case and 

average-case scenarios, where n represents the text length 

and m denotes the pattern length. This linear complexity is 

achieved through a preprocessing phase that constructs the 

failure function in O(m) time, followed by a search phase 

requiring O(n) time. The primary advantage of KMP lies 

in its predictability—the algorithm never backtracks in the 

text, and each text character is examined at most twice. The 

space complexity requirement is O(m) for storing the 

failure function, making KMP highly predictable and 

suitable for real-time applications. 

 

D. Boyer-Moore 

The Boyer-Moore algorithm constitutes an advanced 

pattern-matching methodology developed by Robert S. 

Boyer and J. Strother Moore in 1977. Distinguished from 

preceding string search algorithms, Boyer-Moore initiates 

character matching from the rightmost position of the 

pattern, enabling it to exploit failure information occurring 

at the end to shift the pattern further and significantly 

reduce the number of comparisons required. [3] 

 

 
Fig 2.4. Magic numbers for common file type 

Source : 

https://www.tutorialspoint.com/data_structures_algorithms/images/patte

rn_boyer.jpg 

 

Boyer-Moore algorithm employs Looking-Glass 

Scanning, beginning by shifting the pattern to position s =
0. For each s ≤  n − m, the algorithm performs 

comparisons by matching P[m − 1]  =  T[s + m − 1], 
then P[m − 2]  =  T[s + m − 2], and so forth until one of 

two conditions is satisfied: either all characters match 

(indicating pattern discovery at position s), or a mismatch 

occurs at pattern index j, necessitating continuation of the 

search to the subsequent position. 

The Boyer When a mismatch occurs at position j, 
meaning P[j]  ≠  T[s + j] with text character x =  T[s +
j], the algorithm calculates the shift distance as: shift =

 max(1, j −  last(x)). Three distinct cases emerge from 

this calculation: Case 1 (k ≤  j) involves shifting by j −
k >  0 to align the last occurrence of x in P directly below 

position s + j; Case 2 (k >  j) results in j − k ≤  0, 

requiring a minimum shift of 1; and Case 3 (k =
 −1) necessitates a shift of j − (−1)  =  j + 1, completely 

bypassing the failed window. 

The complexity characteristics of the Boyer-Moore 

algorithm vary significantly depending on input conditions 

and employed heuristics. In worst-case scenarios without 

utilizing the good-suffix heuristic, the algorithm exhibits 

O(mn) time complexity, where m represents pattern length 

and n denotes text length. This worst-case condition can 

occur when the algorithm must perform extensive 

comparisons at each position without benefiting from 

optimal jumping capabilities. However, under average-

case conditions with random text, Boyer-Moore 

demonstrates superior performance with Θ(n/
m) complexity. This favorable average-case complexity 

results from the algorithm's ability to exploit mismatch 

information for significant jumps, eliminating the need to 

examine every text character. In practice, performance 

typically approaches linear relative to text length, making 

it highly efficient for string searches in large texts with 

relatively long patterns. 

 

E. Levenshtein Distance 

Exact string matching algorithms such as KMP (Knuth-

Morris-Pratt) and BM (Boyer-Moore) are designed for 

precise pattern matching, meaning these algorithms can 

only determine whether a specific pattern exists completely 

within a text. If even slight differences (typos) exist, 

matching will fail. However, in many practical scenarios, 

exact matching is neither feasible nor desirable. 

Frequently, there is a need to search for similar patterns, 

even if not identical. This requirement introduces the 

importance of approximate string matching algorithms, 

with Levenshtein Distance being among the most 

prominent approaches. 

Levenshtein Distance, named after Vladimir 

Levenshtein (1965), constitutes a metric for measuring 

differences between two strings based on insertion, 

deletion, and substitution operations. In the context of 

fuzzy matching, this algorithm is employed to identify 

"approximately matching" substrings within larger texts. 

The algorithm constructs a dynamic programming matrix 

d[i, j]of dimensions (n + 1) × (m + 1), where n 

represents the length of the first string and m denotes the 

length of the second string. [4] 

The fundamental recurrence relation is defined as: 
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With boundary conditions: d[0, j] =  j and d[i, 0]  =  i. 
 

For each position s in the text (0 ≤  s ≤  n − m), the 

algorithm extracts substring S[s . . .  s + m − 1] and 

computes d[m, m]. If d[m, m]  ≤  τ (threshold), the result 

is recorded as (s, d[m, m]). During the filling of row i, 
if min_j d[i, j]  >  τ, computation can be terminated early 

(pruning) since the distance cannot decrease below the 

threshold. 

