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Abstract—This project demystifies database performance by 

demonstrating the power of indexing. Through a real-world 

PostgreSQL benchmark and a foundational C++ Generalized 

Inverted Index implementation, showing how to achieve search 

speedups. This incredible gain comes at the minor cost of 

overhead when adding new data. Designed as a hands-on guide, 

this project is the perfect resource for developers and students to 

learn both the practical impact and the core mechanics of 

database optimization. 
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I.  INTRODUCTION 

In modern software development, the efficiency of data 
retrieval is a crucial part of application performance. As 
datasets grow and user loads increase, databases can quickly be 
a significant bottleneck. To address this, architects employ 
various scaling strategies, such as partitioning (horizontally 
sharding tables across multiple servers or vertically splitting 
them by columns) help manage massive datasets. The use of 
read-only replicas allows for the distribution of query loads, 
separating read-heavy traffic from the primary write database. 
Furthermore, caching layers and load balancers are often 
implemented to enhance responsiveness and ensure high 
availability. 

While these architectural patterns are mandatory to scale a 
system that can serve huge number of users, performance 
optimization also relies heavily on foundational techniques and 
algorithms. Among the most critical of these is the strategic 
implementation of database indexing, a method for optimizing 
query performance directly within the database engine. 
However, the benefits of indexing are often accompanied by a 
trade-off in write performance, a nuance that is critical for 
developers and database administrators to understand. 

This project undertakes a comprehensive, hands-on analysis 
of the performance impact of a specific and powerful indexing 
strategy: GIN (Generalized Inverted Index) for string 
operations. While scaling techniques like partitioning and read 
replicas address the "where" and "how many" of data 
processing, this study focuses on the "how fast" at the query 
level. Aiming to bridge the gap between abstract theory and 
concrete results through a dual-pronged approach. First, a 

benchmark will be made on a live PostgreSQL database to 
measure real-world performance on tables with and without 
indexes. Second, to demystify the underlying mechanics, an 
implementation of a GIN-like data structure in C++ is 
provided, comparing its performance to a simple linear search 
through text. 

The following sections will detail the methodology used for 
both the PostgreSQL benchmark and the C++ implementation. 
Then a comparative analysis of the performance data collected, 
highlighting the emergent patterns in reading and writing 
speeds. Finally, this report will discuss the broader implications 
of these findings, offering insights into the practical trade-offs 
of indexing and providing guidance on making informed 
decisions in database design and system architecture. 

II. THEORITICAL BACKGORUND 

A. Brute Force 

The foundational challenge in data retrieval, especially for 

complex data like text, is finding specific information within a 

large collection. The most basic approach is the brute-force 

algorithm. To find documents containing a specific term, this 

method requires a Linear Scan. The system must read every 

single record in a table, scan its entire text content for the 

desired word, and repeat this for every record. This approach 

has a time complexity of O(n*m), where n is the number of 

records and m is the size of the content to be scanned, making 

it profoundly inefficient and unscalable. 

B. Decrease and Conquer 

To overcome the severe limitations of the brute-force 
method, databases employ sophisticated index structures. One 
of the most well-known is the B-Tree, which excels at rapidly 
finding individual, ordered values (like a specific username or 
an ID number). However, a B-Tree is not designed for the 
unique challenge of searching for multiple, independent terms 
within large blocks of text. For this purpose, a specialized 
solution like the GIN (Generalized Inverted Index) is required, 
which operates on a Divide and Conquer strategy. Instead of 
treating a search for multiple terms as one large problem, this 
paradigm breaks it down into smaller, independent sub-
problems [1]. For instance, a query for "database AND 
performance" is divided into two distinct tasks: 1) find all 
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records containing "database," and 2) find all records 
containing "performance." The system then "conquers" each 
sub-problem individually and "combines" the results, allowing 
it to efficiently pinpoint relevant records. 

