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Abstract—This paper studies the application of string-

matching concepts in Google Ngram Viewer (GNV) for analyzing 

linguistic trends across digitized historical texts. The study 

includes studies on two fundamental pattern matching 

algorithms—Knuth-Morris-Pratt (KMP) and Boyer-Moore—and 

their role in enabling efficient text analysis at scale. Through the 

development of a simplified GNV implementation, this research 

demonstrates how classical string-matching techniques can be 

applied to identify word frequency patterns over time within 

historical corpora. The implementation utilizes Project 

Gutenberg's public domain texts, processed through both KMP 

and Boyer-Moore algorithms to generate decade-based frequency 

analysis. While GNV's actual architecture employs sophisticated 

preprocessing and indexing techniques for handling millions of 

books, this study illustrates the fundamental string-matching 

principles that underpin such large-scale text analysis systems. 

The experimental results show how both algorithms successfully 

identify patterns within the corpus, with Boyer-Moore 

demonstrating superior average-case performance for longer 

patterns and KMP providing consistent linear-time guarantees. 

This work contributes to understanding how foundational 

computer science algorithms enable modern digital humanities 

tools, bridging theoretical algorithm design with practical 

applications in computational linguistics and historical text 

analysis. 

Keywords—string matching, pattern matching, Google Ngram 

Viewer, KMP algorithm, Boyer-Moore algorithm, digital 

humanities, computational linguistics 

I.  INTRODUCTION 

The study of language evolution and cultural shifts has 

long relied on the analysis of historical texts. With the advent 

of large-scale digitization, tools such as Google Ngram 

Viewer (GNV) have enabled researchers to explore linguistic 

trends across vast corpora of books spanning centuries. GNV 

functions by identifying and charting the frequency of specific 

sequences of words—known as n-grams—over time, offering 

valuable insights into how language and society have evolved. 

At the core of this functionality lies the fundamental 

concept of string matching, a computational process that 

involves locating occurrences of a substring within a larger 

body of text. Efficient string-matching algorithms are essential 

for processing large datasets like those used by GNV. In this 

paper, we explore the application of string-matching 

techniques in GNV, focusing particularly on how they 

contribute to identifying word trends in digitized historical 

texts. 

To deepen our understanding, this study presents a 

simplified implementation of GNV that models its core 

functionality. This implementation utilizes two well-known 

string-matching algorithms—Knuth-Morris-Pratt (KMP) and 

Boyer-Moore (BM)—to search for specific word patterns in a 

time-stamped corpus. By comparing the performance and 

results of these algorithms, we aim to demonstrate how string 

matching not only underpins the GNV's analytical capabilities 

but also offers a practical approach to understanding linguistic 

trends over time. 

II. STRING MATCHING 

A. Pattern Matching and String Matching 

Pattern matching is the process of searching for the 

presence of a pattern within a given structure, especially in 

strings. In the context of text, this is known as string matching, 

where the goal is to find all occurrences of a pattern string (P) 

within a longer text string (T). String matching algorithms are 

essential in analyzing large collections of text, particularly in 

applications such as text search and natural language analysis. 

Exact string matching seeks positions where P matches 

exactly with a substring of T, while approximate matching 

allows for limited mismatches. Several algorithms exist for 

solving the exact matching problem, including the brute-force 

method, the Knuth-Morris-Pratt (KMP) algorithm, and the 

Boyer-Moore algorithm [1]. 

B. The Brute Force Algorithm 

The brute force algorithm, also known as the naive string-
matching algorithm, is the most straightforward method for 
finding all occurrences of a pattern P of length m in a text T of 
length n. It works by checking for a match at every possible 
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alignment of the pattern in the text, starting from the leftmost 
character and shifting one character at a time. The following is 
a pseudocode that describes the algorithm, 

 

Figure 1. Pseudocode of Brute Force Algorithm 

In the brute force string matching algorithm, the pattern of 
length m is compared to every possible substring of the text of 
length n that could potentially contain it. This results in n - m + 
1 possible starting positions in the text where the pattern can be 
aligned. At each of these positions, the algorithm performs a 
character-by-character comparison between the pattern and the 
corresponding substring in the text. 

