
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

String Matching Application in Google Ngram

Viewer: Analyzing Linguistic Trends Over Digitized

Historical Texts

Shanice Feodora Tjahjono - 13523097

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: xianfeodora@gmail.com , 13523097@std.stei.itb.ac.id

Abstract—This paper studies the application of string-

matching concepts in Google Ngram Viewer (GNV) for analyzing

linguistic trends across digitized historical texts. The study

includes studies on two fundamental pattern matching

algorithms—Knuth-Morris-Pratt (KMP) and Boyer-Moore—and

their role in enabling efficient text analysis at scale. Through the

development of a simplified GNV implementation, this research

demonstrates how classical string-matching techniques can be

applied to identify word frequency patterns over time within

historical corpora. The implementation utilizes Project

Gutenberg's public domain texts, processed through both KMP

and Boyer-Moore algorithms to generate decade-based frequency

analysis. While GNV's actual architecture employs sophisticated

preprocessing and indexing techniques for handling millions of

books, this study illustrates the fundamental string-matching

principles that underpin such large-scale text analysis systems.

The experimental results show how both algorithms successfully

identify patterns within the corpus, with Boyer-Moore

demonstrating superior average-case performance for longer

patterns and KMP providing consistent linear-time guarantees.

This work contributes to understanding how foundational

computer science algorithms enable modern digital humanities

tools, bridging theoretical algorithm design with practical

applications in computational linguistics and historical text

analysis.

Keywords—string matching, pattern matching, Google Ngram

Viewer, KMP algorithm, Boyer-Moore algorithm, digital

humanities, computational linguistics

I. INTRODUCTION

The study of language evolution and cultural shifts has

long relied on the analysis of historical texts. With the advent

of large-scale digitization, tools such as Google Ngram

Viewer (GNV) have enabled researchers to explore linguistic

trends across vast corpora of books spanning centuries. GNV

functions by identifying and charting the frequency of specific

sequences of words—known as n-grams—over time, offering

valuable insights into how language and society have evolved.

At the core of this functionality lies the fundamental

concept of string matching, a computational process that

involves locating occurrences of a substring within a larger

body of text. Efficient string-matching algorithms are essential

for processing large datasets like those used by GNV. In this

paper, we explore the application of string-matching

techniques in GNV, focusing particularly on how they

contribute to identifying word trends in digitized historical

texts.

To deepen our understanding, this study presents a

simplified implementation of GNV that models its core

functionality. This implementation utilizes two well-known

string-matching algorithms—Knuth-Morris-Pratt (KMP) and

Boyer-Moore (BM)—to search for specific word patterns in a

time-stamped corpus. By comparing the performance and

results of these algorithms, we aim to demonstrate how string

matching not only underpins the GNV's analytical capabilities

but also offers a practical approach to understanding linguistic

trends over time.

II. STRING MATCHING

A. Pattern Matching and String Matching

Pattern matching is the process of searching for the

presence of a pattern within a given structure, especially in

strings. In the context of text, this is known as string matching,

where the goal is to find all occurrences of a pattern string (P)

within a longer text string (T). String matching algorithms are

essential in analyzing large collections of text, particularly in

applications such as text search and natural language analysis.

Exact string matching seeks positions where P matches

exactly with a substring of T, while approximate matching

allows for limited mismatches. Several algorithms exist for

solving the exact matching problem, including the brute-force

method, the Knuth-Morris-Pratt (KMP) algorithm, and the

Boyer-Moore algorithm [1].

B. The Brute Force Algorithm

The brute force algorithm, also known as the naive string-
matching algorithm, is the most straightforward method for
finding all occurrences of a pattern P of length m in a text T of
length n. It works by checking for a match at every possible

mailto:xianfeodora@gmail.com
mailto:13523097@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

alignment of the pattern in the text, starting from the leftmost
character and shifting one character at a time. The following is
a pseudocode that describes the algorithm,

Figure 1. Pseudocode of Brute Force Algorithm

In the brute force string matching algorithm, the pattern of
length m is compared to every possible substring of the text of
length n that could potentially contain it. This results in n - m +
1 possible starting positions in the text where the pattern can be
aligned. At each of these positions, the algorithm performs a
character-by-character comparison between the pattern and the
corresponding substring in the text.

