
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Use of BFS and DFS Algorithms for Solving the

Rescue Plan Puzzle Toy

Sebastian Hung Yansen - 13523070

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: sebastianhung25@gmail.com , 13523070@std.stei.itb.ac.id

Abstract—This paper explores the use of search algorithms,

namely BFS and DFS, for solving the Rescue Plan puzzle toy

through graph traversal. BFS searches neighboring nodes within

a graph whilst DFS searches a specific path as deep as possible.

By modelling the puzzle as a state-space graph, both algorithms

are implemented, tested, and compared with each other. The

results show that both methods are equally effective but their

performance varies based on the puzzle’s complexity. BFS

guarantees the shortest path to the solution and excels on shallow

puzzles though suffers when met with a deep and branching

graph. DFS does not guarantee the shortest path but it can be

more efficient in terms of memory and runtime especially for

deeper graphs.

Keywords—Graph Traversal; BFS; DFS; State-Space Search

I. INTRODUCTION

Graph traversal has been used in many cases of problem
solving. Some of them are simple while others are more
complex. Graph traversal, however, is commonly used for
pathfinding. Even problems, that from a glance don’t look like
it can be solved using graph traversals, can actually be solved
using pathfinding. These problems exist within our daily lives
and we always meet them every day including the things we
own like toys.

Toys appeal to people of many ages including children.
Toys are intrinsically motivating, says Abrams and Kaufmann
[4]. As playing with toys can set the foundation for reading,
writing, and mathematical reasoning, a lot of toys are focused
on developing problem-solving skills in children from an early
age. In the National Association for the Education of Young
Children journal, an article was written by Segatti, Du-Paul,
and Keyes who state that children innovate with toys and these
innovations are signs that children are learning to use their
thinking skills to solve problems [4]. Therefore, many toys that
are focused on problem-solving are made even to this day.
These toys have certain attributes that benefits those who play
with it.

Some of these toys, although made for children, can be
solved through algorithms that make use of graph traversal.
One of these toys is called Rescue Plan. The puzzle in the toy
is setup where there are lifeboats and sinking passengers at sea.
The player moves the lifeboats to rescue all the passengers
from the water. The puzzle is solved when all the sinking
passengers are seated safely in a lifeboat.

Fig. 1.1. Rescue Plan Puzzle Toy

The challenge comes from the size of the board as well as
how free the lifeboats can go. On top of that, the player must
think about what order the passengers must climb on to the
lifeboat as to not anchor the lifeboat and block the other
lifeboats from saving other passengers as well as which
lifeboat should pick up which passengers. On harder
difficulties, it becomes much harder with the number of
passengers and lifeboats in play.

With the amount of freedom the lifeboats can move, it
might seem daunting to map out the problem. However, it is
possible to solve this problem with graph traversal using a state
space graph that represents the states of the board itself. This
paper will discuss and explore how BFS and DFS algorithms
can be used to solve the Rescue Plan puzzle. This paper will
also analyze and compare both applications of the algorithms,
demonstrating the performance trade-offs between the two
algorithms through testing and experimentation.

II. THEORETICAL BASIS

A. Graphs

According to Das, R., & Soylu, M., Graphs themselves
serve as powerful mathematical representations for modelling
relationships, networks, as well as structures within diverse
domains. A variety of algorithms have been made with each of

mailto:sebastianhung25@gmail.com
mailto:13523070@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

them designed to address specific graph-related problems. A
graph represents data in an organized way through a diagram.
The diagram shows the relationship between nodes using
Vertices as nodes and Edges as lines that connect between
nodes. A single graph G is defined as G = (V, E) as shown
below

Fig. 2.1. Graph representation using Vertices and Edges

Source:
https://www.w3schools.com/dsa/dsa_theory_graphs.php

These vertices and edges can represent different things
from intersections on a road all the way to computer networks.
Another thing a graph can represent are states of a certain
thing, called a state space graph. A state space graph is a graph
that is constructed with vertices representing states and edges
representing transitions between each state that connect from a
state to its successors. These states are only represented once
within a single graph.

B. Graph Traversal

Graph traversal is the process of exploring vertex values in
a graph data structure. Most search algorithms are used to solve
graph problems by examining every vertex and every edge.

Search algorithms themselves have a few properties to keep
in mind when comparing with one another. These properties
include completeness, optimality, time complexity, and space
complexity. Completeness addresses whether an algorithm
guarantees it will find a solution if at least one exists. For a
finite graph with no cycles, most traversal algorithms are
complete. Optimality represents if a solution is guaranteed to
be the best solution out of all, typically the one with the lowest
path cost. Time complexity is a measure of time for an
algorithm to complete its task. Space complexity is the
maximum storage space required during the search; it also
more or less represents the complexity of the problem. This is
often a critical factor in large state-space graphs where storing
visited nodes or the frontier of nodes to be explored can
become very demanding.