C. String Matching 

In the context of this database index, string matching refers 
to the fundamental operation of using strings as keys for 
comparison which can be done with various algorithms such as 
Knuth–Morris–Pratt algorithm or Boyer–Moore [4]. The B-tree 
efficiently navigates its nodes by performing basic lexical 
comparisons (<, =, >) on these string keys. This allows the 
database to quickly locate a specific record without resorting to 
a slow, full scan that would compare against every string in the 
table. 

III. IMPLEMENTATION 

To analyze the performance of DBMS (database 
management systems), a connection using a Python client to 
PostgreSQL is established. The initial setup involves 
provisioning a test table with an id SERIAL PRIMARY KEY 
column and a data TEXT column to hold string-based content. 
The one being used to search is the string-based content 
because we are comparing index toward strings. 

 

Figure 1. Database Schema 
Source: https://github.com/yonatan-nyo/string-dbms-handling  

To ensure the integrity and repeatability of benchmarks, the 
benchmark code must account for PostgreSQL's internal data 
handling. For read-side consistency, executing DISCARD ALL 
to reset the session's state, clearing any cached query plans. On 
the write-side, it is important to note how PostgreSQL ensures 
data is safely stored on disk. As the official documentation 
notes: 

One aspect of reliable operation is that all data from a 
committed transaction must be stored in a nonvolatile area safe 
from power loss, OS failure, or hardware failure. While this 
seems straightforward, it is complicated by the fact that "disk 
drives are dramatically slower than main memory and CPUs", 
which has led to several layers of caching between the main 
memory and the physical disk. These layers include the 
operating system's buffer cache, a potential cache in the disk 
drive controller (common on RAID cards), and finally, caches 
within most disk drives themselves [2]. 

These caches, particularly "write-back" caches that delay 
sending data to the drive, can present a reliability hazard as 
their contents are often volatile and can be lost when there is 
power failure. To handle this, PostgreSQL utilizes operating 
system features to force writes from the buffer cache to the 
disk. However, the responsibility falls on the administrator to 
use reliable hardware, such as disk controllers with "battery-

backed caches", and to correctly configure all components. For 
consumer-grade drives, this may involve disabling the drive's 
write-back cache if it cannot guarantee data will be written 
before a shutdown [2]. 

Another risk to data integrity is the possibility of partial 
page writes, where a power failure occurs after some, but not 
all, sectors of a page have been written to the disk platter. To 
guard against this, "PostgreSQL periodically writes full page 
images to permanent storage before modifying the actual page 
on disk". This strategy ensures that during a crash recovery, 
PostgreSQL can restore any partially written pages from these 
full-page images, preserving data consistency. [2] 

 

Figure 2. Database Clear Cache 
Source: https://github.com/yonatan-nyo/string-dbms-handling  

This experiment is designed to benchmark database 
performance under controlled data growth, observing how 
internal index structures evolve and impact operation times. 
The methodology involves populating two tables, one with a 
index (GIN) and the other one without any index.  

To capture a good performance curve, the database tables 
are populated in stages. The total number of records grows 
multiplicatively by a factor of 1.2 at each stage, starting from a 
small base and scaling up to a maximum of 250,000 records. 
This multiplicative approach provides information at smaller 
record counts and generates a smooth distribution of data 
points across the entire test range, making it easier to visualize 
performance trends as the dataset scales. 

At each stage, a chunk of data is inserted into the indexed 
and non-indexed tables, to measure the overhead associated 
with maintaining a GIN index during write operations by 
comparing the time consumed on operations. 

Batch Insertion: To ensure efficient data loading and 
simulate a realistic bulk-insert scenario, the program will use 
the psycopg2.extras.execute_batch function which optimizes 
the insertion process by minimizing network roundtrips 
between the application and the database server. 