In the worst-case scenario, most characters in the pattern
may match with the text at each position, but a mismatch
occurs at the very last character of the pattern. This forces the
algorithm to perform up to m comparisons at each of the n - m
+ 1 positions, without ever finding a complete match. A classic
example of this occurs when both the text and pattern contain
repeated characters, except for the final character in the pattern,
which differs.

As a result, the total number of character comparisons in
the aforementioned scenario leads to a worst-case time
complexity of O(mn). Although it is sometimes simplified as
O(n*m), the more precise bound reflects the actual behaviour
of the algorithm in the most computationally expensive cases.
On the other hand, in the best-case scenario, a match is found
immediately at the first alignment, and all characters match
without any need for further shifting or comparisons. In this
case, only m comparisons are performed, followed by a return.
Since this happens on the first iteration over the text, the best-
case time complexity is O(n), representing a single linear scan
with minimal character comparisons [1].

Figure 2. Illustration of Brute Force Algorithm

Source: https://www.researchgate.net/figure/Example-of-
brute-force-algorithm-string-matching_fig1_369174858

The image illustrates how the Brute Force String Matching
algorithm works by comparing a pattern ("NOT") with all
possible substrings of the same length in the text "NOBODY
NOTICED HIM". The algorithm checks each position in the
text sequentially, attempting to match the pattern one character
at a time. As shown, it starts from position 1, then shifts one
character to the right at each step (positions 2 to 8), until it
finds a match at position 8 where "NOT" aligns exactly with
the substring in the text.

The illustration further reinforces the working principle of
the Brute Force algorithm, where the pattern is aligned at every
possible position in the text and checked one character at a time
until a match is found. This simple and systematic process
reflects the algorithm's core nature: it examines all possible
alignments without exception.

The Brute Force algorithm’s primary advantage lies in its
generality—it can be applied to any text and pattern without
prior preprocessing. Additionally, it performs relatively well
when the alphabet used is large, as mismatches tend to occur
early in the comparisons. However, this algorithm also has its
limitations; its performance is inefficient in the worst case, as it
may require many unnecessary comparisons. Moreover, it does
not exploit any information about the structure of the pattern or
the text to optimize the matching process. As a result, despite
its simplicity and broad applicability, the Brute Force algorithm
is often outperformed by more advanced string-matching
techniques in practical scenarios [1].

C. The Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt (KMP) algorithm is an efficient

string-matching algorithm that improves upon the brute force

approach by avoiding unnecessary character comparisons. It

was developed by Donald Knuth, Vaughan Pratt, and James

H. Morris in 1977. The core idea behind KMP is to preprocess

the pattern P to build a failure function (also called a border or

prefix table), which is then used to determine how far the

pattern can be shifted when a mismatch occurs, without

rechecking characters that are known to match. In the brute

force method, when a mismatch occurs, the pattern is shifted

by just one position, and all previous comparisons are

repeated. KMP avoids this by reusing the knowledge of

matched characters from the failure function.

Figure 3. Border Function Example

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/23-Pencocokan-string-(2025).pdf

https://www.researchgate.net/figure/Example-of-brute-force-algorithm-string-matching_fig1_369174858
https://www.researchgate.net/figure/Example-of-brute-force-algorithm-string-matching_fig1_369174858
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The image presents an example of the border function

table (or failure function) used in the Knuth-Morris-Pratt

(KMP) string matching algorithm, specifically for the pattern

P = "abaaba". The first row (j) represents the indices of the

pattern from 0 to 5, and the second row (P[j]) shows the

corresponding characters of the pattern. The third row (k)

serves as a helper index used in the computation of the border

values, while the fourth row (b(k)) contains the computed

border values for each prefix of the pattern.

This precomputed border function table plays a crucial role

in the efficiency of the KMP algorithm. It allows the pattern to

be shifted intelligently during mismatches, avoiding

unnecessary re-evaluation of characters that have previously

been matched. By doing so, KMP achieves linear time

complexity in the worst case, making it significantly more

efficient than the brute force approach in many practical

scenarios.

The Knuth-Morris-Pratt (KMP) algorithm consists of two

main phases. The first is the preprocessing phase, during

which a border function table—is constructed based on the

input pattern. This table records, for each position in the

pattern, the length of the longest proper prefix that is also a

suffix of the substring ending at that position. The second

phase is the matching phase, where the pattern is compared to

the text. When a mismatch occurs, the algorithm uses

information from the border function table to determine how

far the pattern can be shifted, thereby avoiding redundant

comparisons and enabling a more efficient matching process.