In the worst-case scenario, most characters in the pattern 
may match with the text at each position, but a mismatch 
occurs at the very last character of the pattern. This forces the 
algorithm to perform up to m comparisons at each of the n - m 
+ 1 positions, without ever finding a complete match. A classic 
example of this occurs when both the text and pattern contain 
repeated characters, except for the final character in the pattern, 
which differs. 

As a result, the total number of character comparisons in 
the aforementioned scenario leads to a worst-case time 
complexity of O(mn). Although it is sometimes simplified as 
O(n*m), the more precise bound reflects the actual behaviour 
of the algorithm in the most computationally expensive cases. 
On the other hand, in the best-case scenario, a match is found 
immediately at the first alignment, and all characters match 
without any need for further shifting or comparisons. In this 
case, only m comparisons are performed, followed by a return. 
Since this happens on the first iteration over the text, the best-
case time complexity is O(n), representing a single linear scan 
with minimal character comparisons [1]. 

 

Figure 2. Illustration of Brute Force Algorithm 

Source: https://www.researchgate.net/figure/Example-of-
brute-force-algorithm-string-matching_fig1_369174858  

The image illustrates how the Brute Force String Matching 
algorithm works by comparing a pattern ("NOT") with all 
possible substrings of the same length in the text "NOBODY 
NOTICED HIM". The algorithm checks each position in the 
text sequentially, attempting to match the pattern one character 
at a time. As shown, it starts from position 1, then shifts one 
character to the right at each step (positions 2 to 8), until it 
finds a match at position 8 where "NOT" aligns exactly with 
the substring in the text. 

The illustration further reinforces the working principle of 
the Brute Force algorithm, where the pattern is aligned at every 
possible position in the text and checked one character at a time 
until a match is found. This simple and systematic process 
reflects the algorithm's core nature: it examines all possible 
alignments without exception. 

The Brute Force algorithm’s primary advantage lies in its 
generality—it can be applied to any text and pattern without 
prior preprocessing. Additionally, it performs relatively well 
when the alphabet used is large, as mismatches tend to occur 
early in the comparisons. However, this algorithm also has its 
limitations; its performance is inefficient in the worst case, as it 
may require many unnecessary comparisons. Moreover, it does 
not exploit any information about the structure of the pattern or 
the text to optimize the matching process. As a result, despite 
its simplicity and broad applicability, the Brute Force algorithm 
is often outperformed by more advanced string-matching 
techniques in practical scenarios [1]. 

C. The Knuth-Morris-Pratt Algorithm 

The Knuth-Morris-Pratt (KMP) algorithm is an efficient 

string-matching algorithm that improves upon the brute force 

approach by avoiding unnecessary character comparisons. It 

was developed by Donald Knuth, Vaughan Pratt, and James 

H. Morris in 1977. The core idea behind KMP is to preprocess 

the pattern P to build a failure function (also called a border or 

prefix table), which is then used to determine how far the 

pattern can be shifted when a mismatch occurs, without 

rechecking characters that are known to match. In the brute 

force method, when a mismatch occurs, the pattern is shifted 

by just one position, and all previous comparisons are 

repeated. KMP avoids this by reusing the knowledge of 

matched characters from the failure function. 

 

Figure 3. Border Function Example 

Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/23-Pencocokan-string-(2025).pdf  

https://www.researchgate.net/figure/Example-of-brute-force-algorithm-string-matching_fig1_369174858
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https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
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The image presents an example of the border function 

table (or failure function) used in the Knuth-Morris-Pratt 

(KMP) string matching algorithm, specifically for the pattern 

P = "abaaba". The first row (j) represents the indices of the 

pattern from 0 to 5, and the second row (P[j]) shows the 

corresponding characters of the pattern. The third row (k) 

serves as a helper index used in the computation of the border 

values, while the fourth row (b(k)) contains the computed 

border values for each prefix of the pattern. 

This precomputed border function table plays a crucial role 

in the efficiency of the KMP algorithm. It allows the pattern to 

be shifted intelligently during mismatches, avoiding 

unnecessary re-evaluation of characters that have previously 

been matched. By doing so, KMP achieves linear time 

complexity in the worst case, making it significantly more 

efficient than the brute force approach in many practical 

scenarios. 