The time complexity of the Levenshtein Distance 

algorithm is O(m²) per window (or per string pair) without 

optimization, where m represents the pattern length. This 

means computational time increases quadratically with 

pattern length. However, with pruning optimizations, the 

average performance becomes significantly faster, 

particularly for small similarity thresholds (τ), as many 

unnecessary computations can be terminated early. The 

space complexity can be optimized to O(m) by maintaining 

only the current and previous rows of the dynamic 

programming matrix. 

 

III.   IMAGE FILE IDENTIFIER AND CORRECTION 

A. Exact Match Algorithm 

The exact match algorithm demonstrates how classical 

string matching techniques can be applied to magic number 

identification. This approach searches for precise magic 

number patterns within file headers using established 

pattern matching algorithms.  

The program implements two complementary string 

matching algorithms to optimize performance across 

different pattern characteristics. The Knuth-Morris-Pratt 

(KMP) algorithm excels in scenarios requiring predictable 

linear time complexity, particularly beneficial for real-time 

applications where consistent performance is critical. The 

algorithm preprocesses patterns to construct a failure 

function, enabling intelligent pattern shifts that avoid 

redundant character comparisons. 

The Boyer-Moore algorithm provides superior average-

case performance, especially for longer magic number 

patterns. By scanning patterns from right to left and 

utilizing bad character heuristics, Boyer-Moore can skip 

significant portions of the text, achieving sublinear average 

complexity. This makes it particularly effective for 

scanning large files or when searching for multiple magic 

number variants simultaneously. 

The implementation maintains a database of magic 

numbers for common file formats. For example, JPEG files 

have multiple magic number variants: \xFF\xD8\xFF\
xE0 for JFIF format, \xFF\xD8\xFF\xE1 for Exif format, 

and others. The program searches for these patterns 

primarily at file offset 0, though it can detect embedded 

patterns at other locations.  

Consider the following example of identifying a PNG file 

with magic number \x89PNG\r\n\x1a\n: 

 

File header (hex): 89 50 4E 47 0D 0A 1A 0A FF ... 

PNG pattern (hex): 89 50 4E 47 0D 0A 1A 0A 

 

Step 1: Read file header bytes  

Step 2: Apply string matching to search for PNG pattern  

Step 3: Pattern found at offset 0 → Exact match 

Result: File identified as PNG 

 

If the file header were different instead, the algorithm 

would search for a different magic bytes patterns and find 

at offset 0, And if even then the magic bytes pattern is not 

correct, the program will shift the offset by one 

Error handling mechanisms ensure robust operation even 

with incomplete or corrupted file reads. The algorithm 

gracefully handles cases where files are too small to 

contain complete magic numbers or when file access 

permissions prevent header reading. These safeguards 

maintain program stability while providing meaningful 

diagnostic information for troubleshooting. 

 

B. Fuzzy Match & Error Correction 

Real-world file corruption scenarios necessitate 

approximate matching capabilities that can detect and 

correct partially damaged magic numbers. The fuzzy 

matching algorithm addresses this requirement by 

implementing distance-based similarity measures that 

identify corrupted headers while maintaining acceptable 

false positive rates. 

The program employs Levenshtein distance metrics to 

accommodate different corruption patterns. Levenshtein 

distance handles complex corruptions involving insertions, 

deletions, or multiple simultaneous errors. 

The fuzzy matching algorithm constructs a dynamic 

programming matrix for each potential magic number 

comparison, computing edit distances efficiently through 

optimized recurrence relations. The program implements 

early termination pruning when distances exceed 

configurable thresholds, significantly improving 

performance for highly corrupted files where exact 

matches are impossible. 

Confidence scoring mechanisms evaluate match quality 

using normalized distance metrics, enabling automatic 

correction decisions based on reliability thresholds. The 

confidence calculation considers both absolute edit 

distance and relative pattern length, ensuring that longer 

magic numbers receive appropriate weight adjustments. 

This scoring system allows users to balance correction 

aggressiveness against false positive risks based on 

application requirements. 

 

JPEG pattern      :  FF D8 FF E0 

Corrupted header: FE D8 FF E0 00 10 4A 46 ...              

 

Step 1: Exact match fails (FE ≠ FF) 

Step 2: Fuzzy matching with Levenshtein distance 

Step 3: Distance ≤ threshold (e.g., 2) → Fuzzy match 

found 

Step 4: Confidence = 1 - (1/4) = 0.75 (75% confidence) 

Result: File identified as corrupted JPEG, correction 
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proposed 

 

The automatic correction subsystem provides both 

simulation (dry-run) and active correction modes. 

Simulation mode enables safe evaluation of correction 

proposals without file modification, while active mode 

performs actual magic number replacement with 

comprehensive backup and logging capabilities. The 

correction algorithm preserves original file content beyond 

the magic number region, ensuring that only header 

corrections occur without affecting actual file data. 