To better understand how the KMP algorithm operates, the

following pseudocode outlines the steps involved in both the

preprocessing and matching phases,

Figure 4. KMP Matching Pseudocode

Figure 5. KMP Border Function Table Pseudocode

The kmpMatch function attempts to find the starting index

of a pattern inside a text. It begins by computing the border

function (also called the failure function) using the

computeBorder function. This function precomputes, for every

position in the pattern, the length of the longest proper prefix

which is also a suffix of the substring up to that point.

During the matching phase, the algorithm uses two

pointers: i for the text and j for the pattern. If the characters

match, both pointers advance. If a mismatch occurs:

i) If j > 0, the pattern index j is updated using the border

table to avoid rechecking known matched

characters.

ii) If j = 0, only i is incremented, as no useful prefix-

suffix information exists.

If j reaches the end of the pattern (j = m), a match is found,

and the function returns the starting index of the match in the

text. If the loop ends without a match, -1 is returned.

The preprocessing step (computeBorder) runs in O(m)

time, and the matching process (kmpMatch) runs in O(n) time,

making the entire KMP algorithm run in O(n + m) —

significantly faster than the brute force approach in the worst

case [1].

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

D. The Boyer-Moore Algorithm

The Boyer-Moore algorithm is one of the most efficient

string-matching algorithms, especially when the pattern is

relatively short and the text is long. Developed by Robert S.

Boyer and J Strother Moore in 1977, the key innovation of the

Boyer-Moore algorithm is that it starts matching from the end

of the pattern rather than the beginning. This allows the

algorithm to skip sections of the text, potentially making fewer

comparisons than Knuth-Morris-Pratt or brute force.

The Boyer-Moore algorithm utilizes two main techniques

to improve string matching efficiency: the looking-glass

technique and the character-jump technique. In the looking-

glass technique, the pattern is compared against the text from

right to left, starting at the last character of the pattern. This is

different from most other string-matching algorithms, which

executes comparisons from left to right.

When a mismatch is found, the character-jump technique

is applied. This technique uses information about the last

occurrence of the mismatched character in the pattern.

Specifically, if a mismatch occurs at position T[i] ≠ P[j], the

algorithm uses a precomputed last occurrence function, which

records the rightmost position of each character in the pattern.

The pattern is then shifted so that the mismatched character in

the text aligns with its last occurrence in the pattern. If the

character does not appear in the pattern at all, the pattern can

be shifted beyond the mismatched character entirely. This

approach allows the algorithm to potentially skip large

sections of the text, making Boyer-Moore particularly efficient

in practice.

Figure 6. Last Occurrence

Source:

https://koding4fun.wordpress.com/2010/05/29/boyer-moore-

algorithm/

The image above illustrates the last occurrence function,

denoted as f(x), which is a key component of the Boyer-Moore

string matching algorithm. This function maps each character

x in the alphabet to the rightmost index at which it appears in

the given pattern. If a character does not appear in the pattern

at all, its value is set to -1.

In the example shown, the pattern consists of the

characters "abacab" at indices 0 through 5. The corresponding

values of the f(x) function indicate the last position at which

each character occurs within the pattern. For instance, the

character 'a' appears last at index 4, 'b' at index 5, and 'c' at

index 3. Characters absent in the pattern, such as 'y' and 'z', are

assigned a value of -1.

This function is used during the matching phase of the

Boyer-Moore algorithm to determine how far the pattern can

be shifted when a mismatch occurs. By knowing the last

occurrence of a mismatched character in the pattern, the

algorithm can skip over sections of the text, thereby improving

efficiency and reducing unnecessary comparisons. The

following is a pseudocode to exemplify the Boyer-Moore

algorithm,

Figure 7. Boyer-Moore Matching Pseudocode

Figure 8. Build Last Occurrence Table Pseudocode

https://koding4fun.wordpress.com/2010/05/29/boyer-moore-algorithm/
https://koding4fun.wordpress.com/2010/05/29/boyer-moore-algorithm/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The process starts with a preprocessing step, implemented

in buildLast(pattern). This function constructs a last table that

maps each ASCII character to the last index at which it

appears in the pattern. If a character does not occur in the

pattern, it is mapped to -1. This table enables the character

jump heuristic during the search.