The Knuth-Morris-Pratt (KMP) algorithm consists of two 

main phases. The first is the preprocessing phase, during 

which a border function table—is constructed based on the 

input pattern. This table records, for each position in the 

pattern, the length of the longest proper prefix that is also a 

suffix of the substring ending at that position. The second 

phase is the matching phase, where the pattern is compared to 

the text. When a mismatch occurs, the algorithm uses 

information from the border function table to determine how 

far the pattern can be shifted, thereby avoiding redundant 

comparisons and enabling a more efficient matching process. 

To better understand how the KMP algorithm operates, the 

following pseudocode outlines the steps involved in both the 

preprocessing and matching phases, 

 

Figure 4. KMP Matching Pseudocode 

 

Figure 5. KMP Border Function Table Pseudocode 

The kmpMatch function attempts to find the starting index 

of a pattern inside a text. It begins by computing the border 

function (also called the failure function) using the 

computeBorder function. This function precomputes, for every 

position in the pattern, the length of the longest proper prefix 

which is also a suffix of the substring up to that point. 

During the matching phase, the algorithm uses two 

pointers: i for the text and j for the pattern. If the characters 

match, both pointers advance. If a mismatch occurs: 

i) If j > 0, the pattern index j is updated using the border 

table to avoid rechecking known matched 

characters. 

ii) If j = 0, only i is incremented, as no useful prefix-

suffix information exists. 

If j reaches the end of the pattern (j = m), a match is found, 

and the function returns the starting index of the match in the 

text. If the loop ends without a match, -1 is returned. 

The preprocessing step (computeBorder) runs in O(m) 

time, and the matching process (kmpMatch) runs in O(n) time, 

making the entire KMP algorithm run in O(n + m) —

significantly faster than the brute force approach in the worst 

case [1]. 
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D. The Boyer-Moore Algorithm 

The Boyer-Moore algorithm is one of the most efficient 

string-matching algorithms, especially when the pattern is 

relatively short and the text is long. Developed by Robert S. 

Boyer and J Strother Moore in 1977, the key innovation of the 

Boyer-Moore algorithm is that it starts matching from the end 

of the pattern rather than the beginning. This allows the 

algorithm to skip sections of the text, potentially making fewer 

comparisons than Knuth-Morris-Pratt or brute force. 

The Boyer-Moore algorithm utilizes two main techniques 

to improve string matching efficiency: the looking-glass 

technique and the character-jump technique. In the looking-

glass technique, the pattern is compared against the text from 

right to left, starting at the last character of the pattern. This is 

different from most other string-matching algorithms, which 

executes comparisons from left to right. 

When a mismatch is found, the character-jump technique 

is applied. This technique uses information about the last 

occurrence of the mismatched character in the pattern. 

Specifically, if a mismatch occurs at position T[i] ≠ P[j], the 

algorithm uses a precomputed last occurrence function, which 

records the rightmost position of each character in the pattern. 

The pattern is then shifted so that the mismatched character in 

the text aligns with its last occurrence in the pattern. If the 

character does not appear in the pattern at all, the pattern can 

be shifted beyond the mismatched character entirely. This 

approach allows the algorithm to potentially skip large 

sections of the text, making Boyer-Moore particularly efficient 

in practice. 

 
Figure 6. Last Occurrence 

Source: 

https://koding4fun.wordpress.com/2010/05/29/boyer-moore-

algorithm/  

The image above illustrates the last occurrence function, 

denoted as f(x), which is a key component of the Boyer-Moore 

string matching algorithm. This function maps each character 

x in the alphabet to the rightmost index at which it appears in 

the given pattern. If a character does not appear in the pattern 

at all, its value is set to -1. 

In the example shown, the pattern consists of the 

characters "abacab" at indices 0 through 5. The corresponding 

values of the f(x) function indicate the last position at which 

each character occurs within the pattern. For instance, the 

character 'a' appears last at index 4, 'b' at index 5, and 'c' at 

index 3. Characters absent in the pattern, such as 'y' and 'z', are 

assigned a value of -1. 