 

IV.   IMPLEMENTATION 

The implementation architecture follows object-oriented 

design principles, encapsulating all functionality within the 

MagicNumberAnalyzer class. This design promotes code 

reusability, maintainability, and extensibility for future 

enhancements. 

 

 
Fig 4.1. Magic bytes for common file type 

Source : authors archive 

 

The magic number database utilizes a nested dictionary 

structure mapping file extensions to lists of magic number 

variants. Each entry contains the binary pattern and 

descriptive information, enabling comprehensive format 

support. The reverse lookup dictionary optimizes pattern-

to-type resolution, improving search performance for large 

magic number databases. 

 

 
Fig 4.2. KMP algorithm implementation 

Source : authors archive 

 

String matching implementation begins with the KMP 

algorithm's failure function construction using the 

build_kmp_table method. This preprocessor analyzes 

pattern structure to identify optimal shift distances, 

enabling the main kmp_search function to achieve linear 

time complexity. The implementation carefully handles 

edge cases including empty patterns and single-character 

searches. 

 

 
Fig 4.3. Boyer-Moore algorithm implementation 

Source : authors archive 

 

The Boyer-Moore implementation constructs bad 

character tables through the build_boyer_moore_table 

method, preprocessing pattern characters to determine 

optimal shift distances. The main search function employs 

right-to-left scanning with intelligent backtracking, 

achieving superior average-case performance for longer 

patterns common in complex file formats. 

 

 
Fig 4.4. Fuzzy match algorithm implementation 

Source : authors archive 

 

Fuzzy matching leverages dynamic programming 

through optimized Levenshtein distance calculation. The 

implementation maintains only necessary matrix rows in 

memory, reducing space complexity from O(mn) to O(m). 

Early termination logic prevents unnecessary computation 

when distances exceed thresholds, significantly improving 

performance for highly corrupted files. 

File handling operations employ robust error 

management and resource cleanup. The read_file_header 

method implements exception handling for common file 

access issues while limiting memory usage through 

configurable read limits. Binary data processing utilizes 

Python's struct module for efficient byte manipulation and 

hexadecimal representation. 

The analysis workflow integrates exact and fuzzy 

matching through the analyze_file method, providing 

comprehensive file assessment including extension 

validation, magic number detection, and corruption 
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analysis. Results are structured as dictionaries containing 

detailed diagnostic information suitable for both 

programmatic processing and human interpretation. 

Automatic correction functionality implements safety 

mechanisms including confidence thresholds, dry-run 

capabilities, and comprehensive logging. The correction 

algorithm validates detection results before modification, 

ensuring that only high-confidence corrections proceed. 

Backup creation and detailed logging provide audit trails 

for forensic applications. 

Performance optimization techniques include early 

termination for distance calculations, efficient memory 

management for large files, and algorithmic selection 

based on pattern characteristics. The implementation 

provides configurable parameters for distance thresholds, 

confidence levels, and search algorithms, enabling 

optimization for specific use cases. 

 

V.   CONCLUSION 

This paper has successfully demonstrated a 

comprehensive approach to file type identification and 

magic number correction using advanced string matching 

algorithms. The implemented program combines the 

reliability of exact pattern matching with the robustness of 

fuzzy matching techniques, addressing critical gaps in 

existing file analysis tools. 

The experimental results validate the effectiveness of 

both KMP and Boyer-Moore algorithms for exact magic 

number detection, with Boyer-Moore showing superior 

performance for longer patterns while KMP provides 

consistent linear complexity. The fuzzy matching 

implementation using Levenshtein distance proves capable 

of detecting and correcting corrupted magic numbers with 

high accuracy, achieving success for files with up to 2-byte 

errors. 

The automatic correction mechanism represents a 

significant advancement over traditional identification-

only tools. By providing configurable confidence 

thresholds and comprehensive safety mechanisms, the 

program enables practical deployment in production 

environments where file integrity restoration is critical. 

The dry-run capability and detailed logging support 

forensic applications requiring audit trails and evidence 

preservation. 

Future enhancements could include machine learning-

based pattern recognition for unknown file formats, 

distributed processing capabilities for large-scale file 

analysis, and integration with existing cybersecurity 

frameworks. The modular architecture facilitates these 

extensions while maintaining backward compatibility with 

current implementations. 

The practical applications of this work extend across 

cybersecurity, digital forensics, data recovery, and system 

administration domains. The combination of reliable 

identification and automatic correction capabilities 

provides a valuable tool for maintaining data integrity in 

modern computing environments where file corruption 

remains a persistent challenge. 
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Link  to github repository: 

https://github.com/BoredAngel/magic_bytes-finder-with-

String-Matching 
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