When an algorithm traverses a graph, it effectively unrolls
the graph's connections to form a search tree. The root of this
tree is the initial state, its branches represent the actions or
moves, and the nodes represent the states reached during the
search process. This search tree is a representation of the actual
paths explored by an algorithm, which can be a subset of the

entire state-space graph. The strategy an algorithm uses to
build and explore this tree is what differentiates one from
another.

Mainly there are two types of graph traversal techniques or
search algorithms: Breadth First Search and Depth First
Search.

C. BFS

Breadth First Search or BFS is a graph traversal algorithm

that explores all neighboring nodes at the present depth level

before moving on to the other nodes on the next depth level.

Assuming G(V, E) is a graph, applying breadth first search is

as follows:

1. Designate a starting vertex (v)

2. Visit all neighboring vertices from v that are

connected with an edge

3. Visit the other neighboring vertices that haven’t been

visited and continue the process until a specific vertex

is found or all vertices have been visited.

D. DFS

Depth First Search of DFS is another graph traversal

algorithm that explores a specific path or branch as far as

possible before backtracking to the previous vertex. Assuming

G(V, E) is a graph, applying depth first search is as follows:

1. Designate a starting vertex (v)

2. Pick a path connected to v and traverse it

3. Continue to traverse it until a specific vertex is found

or until a dead end is met

4. If traversing a path meets a dead end, backtrack and

go down an unexplored path

5. This process repeats until a specific vertex is found or

all vertices have been visited.

E. Comparison Between BFS and DFS

Aside from how each algorithm explores a graph in their

own ways, there are other comparisons that can be seen

between them. From the perspective of data structures, DFS

utilizes a stack. A stack is a special kind of list in which all

insertions and deletions take place at one end, called the ‘top’

[1]. Another name for a stack is a “LIFO” or “last-in first-out”

list. On the other hand, BFS utilizes a queue, another special

kind of list where items are inserted at the end (the rear) and

deleted at the other end (the front) [1]. A queue has a different

name called “FIFO” or “first-in first-out”.

Aside from its’ data structure, both BFS and DFS have

other differences. Because BFS uses a queue system, large

graphs can be very demanding as it has to store all the nodes at

a certain level of depth in the queue. DFS uses a stack and

doesn’t need to store every vertex like in BFS and consumes

less memory than BFS. However, because DFS searches a

specific path as deep as possible, there’s a chance that it won’t

find the shortest path within a graph. BFS is more fitting for

finding the shortest path in a graph. Finally, the space

complexity for both BFS and DFS are different. Both have a

space complexity of O(V) but V in DFS represents the

maximum depth whilst V in BFS represents the maximum

https://www.w3schools.com/dsa/dsa_theory_graphs.php

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

TestCase.txt

.P...P

B<A..P

B..P^.

VP..C.

....C.

......

function solveBFS(initialState)

 let frontier be a new Queue

 let explored be a new Set

 let startNode be a new Node

containing initialState

 add startNode to frontier

 add initialState to explored

 while frontier is not empty

 let currentNode <- remove front

item from frontier

 if currentNode's state is the

goal

 return the path from

currentNode

 end if

 for each successorState from

currentNode's state

 if explored does not

contain successorState

 add successorState to

explored

 let newNode be a new

Node containing successorState and

currentNode

 add newNode to

frontier

 end if

 end for

 end while

 return No Solution Found

end function

number of nodes at a single level in the search. This

distinction is critical as BFS may consume more memory in a

wide and shallow graph whilst in a narrow and deep graph,

DFS remain memory-efficient. Aside from those differences,

BFS and DFS is similar in completeness as both algorithms

will search the entire graph and return a solution if it exists as

well as time complexity of O(V + E) where V represents the

number of nodes whilst E represents the number of edges.

Both BFS and DFS also falls in the category of

Uninformed search or blind search. What it means is that both

algorithms explore a graph without any specific knowledge

about the entire graph nor the goal or path to reach the goal.

They only have information on how to traverse the graph and

identify nodes and goal nodes.