This function is used during the matching phase of the 

Boyer-Moore algorithm to determine how far the pattern can 

be shifted when a mismatch occurs. By knowing the last 

occurrence of a mismatched character in the pattern, the 

algorithm can skip over sections of the text, thereby improving 

efficiency and reducing unnecessary comparisons. The 

following is a pseudocode to exemplify the Boyer-Moore 

algorithm, 

 

Figure 7. Boyer-Moore Matching Pseudocode 

 

Figure 8. Build Last Occurrence Table Pseudocode 

https://koding4fun.wordpress.com/2010/05/29/boyer-moore-algorithm/
https://koding4fun.wordpress.com/2010/05/29/boyer-moore-algorithm/
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The process starts with a preprocessing step, implemented 

in buildLast(pattern). This function constructs a last table that 

maps each ASCII character to the last index at which it 

appears in the pattern. If a character does not occur in the 

pattern, it is mapped to -1. This table enables the character 

jump heuristic during the search. 

The main matching function bmMatch begins comparison 

from the end of the pattern using a technique known as the 

looking-glass heuristic. If a mismatch occurs between text[i] 

and pattern[j], the algorithm refers to the last table to 

determine how far the pattern can be shifted. Specifically, it 

computes a shift based on the distance between the 

mismatched character in the text and its last occurrence in the 

pattern. This reduces redundant comparisons and enables the 

algorithm to skip over sections of the text. 

If a match is found (i.e., all characters in the pattern match 

in reverse order), the function returns the starting index i in the 

text. If no match is found after the loop ends, the function 

returns -1. Overall, Boyer-Moore is more efficient than brute 

force and even KMP in many cases, especially for long texts 

and large alphabets, due to its heuristic-based skipping 

mechanism. 

III. GOOGLE N-GRAM VIEWER 

The Google N-gram Viewer (GNV) is a freely accessible 

online tool that allows users to visualize the frequency of n-

grams—sequences of one to five words—across a vast corpus 

of digitized books over a historical timeline, ranging from the 

year 1500 to 2019. Introduced by Google in 2010, GNV 

provides a simple graphical interface where users can enter 

words or phrases, and the tool returns a time-series chart 

showing how often those terms appeared in published 

literature over the centuries [2], [3]. 

Unlike traditional search engines, GNV does not retrieve 

full documents or contexts. Instead, it analyses statistical 

trends based on the relative frequency of the queried n-gram, 

normalized by the total number of words published each year. 

This normalization helps ensure that frequency changes reflect 

linguistic or cultural shifts rather than fluctuations in 

publication volume [5]. The tool has been used in a variety of 

disciplines, including linguistics, history, sociology, and 

digital humanities, often to study the evolution of language, 

concepts, or cultural phenomena over time. 

Although GNV was widely celebrated for democratizing 

access to historical language data, it also attracted criticism 

and doubt regarding the quality and representativeness of the 

underlying dataset. Researchers and scholars have pointed out 

issues such as OCR errors, inconsistent metadata, and the 

overrepresentation of certain genres or publication types [4]. 

Nonetheless, when interpreted cautiously and contextually, 

GNV remains a powerful and popular instrument for exploring 

large-scale linguistic patterns. 

IV. DISCUSSION 

A. Exact Lookup via Precomputed n-gram Index 

When a user enters a word or phrase into the Google N-

gram Viewer (GNV), the system performs an exact match 

against a precompiled database of n-grams extracted from 

digitized texts. These n-grams have been previously tokenized, 

time-stamped, and stored along with metadata such as their 

frequency and the number of books they appear in. Because 

the corpus has been fully processed beforehand, GNV does 

not need to scan entire texts during a query. Instead, it 

searches through an indexed data structure that allows for 

efficient string matching and rapid retrieval of matching 

records [6]. 

The nature of this exact-match retrieval closely 

corresponds to classic string-matching paradigms, where an 

input pattern is compared directly to an existing set of 

sequences for exact equivalence. Although GNV's backend is 

proprietary, it is reasonable to infer from available 

documentation that the system employs data structures such as 

hash maps, tries, or inverted indexes to support high-

performance matching at scale [6]. Furthermore, the public 

documentation for GNV specifies that only exact matches are 

returned (no fuzzy or partial matching). Those matches are 

normalized by the total number of tokens published per year to 

ensure fair comparison across time periods [5]. 