The comparison between the insertion time for the indexed 
table (test_data_indexed) and the un-indexed table (test_data) 
will be the write penalty. This overhead is expected, as an 
indexed insert requires the database to perform additional 
work: parsing the text, breaking it into tokens, and updating the 
GIN index's complex structure of token dictionaries and 
posting lists to be able to address data table as it grows. 
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Figure 3. Benchmark Select 
Source: https://github.com/yonatan-nyo/string-dbms-handling  

In accordance with official PostgreSQL documentation, the 
GIN (Generalized Inverted Index) has been selected [3]. To 
better understand the mechanics behind GIN, Generalized 
Inverted Index will be modeled and implemented in C++ as 
part of this investigation. 

 

Figure 4. Generalized Inverted Index 
Source: https://github.com/yonatan-nyo/string-dbms-handling  

To facilitate this, a C++ program demonstrates core 
principles of a Generalized Inverted Index, as detailed in the 
GINIndex.h header file. This in-memory model serves as a 
simulation, to observe the logical operations or algorithm that 
provides better performance of production systems like 
PostgreSQL. 

The fundamental concept is an "inversion" of the typical 
data-to-record relationship. Instead of mapping a record to its 
content, GINIndex maps individual components of the content 
specifically words or "tokens" back to the records that contain 
them. This is achieved through the primary data structure 
std::unordered_map<std::string, std::set<const Record *>>, 
which acts as the heart of inverted index. In this map, each 
unique token serves as a key, while the value is a set of 
pointers to every record containing that token. 

The "write performance" measured in benchmark directly 
corresponds to the execution time of the GINIndex::insert 
method. When a new record is introduced, its text content 
undergoes a multi-stage process.  

 

Figure 5. Normalize Token 
Source: https://github.com/yonatan-nyo/string-dbms-handling  

First, the tokenize function splits the text into a vector of 
individual terms. Subsequently, each term is passed to a 
normalizeToken function to ensure consistency by converting 
it to lowercase and removing punctuation. This prevents 
semantic duplicates, like "Apple" and "apple," from being 
treated as distinct entries.  

Finally, for each normalized token, the system updates the 
main tokenIndex, adding a pointer to the new record into the 
corresponding set. This process highlights why GIN index 
updates can be resource-intensive; a single record rich with 
unique words can trigger dozens of distinct updates within the 
index structure. 
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Figure 6. Generalized Inverted Index Search 
Source: https://github.com/yonatan-nyo/string-dbms-handling  

Similarly, read performance is assessed by timing the 
searchAND and searchOR operations, which simulate common 
text-based queries. To find records containing any of the 
specified terms (an OR search), the system retrieves the set of 
record pointers for each term and then computes the union of 
these sets.  

Conversely, to find records containing all specified terms 
(an AND search), it computes the intersection of the pointer 
sets. This intersection is a particularly efficient operation that 

rapidly narrows the result set to only the records that satisfy the 
strict criteria. By meticulously measuring the performance of 
these fundamental insertion and search operations at each stage 
of data growth, this benchmark will provide clear, empirical 
data on how a GIN index behaves as its internal structures 
become larger and more complex. 

To quantify the true performance benefit of the GIN index, 
the benchmark includes a contrasting unindexed search 
methodology, brute-force linear scan. When a search is 
initiated, the function iterates through every single record in the 
collection, one by one from the beginning. For each record, it 
performs a direct string comparison on the target field. This 
process only concludes when a match is found or, in the worst-
case scenario, after the entire dataset has been examined. 

IV. USAGE 

The result of the indexed and unindexed field on insert 
action from PostgreSQL is as follows: 

 

Figure 7. Insert Performance 
Source: https://github.com/yonatan-nyo/string-dbms-handling  

On insert the performance of unindexed is faster around 
twice as fast, because of the absence of index maintenance 
overhead, clearly showing that the red line ("Without Index") 
remains consistently below the blue line ("With Index"), and 
this gap widens as the dataset grows. This performance 
advantage is due to the simplicity of an unindexed insertion. 

When a record is inserted into an unindexed table, the 
database performs a single, straightforward operation: it writes 
the new row data to the end of the table's data file (the "heap"). 
This is a relatively cheap append operation. 