III. IMPLEMENTATION

First and foremost, the player positions the lifeboats and the
passengers however they like or according to the challenge
cards that the toy provides. Once the lifeboats and passengers
are in position, the player can start playing and saving the
sinking passengers. Each boat may move forwards, backwards,
or drift from side-to-side and cannot turn nor move diagonally.
When a sinking passenger is close enough to a lifeboat, they
can and will climb aboard the lifeboat. The passengers may not
switch positions and when a lifeboat is full, it must remain
anchored to the spot and cannot move anymore.

We will be defining and mapping a few theories towards
the puzzle itself. First and foremost, we will be using states.
Each state saves and encapsulates the entire board and
represents the current position of the lifeboats as well as the
current position of the remaining sinking passengers. The
positions themselves are represented using x and y coordinates
on the board. We will be using a few of the challenge cards that
shows the position of each passenger and lifeboats for its initial
state. Its’ final state is met when every passenger has
successfully been picked up by the lifeboats. The transitions
between each state (or in the case of graphs, the edges)
represent valid moves. The valid moves that are allowed
follows the games’ rules where the lifeboats are allowed to
move up, down, left, and right as long as it’s not blocked by a
passenger or another lifeboat.

For its’ implementation, we will be using the java
programming language that models the puzzle as a state space
graph and uses the search algorithms mentioned in Chapter II.
We have classes for each object which consists of lifeboats,
passengers, coordinates, and the state. We also have classes for
solving, moving the lifeboats, and the main class. The state
class stores the lifeboats and the passengers using a List. On
top of that, the state class stores hashes for performance and to
keep track of visited states.

For reading the initial state of the board, the program will
read from a txt file which consists of dots and letters to
represent each lifeboat and passenger. An example can be seen
below

 The search process begins with processing the initial state
from the provided txt file. The program then solves the initial
state using the selected algorithm, generating successors and
exploring them until a goal state is found. Both algorithms use
a set to keep track of the visited states as to prevent infinite
loops in the graph traversal itself. The goal state is reached
when the number of sinking passengers on the boat reaches
zero.

 Each vertex or node stores a state and the reference to its
parent. Once the goal state has been found, a method is called
to walk back from the goal state all the way to the initial state
to reconstruct the path and represent the solution path itself.

A. BFS Implementation

The BFS implementation uses a queue as it explores all

neighbors at the current depth before moving to the next level.

the pseudocode is detailed in Fig 3.1.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

function solveDFS(initialState)

 let frontier be a new Stack

 let explored be a new Set

 let startNode be a new Node

containing initialState

 push startNode onto frontier

 while frontier is not empty

 let currentNode <- pop item from

frontier

 if explored contains

currentNode's state

 continue to next loop

iteration

 end if

 add currentNode's state to

explored

 if currentNode's state is the

goal

 return the path from

currentNode

 end if

 let successors be the list of

next states from currentNode's state

 reverse the order of successors

 for each successorState in

successors

 if explored does not

contain successorState

 let newNode be a new

Node containing successorState and

currentNode

 push newNode onto

frontier

 end if

 end for

 end while

 return No Solution Found

end function

Fig. 3.1. BFS Logic Implementation

B. DFS Implementation

The DFS implementation uses a stack as it explores a

single path as deeply as possible before backtracking. The

pseudocode is detailed in Fig 3.2.

Fig. 3.2. DFS Logic Implementation

IV. EXPERIMENT

The initial state we will be using is taken from the txt file

from the previous chapter with 3 lifeboats and 5 sinking

passengers. We will be testing it with both DFS as well as

BFS and we will compare the runtime and the number of

nodes (in this case, steps) to reach the goal state.

Fig. 4.1. BFS TestCase1 Results

Fig. 4.2. DFS TestCase2 Results

As shown, DFS was marginally slower than BFS by 32

milliseconds. While small, it shows that both BFS and DFS

have a clear difference. The shorter runtime indicates the

optimal path to the solution is shallow and is not too deep. Not

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

TestCase2.txt

^.P.P.

A..P..

A..<BB

...P..

......

..........C.

......

only that, the number of steps shown in BFS is smaller than

the one shown in DFS.

Does this mean that BFS automatically always provide the

best path with the shortest time? Not necessarily. Take for

instance, this the following initial state

At a glance, it looks much more simpler than the one

before. But when we try to solve it with both DFS BFS, the

reuslts are almost different with the testcase from before.

Fig. 4.3. BFS TestCase2 Results

Fig. 4.4. DFS TestCase2 Results

It turns out that the runtime for DFS is shorter than BFS.

This is not a mistake as it can happen depending on how the

graph is shaped. If we take a look at Fig 4.4, it took DFS 229

moves or steps to find the goal state whilst BFS only took 29.