B. Efficient Matching Using Heuristics 

Given the scale of the Google Books N-gram Corpus—

spanning over 500 billion words across multiple languages—

querying efficiency is essential. While exact-match searches in 

GNV are performed on pre-processed n-gram indexes, the 

responsiveness of the tool suggests the use of algorithmic 

optimizations typically found in classical string matching, 

such as heuristic-based shifting. One such heuristic is the last 

occurrence table from the Boyer–Moore algorithm, which 

allows the search process to skip sections of the pattern or text 

that cannot result in a match, based on the rightmost 

appearance of mismatched characters in the pattern. Though 

Google has not publicly disclosed that this specific heuristic is 

implemented, the sheer size of the dataset makes similar 

optimizations highly plausible [6]. 

In Google's own technical paper, the importance of 

memory-efficient and scalable storage for n-gram data is 

emphasized. The authors mention using compact binary 

encoding and indexing techniques to reduce memory footprint 

while allowing for quick look-up and access [6]. These 

strategies are conceptually aligned with the goals of classic 

pattern matching heuristics: minimizing unnecessary 

comparisons and maximizing throughput, especially when 

matching large patterns across vast precompiled corpora. 

Therefore, it is reasonable to conclude that the spirit of 

heuristics alike the last occurrence rule influences the 
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architectural decisions underlying GNV’s indexing and query 

engine. 

C. Handling Wildcards and POS Tags: Pattern Expansion 

In addition to exact n-gram queries, Google N-gram 

Viewer (GNV) supports more flexible search functionalities, 

including wildcards (e.g., president of *) and part-of-speech 

(POS) tags (e.g., run_VERB). These features require the 

system to internally expand a query into multiple candidate n-

grams, which are then matched against the index. For 

example, a wildcard query like the * of prompts the system to 

return the most frequent completions of that pattern, such as 

“the end of,” “the top of,” or “the beginning of,” each 

evaluated as a separate string match [5], [7]. Likewise, POS 

tagging enables users to restrict results based on grammatical 

category, thus introducing another layer of pattern specificity. 

These types of flexible matching operations introduce 

computational challenges, as they require multi-pattern 

matching against potentially millions of n-gram candidates. 

Although Google has not disclosed the exact algorithms used, 

this functionality is conceptually comparable to multi-pattern 

matching techniques such as the Aho–Corasick algorithm, or 

iterative applications of single-pattern matching like KMP or 

Boyer–Moore. Such techniques are designed to handle many 

simultaneous string matches efficiently, a necessity in systems 

like GNV that support complex pattern expansion across 

massive, pre-processed datasets [6]. 

The system addresses this by limiting the scope of 

wildcard expansions to the top ten most frequent completions, 

thereby controlling both computational complexity and output 

interpretability [5]. This reflects a balance between expressive 

query design and performance feasibility, where core concepts 

of pattern matching algorithms inform how such features are 

implemented at scale. 

V. EXPERIMENT 

A. Program Design 

To demonstrate how classical string-matching algorithms 

can be applied in large-scale linguistic trend analysis tools 

such as Google Ngram Viewer (GNV), a simplified version of 

GNV has been implemented. This program allows users to 

input a specific word (the "pattern") and analyse its frequency 

over time within a set of structured text data. The tool supports 

two pattern matching algorithms: Knuth–Morris–Pratt (KMP) 

and Boyer–Moore, both of which are efficient string-matching 

techniques with linear or near-linear performance. 

The core functionality of the program mimics GNV’s 

matching phase by reading text files containing year-stamped 

corpora, performing pattern matching on each file using either 

KMP or Boyer–Moore, and recording the number of 

occurrences per decade. This output is then used to generate a 

time-series view, illustrating how the usage of a word changes 

over time. While this prototype lacks the full indexing and 

pre-processing power of GNV, it successfully demonstrates 

how exact string-matching algorithms can be applied to 

extract linguistic trends from historical texts. The 

implementation highlights how foundational string-matching 

concepts—such as prefix tables in KMP or last-occurrence 

heuristics in Boyer–Moore—can be leveraged to efficiently 

perform pattern analysis across time-stamped datasets, 

reinforcing their relevance in building scalable, text-driven 

analytical tools. The heart of the program lies in 

pattern_matching.py, where it contains the pattern-matching 

class with the necessary algorithms as shown in the image 

below, 

 