The main matching function bmMatch begins comparison

from the end of the pattern using a technique known as the

looking-glass heuristic. If a mismatch occurs between text[i]

and pattern[j], the algorithm refers to the last table to

determine how far the pattern can be shifted. Specifically, it

computes a shift based on the distance between the

mismatched character in the text and its last occurrence in the

pattern. This reduces redundant comparisons and enables the

algorithm to skip over sections of the text.

If a match is found (i.e., all characters in the pattern match

in reverse order), the function returns the starting index i in the

text. If no match is found after the loop ends, the function

returns -1. Overall, Boyer-Moore is more efficient than brute

force and even KMP in many cases, especially for long texts

and large alphabets, due to its heuristic-based skipping

mechanism.

III. GOOGLE N-GRAM VIEWER

The Google N-gram Viewer (GNV) is a freely accessible

online tool that allows users to visualize the frequency of n-

grams—sequences of one to five words—across a vast corpus

of digitized books over a historical timeline, ranging from the

year 1500 to 2019. Introduced by Google in 2010, GNV

provides a simple graphical interface where users can enter

words or phrases, and the tool returns a time-series chart

showing how often those terms appeared in published

literature over the centuries [2], [3].

Unlike traditional search engines, GNV does not retrieve

full documents or contexts. Instead, it analyses statistical

trends based on the relative frequency of the queried n-gram,

normalized by the total number of words published each year.

This normalization helps ensure that frequency changes reflect

linguistic or cultural shifts rather than fluctuations in

publication volume [5]. The tool has been used in a variety of

disciplines, including linguistics, history, sociology, and

digital humanities, often to study the evolution of language,

concepts, or cultural phenomena over time.

Although GNV was widely celebrated for democratizing

access to historical language data, it also attracted criticism

and doubt regarding the quality and representativeness of the

underlying dataset. Researchers and scholars have pointed out

issues such as OCR errors, inconsistent metadata, and the

overrepresentation of certain genres or publication types [4].

Nonetheless, when interpreted cautiously and contextually,

GNV remains a powerful and popular instrument for exploring

large-scale linguistic patterns.

IV. DISCUSSION

A. Exact Lookup via Precomputed n-gram Index

When a user enters a word or phrase into the Google N-

gram Viewer (GNV), the system performs an exact match

against a precompiled database of n-grams extracted from

digitized texts. These n-grams have been previously tokenized,

time-stamped, and stored along with metadata such as their

frequency and the number of books they appear in. Because

the corpus has been fully processed beforehand, GNV does

not need to scan entire texts during a query. Instead, it

searches through an indexed data structure that allows for

efficient string matching and rapid retrieval of matching

records [6].

The nature of this exact-match retrieval closely

corresponds to classic string-matching paradigms, where an

input pattern is compared directly to an existing set of

sequences for exact equivalence. Although GNV's backend is

proprietary, it is reasonable to infer from available

documentation that the system employs data structures such as

hash maps, tries, or inverted indexes to support high-

performance matching at scale [6]. Furthermore, the public

documentation for GNV specifies that only exact matches are

returned (no fuzzy or partial matching). Those matches are

normalized by the total number of tokens published per year to

ensure fair comparison across time periods [5].

B. Efficient Matching Using Heuristics

Given the scale of the Google Books N-gram Corpus—

spanning over 500 billion words across multiple languages—

querying efficiency is essential. While exact-match searches in

GNV are performed on pre-processed n-gram indexes, the

responsiveness of the tool suggests the use of algorithmic

optimizations typically found in classical string matching,

such as heuristic-based shifting. One such heuristic is the last

occurrence table from the Boyer–Moore algorithm, which

allows the search process to skip sections of the pattern or text

that cannot result in a match, based on the rightmost

appearance of mismatched characters in the pattern. Though

Google has not publicly disclosed that this specific heuristic is

implemented, the sheer size of the dataset makes similar

optimizations highly plausible [6].

In Google's own technical paper, the importance of

memory-efficient and scalable storage for n-gram data is

emphasized. The authors mention using compact binary

encoding and indexing techniques to reduce memory footprint

while allowing for quick look-up and access [6]. These

strategies are conceptually aligned with the goals of classic

pattern matching heuristics: minimizing unnecessary

comparisons and maximizing throughput, especially when

matching large patterns across vast precompiled corpora.

Therefore, it is reasonable to conclude that the spirit of

heuristics alike the last occurrence rule influences the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

architectural decisions underlying GNV’s indexing and query

engine.