According to a comparison of traversal strategies between

DFS and BFS, DFS is more effective in memory-constrained

settings and deep searches whilst BFS is better at discovering

the shortest paths and providing comprehensive coverage [8].

The faster runtime for DFS, despite finding a much longer

path, indicates that BFS was slowed down by the number of

states it had to store and traverse at each level. DFS was able

to explore a single path to a solution more quickly, avoiding

the combinatorial explosion that hampered BFS. These results

can be further improved by using variations of DFS and BFS

or by using a heuristic approach. This way, it is possible to

‘indirectly’ lead the algorithms towards the goal state and

therefore the algorithm won’t need to check pointless states.

V. CONCLUSION

Algorithm strategies provide general approaches in solving

problems algorithmically so that it can be applied to various

problems. Based on the analysis, implementation, as well as

the experimentation that has been done, it can be concluded

that both DFS and BFS are reliable and effective searching

algorithms within a graph. Their performance is highly

dependent on the puzzle’s structure. The experiment

demonstrates that BFS is superior in finding the shortest and

most optimal path to the solution and is most efficient on

puzzles with shallow solution depths. Conversely, DFS can

outperform BFS in terms of runtime on puzzles with high

branching factors, proving more effective when memory

efficiency is critical even if it returns a non-optimal path. As

such, there is no single ‘best’ algorithm as each algorithm has

its own trade-offs between time complexity, space complexity,

as well as the solution optimality that people must consider.

There are many more search algorithms out there that can

be used other than BFS and DFS, even better ones. Even so,

both BFS and DFS are still fundamental to the study of

algorithms for their simplicity and clear trade-offs making

them essential tools for problem solving. A clear direction for

future work would be to implement and compare different

algorithms such as A*, UCS, and even Greedy Best First

Search.

ACKNOWLEDGMENT

The writer of this paper would like to thank the Lord for
His guidance and mercy for giving me the ability and strength
to finish this paper. The writer would also like to thank their
parents, friends, and lecturer for their support in knowledge and
material. The writer is grateful to everyone that they’ve met
and those who’ve helped the writer go through tough parts of
their life.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

REFERENCES

[1] J. E. Hopcroft, J. D. Ullman, and A. V. Aho, Data structures and
Algorithms. Boston, MA, USA: Addison-Wesley, 1983.

[2] J. Iyanda. "A Comparative Analysis of Breadth First Search (BFS) and
Depth First Search (DFS) Algorithms."

[3] K. J. Hamad, and S. S. Mahmood. "An Analytical Study of Graph
Algorithms: An Overview of Graph Theory." QALAAI ZANIST
SCIENTIFIC JOURNAL, vol. 10, no. 1, pp. 1217–1238, 2025.

[4] J. C. V. Clavio and A. C. Fajardo. "Toys as instructional tools in
developing problem-solving skills in children." Education Quarterly,
vol. 66, no. 1, pp. 1–15, 2008.

[5] R. Das and M. Soylu, "A key review on graph data science: The power
of graphs in scientific studies," *Chemometrics and Intelligent
Laboratory Systems*, vol. 240, p. 104896, 2023.

[6] N. Banerjee, S. Chakraborty, V. Raman, S. R. Satti "Space efficient
linear time algorithms for BFS, DFS and applications.", Theory of
Computing Systems vol. 62, 2018, pp. 1736–1762

[7] T. Evritt and M. Hutter, "Analytical results on the BFS vs. DFS
algorithm selection problem: Part II: Graph search." AI 2015: Advances
in Artificial Intelligence: 28th Australasian Joint Conference, Canberra,
ACT, Australia, November 30--December 4, 2015, Proceedings 28.
Springer International Publishing, 2015.

[8] A. Z. Ismaeel and I. M. I. Zebari, "Comparing Traversal Strategies:
Depth-first Search vs. Breadth-first Search in Complex Networks."

Asian Journal of Research in Computer Science vol. 18, no. 2, pp. 60–
73, 2025.

[9] K. Khandelwal, R. Gupta, "Search-Notes1," Dept. of Computer Science
& Engineering, Univ. of Washington, Seattle, WA, USA, Lecture Notes,
Autumn 2023. [Online]. Available:
https://courses.cs.washington.edu/courses/cse473/23au/notes/Search-
Notes1.pdf. [Accessed: Jun. 22, 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Sebastian Hung Yansen / 13523070

https://courses.cs.washington.edu/courses/cse473/23au/notes/Search-Notes1.pdf
https://courses.cs.washington.edu/courses/cse473/23au/notes/Search-Notes1.pdf