Figure 9. PatternMatcher Class (KMP Search) 
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Figure 10. PatternMatcher Class (Boyer-Moore Search) 

The PatternMatcher class is a utility class that implements 

two fundamental string-matching algorithms used in computer 

science for efficiently locating occurrences of a pattern string 

within a larger text string. Both algorithms are designed to 

overcome the inefficiencies of naive string-matching 

approaches by employing sophisticated preprocessing 

techniques and intelligent skip mechanisms to avoid redundant 

character comparisons. 

The Knuth-Morris-Pratt (KMP) algorithm represents a 

significant advancement in pattern matching by utilizing a 

preprocessing phase that constructs a failure function, also 

known as a partial match table. This failure function analyses 

the pattern itself to identify the longest proper prefix that is 

simultaneously a suffix at each position within the pattern. 

During the actual search phase, when a mismatch occurs 

between the text and pattern, the algorithm leverages this 

precomputed information to determine exactly how many 

characters can be safely skipped without missing any potential 

matches. The implementation traverses the text from left to 

right while maintaining a position pointer in the pattern, and 

upon detecting a mismatch, it consults the failure function to 

reposition the pattern pointer optimally rather than restarting 

the comparison from the beginning. 

The Boyer-Moore algorithm takes a fundamentally 

different approach by implementing a right-to-left matching 

strategy combined with character-based heuristics for pattern 

shifting. The algorithm begins by constructing a bad character 

table (otherwise known as the aforementioned last occurrence 

table) during preprocessing, which records the rightmost 

occurrence of each character within the pattern. During the 

search phase, the algorithm aligns the pattern with the text and 

begins comparing characters from the rightmost position of 

the pattern moving leftward. When a mismatch is encountered, 

the bad character rule is applied to calculate an appropriate 

shift distance based on the mismatched character's position in 

the bad character table. This approach allows the algorithm to 

make substantially larger jumps through the text, particularly 

when the alphabet is large relative to the pattern length.  

Both algorithms return identical results, but they achieve 

this outcome through distinctly different computational 

strategies. The choice between these algorithms often depends 

on specific use case requirements, with KMP providing 

predictable linear performance suitable for real-time 

applications, while Boyer-Moore offers superior average-case 

performance that makes it ideal for text processing 

applications where speed is paramount, and input 

characteristics are favourable to its heuristic approach. 

Other complementary classes and modules that work in 

conjunction with the Pattern Matcher class, including 

components for dataset, file downloading, data visualization, 

n-gram analysis, and additional text processing capabilities, 

can be found in the repository linked below. These supporting 

modules provide a comprehensive framework for text analysis 

and pattern recognition tasks for the implementation of this 

simplified version of GNV. 

B. Testing 

Upon execution, the program automatically downloads and 

processes books from Project Gutenberg, based on the 

metadata provided in the accompanying JSON file. Once the 

dataset setup is complete, the user is prompted to enter a 

search pattern (word), followed by a choice between the 

Knuth-Morris-Pratt (KMP) or Boyer–Moore string matching 

algorithm. The program then performs a search over the 

corpus using the selected algorithm and displays the n-gram 

results in the form of a decade-based bar graph. Additionally, 

it reports the execution time required to complete the search, 

offering both a visualization of linguistic trends and insight 

into the algorithm's performance. 

 

Figure 11. Downloading the Dataset (not shown in full 

extent) 
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Figure 12. Completed Data Setup 

 
Figure 13. Search by KMP Algorithm 

 
Figure 14. Search by Boyer-Moore Algorithm 

The testing phase successfully demonstrates how classical 

string-matching algorithms can be effectively integrated into a 

simplified Google N-gram Viewer-like application. By 

supporting both KMP and Boyer–Moore, the program not only 

enables users to analyze word trends across historical texts—it 

also provides an opportunity to observe the behavior and 

efficiency of different pattern matching strategies in practice. 