C. Handling Wildcards and POS Tags: Pattern Expansion

In addition to exact n-gram queries, Google N-gram

Viewer (GNV) supports more flexible search functionalities,

including wildcards (e.g., president of *) and part-of-speech

(POS) tags (e.g., run_VERB). These features require the

system to internally expand a query into multiple candidate n-

grams, which are then matched against the index. For

example, a wildcard query like the * of prompts the system to

return the most frequent completions of that pattern, such as

“the end of,” “the top of,” or “the beginning of,” each

evaluated as a separate string match [5], [7]. Likewise, POS

tagging enables users to restrict results based on grammatical

category, thus introducing another layer of pattern specificity.

These types of flexible matching operations introduce

computational challenges, as they require multi-pattern

matching against potentially millions of n-gram candidates.

Although Google has not disclosed the exact algorithms used,

this functionality is conceptually comparable to multi-pattern

matching techniques such as the Aho–Corasick algorithm, or

iterative applications of single-pattern matching like KMP or

Boyer–Moore. Such techniques are designed to handle many

simultaneous string matches efficiently, a necessity in systems

like GNV that support complex pattern expansion across

massive, pre-processed datasets [6].

The system addresses this by limiting the scope of

wildcard expansions to the top ten most frequent completions,

thereby controlling both computational complexity and output

interpretability [5]. This reflects a balance between expressive

query design and performance feasibility, where core concepts

of pattern matching algorithms inform how such features are

implemented at scale.

V. EXPERIMENT

A. Program Design

To demonstrate how classical string-matching algorithms

can be applied in large-scale linguistic trend analysis tools

such as Google Ngram Viewer (GNV), a simplified version of

GNV has been implemented. This program allows users to

input a specific word (the "pattern") and analyse its frequency

over time within a set of structured text data. The tool supports

two pattern matching algorithms: Knuth–Morris–Pratt (KMP)

and Boyer–Moore, both of which are efficient string-matching

techniques with linear or near-linear performance.

The core functionality of the program mimics GNV’s

matching phase by reading text files containing year-stamped

corpora, performing pattern matching on each file using either

KMP or Boyer–Moore, and recording the number of

occurrences per decade. This output is then used to generate a

time-series view, illustrating how the usage of a word changes

over time. While this prototype lacks the full indexing and

pre-processing power of GNV, it successfully demonstrates

how exact string-matching algorithms can be applied to

extract linguistic trends from historical texts. The

implementation highlights how foundational string-matching

concepts—such as prefix tables in KMP or last-occurrence

heuristics in Boyer–Moore—can be leveraged to efficiently

perform pattern analysis across time-stamped datasets,

reinforcing their relevance in building scalable, text-driven

analytical tools. The heart of the program lies in

pattern_matching.py, where it contains the pattern-matching

class with the necessary algorithms as shown in the image

below,

Figure 9. PatternMatcher Class (KMP Search)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 10. PatternMatcher Class (Boyer-Moore Search)

The PatternMatcher class is a utility class that implements

two fundamental string-matching algorithms used in computer

science for efficiently locating occurrences of a pattern string

within a larger text string. Both algorithms are designed to

overcome the inefficiencies of naive string-matching

approaches by employing sophisticated preprocessing

techniques and intelligent skip mechanisms to avoid redundant

character comparisons.

The Knuth-Morris-Pratt (KMP) algorithm represents a

significant advancement in pattern matching by utilizing a

preprocessing phase that constructs a failure function, also

known as a partial match table. This failure function analyses

the pattern itself to identify the longest proper prefix that is

simultaneously a suffix at each position within the pattern.

During the actual search phase, when a mismatch occurs

between the text and pattern, the algorithm leverages this

precomputed information to determine exactly how many

characters can be safely skipped without missing any potential

matches. The implementation traverses the text from left to

right while maintaining a position pointer in the pattern, and

upon detecting a mismatch, it consults the failure function to

reposition the pattern pointer optimally rather than restarting

the comparison from the beginning.

The Boyer-Moore algorithm takes a fundamentally

different approach by implementing a right-to-left matching

strategy combined with character-based heuristics for pattern

shifting. The algorithm begins by constructing a bad character

table (otherwise known as the aforementioned last occurrence

table) during preprocessing, which records the rightmost

occurrence of each character within the pattern. During the

search phase, the algorithm aligns the pattern with the text and

begins comparing characters from the rightmost position of

the pattern moving leftward. When a mismatch is encountered,

the bad character rule is applied to calculate an appropriate

shift distance based on the mismatched character's position in

the bad character table. This approach allows the algorithm to

make substantially larger jumps through the text, particularly

when the alphabet is large relative to the pattern length.