In contrast, when inserting into an indexed table, the 
database must perform a two-step process (writing the data and 
updating the index), Updating the index is the critical overhead. 
The database must also update the GIN index to make the new 
record searchable. This involves tokenizing the text, and for 
every unique token, it must find its corresponding entry in the 
index and add a new pointer to the new row. 

This "index maintenance" is a significant additional 
workload. As the chart shows, the cost of this workload is not 
constant; it increases as the index itself grows larger and more 
complex, which is why the blue line becomes progressively 
steeper. The unindexed insert avoids this entire second step, 
making it fundamentally faster. 
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Figure 8. Select Performance 
Source: https://github.com/yonatan-nyo/string-dbms-handling  

On select the performance of unindexed is far worse than 
indexed because of the difference in data retrieval strategy, 
which is dramatically illustrated in the right chart, "SELECT 
Performance." The performance of the indexed select is so 
superior (over 294x faster at ~242,000 records) that the y-axis 
must be on a logarithmic scale just to visualize both lines. 

The reason for this stark contrast is how the database finds 
the requested data, without an index, the database has no guide 
to where a specific record might be. To satisfy the SELECT 
query, it has no choice but to perform a Full Table Scan (or 
Sequential Scan). It must read every single row in the table 
from the beginning and compare its value to the search term. 
As the table grows, the amount of work grows in direct 
proportion. This is why the red line trends sharply upwards 
more records mean more work and more time. This is known 
as O(n) complexity. 

With a GIN index, the database uses a highly efficient, 
multi-step process. Instead of scanning the table, it first 
consults the index. It performs a very fast lookup (akin to 
looking up a word in a dictionary's index) to find the search 
term(s). This lookup instantly provides it with a list of direct 
pointers (TIDs) to the exact physical locations of all the 
matching rows in the table. The database then uses these 
pointers to fetch only the required rows, completely ignoring 
the rest of the table. 

This "Index Seek" operation is incredibly efficient. Its 
performance depends on the structure of the index, not the size 
of the table. This is why the blue line remains virtually flat and 
close to zero, regardless of whether the table has 10,000 or 
250,000 records. This “nearly constant” time is the primary 
benefit of indexing. 

Therefore, It is important to acknowledge that in production 
environments handling massive datasets, indexing is just one 
component of a much larger performance and scalability 
strategy. To manage extreme, write loads and read traffic, 
architects often employ advanced techniques such as database 
partitioning, which splits large tables into smaller, more 
manageable pieces, and master-slave (or source-replica) 
architectures. This replication strategy allows read queries to be 
distributed across multiple slave databases, drastically reducing 
the load on the master database which is dedicated to handling 
writes. These architectural patterns are critical for ensuring 

high availability and throughput in large-scale systems. 
Nevertheless, as the focus here is to fundamentally understand 
the index-based approach at a granular level, C++ program will 
further investigate the mechanics of the GIN algorithm through 
the implementation. 

 

Figure 9. C++ Data Preparation 
Source: https://github.com/yonatan-nyo/string-dbms-handling  

To assess search performance, the C++ program was 
populated with a dataset of 500,000 records, each consisting of 
an ID, username, and password. A performance test was then 
conducted to measure search retrieval times, with the results 
presented below in Figure 10. 

 

Figure 10. C++ Select Performance 
Source: https://github.com/yonatan-nyo/string-dbms-handling  

The vast performance gap between the unindexed and 
indexed search methods, as demonstrated by the 402 times 
speedup shown in the output image, can be formally explained 
through a deep analysis of their time and space complexity. 
The unindexed approach relies on a brute-force linear scan. To 
find the record for user499950, it must start at the very first 
record and iterate through the entire collection, comparing each 
username until it reaches the 499,950th entry. This means its 
search time grows linearly with the number of records, n, 
resulting in a time complexity of O(n). Doubling the records 
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would double the average search time. Its space requirement is 
also O(n), as it only needs to store the data itself with no 
significant structural overhead. This direct relationship between 
data size and search time is why the unindexed method 
becomes untenably slow as the dataset grows. 