C. Additional Notes 

While this Simple N-gram Viewer provides a functional 

demonstration of pattern matching algorithms applied to 

textual analysis, it operates with significant limitations 

compared to the original Google N-gram Viewer. The 

program's scope is constrained by its reliance on Project 

Gutenberg's public domain literary corpus, which represents 

only a small fraction of published works and is heavily 

skewed toward older texts that have entered the public 

domain, potentially creating bias in linguistic trend analysis. 

Unlike Google's N-gram Viewer, which processes millions 

of books spanning multiple centuries with comprehensive 

metadata and multiple language support, this implementation 

operates on a much smaller dataset that may not accurately 

reflect broader linguistic patterns or cultural shifts. The 

program's frequency calculations are simplified and do not 

account for the complex statistical normalization techniques 

employed by professional corpus linguistics tools, such as 

smoothing algorithms, confidence intervals, or sophisticated 

weighting schemes that adjust for varying publication volumes 

across different time periods. Additionally, the terminal-based 

visualization lacks interactive features, comparative analysis 

capabilities, and advanced filtering options that make 

professional n-gram viewers powerful research tools. 

The text preprocessing, while functional, employs basic 

cleaning techniques that may not adequately handle the 

diverse formatting inconsistencies, OCR errors, and encoding 

issues present in digitized historical texts, potentially affecting 

the accuracy of pattern matching results. Furthermore, the 

program's architecture does not support advanced linguistic 

features such as part-of-speech tagging, lemmatization, case-

insensitive matching with proper statistical weighting, or 

multi-word phrase analysis that are essential for serious 

computational linguistics research. 

VI. CONCLUSION 

This paper has explored the fundamental role of string-

matching algorithms in enabling large-scale linguistic analysis 

tools such as Google N-gram Viewer. Through the 

examination of the Knuth-Morris-Pratt and Boyer-Moore 

algorithms, this study has demonstrated how classical pattern 

matching techniques serve as the computational foundation for 

modern digital humanities applications. The development and 

testing of a simplified GNV implementation successfully 

illustrated how these algorithms can be effectively applied to 

analyse word frequency trends across historical text corpora, 

providing both practical insights into algorithm performance 

and a deeper understanding of the underlying computational 

processes that power sophisticated text analysis tools. 

The experimental results confirm that both KMP and 

Boyer-Moore algorithms are capable of efficiently processing 

textual data for pattern analysis, with each offering distinct 

advantages depending on the specific characteristics of the 

search task. KMP provides reliable linear-time performance 

with consistent behaviour across different input patterns, 

making it suitable for applications requiring predictable 

computational bounds. Boyer-Moore, with its heuristic-based 

approach, demonstrates superior performance in average-case 

scenarios, particularly when dealing with longer patterns and 
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diverse character distributions, making it ideal for large-scale 

text processing applications. 

However, this study also reveals the significant gap 

between simplified academic implementations and production-

scale systems like Google's N-gram Viewer. The limitations of 

the prototype—including its restricted corpus size, basic 

preprocessing techniques, and simplified frequency 

calculations—highlight the complexity and sophistication 

required to build truly comprehensive linguistic analysis tools. 

Professional systems must address challenges such as OCR 

error handling, sophisticated statistical normalization, multi-

language support, and advanced linguistic features like part-

of-speech tagging and lemmatization. 

Despite these limitations, this research successfully 

demonstrates that fundamental string-matching algorithms 

remain central to modern text analysis applications. The 

principles underlying KMP's failure function and Boyer-

Moore's character-jump heuristics continue to influence the 

design of contemporary information retrieval and text 

processing systems. As digital humanities and computational 

linguistics continue to evolve, understanding these 

foundational algorithms becomes increasingly important for 

developing efficient, scalable solutions for analysing the ever-

growing volume of digitized textual data. 

Future work could explore the integration of more 

advanced pattern matching techniques, such as multi-pattern 

algorithms like Aho-Corasick, or investigate how modern 

string-matching optimizations could be applied to improve the 

performance of text analysis tools in specialized domains. 

Additionally, research into hybrid approaches that combine 

classical string matching with modern machine learning 

techniques could yield new insights into how computational 

linguistics tools might evolve to meet the growing demands of 

digital scholarship and cultural analysis. 

REPOSITORY LINK AT GITHUB 

https://github.com/feodorashanice/Simple-Text-Pattern-
Analyzer.git  
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