Both algorithms return identical results, but they achieve

this outcome through distinctly different computational

strategies. The choice between these algorithms often depends

on specific use case requirements, with KMP providing

predictable linear performance suitable for real-time

applications, while Boyer-Moore offers superior average-case

performance that makes it ideal for text processing

applications where speed is paramount, and input

characteristics are favourable to its heuristic approach.

Other complementary classes and modules that work in

conjunction with the Pattern Matcher class, including

components for dataset, file downloading, data visualization,

n-gram analysis, and additional text processing capabilities,

can be found in the repository linked below. These supporting

modules provide a comprehensive framework for text analysis

and pattern recognition tasks for the implementation of this

simplified version of GNV.

B. Testing

Upon execution, the program automatically downloads and

processes books from Project Gutenberg, based on the

metadata provided in the accompanying JSON file. Once the

dataset setup is complete, the user is prompted to enter a

search pattern (word), followed by a choice between the

Knuth-Morris-Pratt (KMP) or Boyer–Moore string matching

algorithm. The program then performs a search over the

corpus using the selected algorithm and displays the n-gram

results in the form of a decade-based bar graph. Additionally,

it reports the execution time required to complete the search,

offering both a visualization of linguistic trends and insight

into the algorithm's performance.

Figure 11. Downloading the Dataset (not shown in full

extent)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 12. Completed Data Setup

Figure 13. Search by KMP Algorithm

Figure 14. Search by Boyer-Moore Algorithm

The testing phase successfully demonstrates how classical

string-matching algorithms can be effectively integrated into a

simplified Google N-gram Viewer-like application. By

supporting both KMP and Boyer–Moore, the program not only

enables users to analyze word trends across historical texts—it

also provides an opportunity to observe the behavior and

efficiency of different pattern matching strategies in practice.

C. Additional Notes

While this Simple N-gram Viewer provides a functional

demonstration of pattern matching algorithms applied to

textual analysis, it operates with significant limitations

compared to the original Google N-gram Viewer. The

program's scope is constrained by its reliance on Project

Gutenberg's public domain literary corpus, which represents

only a small fraction of published works and is heavily

skewed toward older texts that have entered the public

domain, potentially creating bias in linguistic trend analysis.

Unlike Google's N-gram Viewer, which processes millions

of books spanning multiple centuries with comprehensive

metadata and multiple language support, this implementation

operates on a much smaller dataset that may not accurately

reflect broader linguistic patterns or cultural shifts. The

program's frequency calculations are simplified and do not

account for the complex statistical normalization techniques

employed by professional corpus linguistics tools, such as

smoothing algorithms, confidence intervals, or sophisticated

weighting schemes that adjust for varying publication volumes

across different time periods. Additionally, the terminal-based

visualization lacks interactive features, comparative analysis

capabilities, and advanced filtering options that make

professional n-gram viewers powerful research tools.

The text preprocessing, while functional, employs basic

cleaning techniques that may not adequately handle the

diverse formatting inconsistencies, OCR errors, and encoding

issues present in digitized historical texts, potentially affecting

the accuracy of pattern matching results. Furthermore, the

program's architecture does not support advanced linguistic

features such as part-of-speech tagging, lemmatization, case-

insensitive matching with proper statistical weighting, or

multi-word phrase analysis that are essential for serious

computational linguistics research.

VI. CONCLUSION

This paper has explored the fundamental role of string-

matching algorithms in enabling large-scale linguistic analysis

tools such as Google N-gram Viewer. Through the

examination of the Knuth-Morris-Pratt and Boyer-Moore

algorithms, this study has demonstrated how classical pattern

matching techniques serve as the computational foundation for

modern digital humanities applications. The development and

testing of a simplified GNV implementation successfully

illustrated how these algorithms can be effectively applied to

analyse word frequency trends across historical text corpora,

providing both practical insights into algorithm performance

and a deeper understanding of the underlying computational

processes that power sophisticated text analysis tools.

The experimental results confirm that both KMP and

Boyer-Moore algorithms are capable of efficiently processing

textual data for pattern analysis, with each offering distinct

advantages depending on the specific characteristics of the

search task. KMP provides reliable linear-time performance

with consistent behaviour across different input patterns,

making it suitable for applications requiring predictable

computational bounds. Boyer-Moore, with its heuristic-based

approach, demonstrates superior performance in average-case

scenarios, particularly when dealing with longer patterns and

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

diverse character distributions, making it ideal for large-scale

text processing applications.