In contrast, the GIN index achieves its remarkable search 
speed by leveraging a more sophisticated "inverted index" data 
structure. As detailed in the GINIndex.cpp implementation, the 
index is built around an std::unordered_map named 
tokenIndex. Think of this like the index at the back of a large 
textbook: instead of reading the whole book to find a term, you 
go directly to the index page for that term. The C++ 
unordered_map (a hash map) allows for direct lookups of any 
search term with an average time complexity of O(1), or 
constant time. When the benchmark performs an indexed 
search for 'user499950', the search function in GINIndex.cpp 
does not scan the records. Instead, it hashes the term 
'user499950' and goes directly to the corresponding entry in the 
tokenIndex map. This immediately provides it with a set of 
pointers to the exact memory locations of the matching records. 
This O(1) complexity, which is critically independent of the 
total number of records, is the core reason for the dramatic 
performance improvement from over 1100 microseconds to 
under 3 microseconds. 

However, this search efficiency comes at a calculated cost, 
which is evident in the GIN index's insertion time and space 
usage. The insert function in GINIndex.cpp reveals this "write 
penalty". When a new record is added, its text is broken into w 
words (tokens). For each of these w tokens, the program must 
perform a lookup in the tokenIndex and then insert a pointer 
into a std::set, an operation with a time complexity of roughly 
O(log p), where p is the number of records already associated 
with that token. This multi-step process is significantly more 
work than the simple O(1) unindexed insertion. Furthermore, 
the space complexity is substantially higher at O(n + U + P), 
where U is the number of unique tokens and P is the total 
number of pointer instances stored in the index. For example, a 
single common word like "the" might appear in thousands of 
records, meaning its entry in the tokenIndex would hold 
thousands of pointers, consuming significant memory. This 
additional space is required to build and maintain the entire 
inverted index structure that makes the O(1) search possible. 
This trade-off slower writes and higher memory usage in 
exchange for nearly instantaneous reads is fundamental to 
high-performance database indexing. 

 

V. CONCLUSION 

This project demonstrates the critical trade-offs inherent in 
database indexing for string-based searches. Through a hands-
on PostgreSQL benchmark and a foundational C++ 
implementation of a Generalized Inverted Index (GIN), a clear 
performance dichotomy emerges. 

Unindexed operations exhibit superior write performance, 
with insertions being approximately twice as fast as their 
indexed counterparts.  This is because they involve a simple 
append operation without the overhead of index maintenance.  
However, this advantage is completely overshadowed by their 

profoundly inefficient read performance, which degrades 
linearly as the dataset grows, following an O(n) complexity.  

Conversely, indexing provides a dramatic acceleration in 
data retrieval. The PostgreSQL benchmark recorded indexed 
SELECT queries performing over 294 times faster than 
unindexed scans on a dataset of around 242,000 records.  This 
was further corroborated by the C++ model, which showed a 
402-fold speedup on a dataset of 500,000 records.  This 
remarkable efficiency stems from the GIN index's ability to 
perform lookups in nearly constant time, or O(1), by using a 
hash map to directly locate data pointers.  

The trade-off for this near-instantaneous read capability is 
the "write penalty" the additional computational work required 
to tokenize text and update the index structure upon data 
insertion.  This analysis confirms that while indexing is an 
indispensable tool for optimizing read-heavy applications, its 
impact on write speeds and memory usage must be a key 
consideration in database design.  For large-scale systems, 
while advanced strategies like replication and partitioning are 
essential, a fundamental understanding of indexing mechanics 
remains the cornerstone of building efficient and scalable data 
architectures. 

 

VIDEO LINK AT YOUTUBE 

https://youtube.com/shorts/TIy2hmAbqOg  
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