However, this study also reveals the significant gap

between simplified academic implementations and production-

scale systems like Google's N-gram Viewer. The limitations of

the prototype—including its restricted corpus size, basic

preprocessing techniques, and simplified frequency

calculations—highlight the complexity and sophistication

required to build truly comprehensive linguistic analysis tools.

Professional systems must address challenges such as OCR

error handling, sophisticated statistical normalization, multi-

language support, and advanced linguistic features like part-

of-speech tagging and lemmatization.

Despite these limitations, this research successfully

demonstrates that fundamental string-matching algorithms

remain central to modern text analysis applications. The

principles underlying KMP's failure function and Boyer-

Moore's character-jump heuristics continue to influence the

design of contemporary information retrieval and text

processing systems. As digital humanities and computational

linguistics continue to evolve, understanding these

foundational algorithms becomes increasingly important for

developing efficient, scalable solutions for analysing the ever-

growing volume of digitized textual data.

Future work could explore the integration of more

advanced pattern matching techniques, such as multi-pattern

algorithms like Aho-Corasick, or investigate how modern

string-matching optimizations could be applied to improve the

performance of text analysis tools in specialized domains.

Additionally, research into hybrid approaches that combine

classical string matching with modern machine learning

techniques could yield new insights into how computational

linguistics tools might evolve to meet the growing demands of

digital scholarship and cultural analysis.

REPOSITORY LINK AT GITHUB

https://github.com/feodorashanice/Simple-Text-Pattern-
Analyzer.git

ACKNOWLEDGMENT

The author expresses their deepest gratitude to all lecturers

of IF2211 Algorithm Strategies, especially Dr. Ir. Rinaldi,

M.T. as the lecturer of class K-02, for his constant guidance

and expertise throughout the semester. The author also extends

appreciation to the Bandung Institute of Technology for its

resources and facilities, and to friends and family for their

unwavering support during the writing of this paper.

REFERENCES

[1] R. Munir, Pencocokan String. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-
Pencocokan-string-(2025).pdf.

[2] T. Kincaid, "Google's Ngram Viewer Charts the Cultural Rise of the
Beatles, the Fall of the Word 'Golly'," HuffPost, Dec. 17, 2010. [Online].
Available: https://www.huffpost.com/entry/google-ngram-database-
tra_n_798150

[3] S. Shankland, "Google's new tool: the phrase hound of history," CNET
News, Dec. 16, 2010. [Online]. Available:
https://web.archive.org/web/20140123012004/http://news.cnet.com/830
1-1023_3-20025979-93.html

[4] Meta Stack Exchange, "How reliable is Google Ngram?" [Online].
Available: https://english.meta.stackexchange.com/questions/8015/how-
reliable-is-google-ngram

[5] Google Books Ngram Viewer, "About Ngram Viewer." [Online].
Available: https://books.google.com/ngrams/info

[6] P. Norvig, J. Orwant, W. Brockman, and S. P. Ghemawat, "Building a
better n-gram viewer," Google Research Blog, 2012. [Online].
Available:
https://static.googleusercontent.com/media/research.google.com/en//pub
s/archive/42490.pdf

[7] George Mason University Libraries, “Text Analysis Tools: Ngram
Viewers,” [Online]. Available:
https://infoguides.gmu.edu/textanalysistools/ngram

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Shanice Feodora Tjahjono - 13523097

https://github.com/feodorashanice/Simple-Text-Pattern-Analyzer.git
https://github.com/feodorashanice/Simple-Text-Pattern-Analyzer.git
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://www.huffpost.com/entry/google-ngram-database-tra_n_798150
https://www.huffpost.com/entry/google-ngram-database-tra_n_798150
https://web.archive.org/web/20140123012004/http:/news.cnet.com/8301-1023_3-20025979-93.html
https://web.archive.org/web/20140123012004/http:/news.cnet.com/8301-1023_3-20025979-93.html
https://english.meta.stackexchange.com/questions/8015/how-reliable-is-google-ngram
https://english.meta.stackexchange.com/questions/8015/how-reliable-is-google-ngram
https://books.google.com/ngrams/info
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/42490.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/42490.pdf
https://infoguides.gmu.edu/textanalysistools/ngram

