
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

Smart Study Planning: Branch and Bound Algorithm 

for Academic Schedule Optimization with 

Performance Analysis 

Jessica Allen - 13523059 

Program Studi Teknik Informatika 

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 

E-mail: jessicaallen.lim@gmail.com , 13523059@std.stei.itb.ac.id   

 

 
Abstract—This paper presents the first systematic application 

of Branch and Bound optimization to student study scheduling. 

We formulate the scheduling problem as a constrained 

optimization framework incorporating subject priorities, 

deadlines, and time preferences, implementing a custom Branch 

and Bound algorithm with domain-specific bounding functions. 

The algorithm is compared against Greedy, Round Robin, and 

Random scheduling approaches across 20 diverse problem 

scenarios. Experimental results reveal that while Branch and 

Bound guarantees optimality for small problems (≤5 subjects), 

the Greedy algorithm surprisingly achieves superior overall 

performance (499.7 vs 409.9 average score). The study 

demonstrates that well-designed heuristics effectively exploit 

academic scheduling constraints, with even random scheduling 

achieving 99% of optimal performance. Branch and Bound 

maintains efficiency for problems up to 6 subjects but becomes 

impractical for larger scales. These findings provide clear 

guidance: use Greedy scheduling as the default approach for its 

speed and reliability, while reserving Branch and Bound for 

critical small-scale scenarios requiring mathematical optimality. 

Keywords—branch and bound; study scheduling; algorithm 

comparison; optimization; academic planning 

I.  INTRODUCTION 

Time management is one of the biggest challenges students 
face in higher education. Academic environments are complex, 
with multiple subjects running at the same time, each having 
different requirements, deadlines, and difficulty levels. This 
complexity requires better approaches to schedule optimization 
than simple intuitive methods.  

The study scheduling problem involves many connected 
factors that must be optimized together to achieve the best 
learning results while meeting all deadlines, including the time 
needed for each subject, assignment and exam deadlines, daily 
study time limits, subject importance levels, difficulty ratings, 
and preferred study times.  

Current methods used by students typically involve making 
decisions on the spot or using simple approaches that focus on 
the most urgent tasks first, without considering long-term 
benefits. While these methods may work well for simple 
situations, they show significant weaknesses when dealing with 

complex academic schedules that have multiple competing 
requirements and goals. 

This research investigates whether advanced optimization 
algorithms can provide better results than traditional scheduling 
methods in academic settings. Specifically, we study the use of 
Branch and Bound algorithm for student study scheduling, 
providing the first detailed comparison of optimal versus 
simple approaches in educational time management. 

The main contributions of this work include defining the 
study scheduling problem as an optimization framework, 
developing a Branch and Bound algorithm with specialized 
functions for academic scheduling, detailed experimental 
comparison of optimal and simple scheduling methods, and 
practical guidelines for when advanced optimization is actually 
worth the extra computational cost in academic planning. 

II. THEORETICAL BASIS 

A. Branch and Bound Algorithm 

 

Fig. 1. Branch and Bound (Source: 

https://astikanand.github.io/techblogs/algorithms/branch-and-bound-

approach ) 

1) Core Principles and Methodology 

Branch and Bound is a systematic optimization 

technique that finds optimal solutions for combinatorial 

problems by intelligently exploring the solution space. 

The algorithm organizes the solution space as a tree 

structure where each node represents a partial solution 

and each branch represents a decision. It maintains 

upper and lower bounds on the optimal solution value, 

using these bounds to prune portions of the search tree 
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that cannot contain optimal solutions. This approach 

balances exhaustive search with intelligent pruning, 

making it effective for solving NP-hard optimization 

problems while guaranteeing optimal results within 

reasonable time limits. 

2) Algorithm Components and Workflow 

a) Branching Strategy:  

This component determines how the solution 

space is divided into smaller subproblems. The 

branching process creates a tree structure where each 

node represents a partial solution, and branches 

represent different choices or assignments.  

b) Bounding Function:  

The bounding component estimates the best 

possible solution value that can be achieved from any 

node in the search tree. A good bounding function 

should be both providing accurate estimates and 

computationally efficient. This component also 

handles pruning, which is when the bound of a node 

indicates it cannot lead to a better solution than the 

current best, that entire subtree can be safely 

eliminated. 

The algorithm workflow is initialized with the root 

node representing the entire problem, then select a node 

from the current set of active nodes, branch from the 

selected node to create child nodes, compute bounds 

for each child node, prune nodes whose bounds 

indicate they cannot improve the current best solution, 

and repeat until all nodes are either solved or pruned. 

 

3) Complexity Analysis 

The time complexity of Branch and Bound varies 

significantly depending on the problem structure, 

bounding function quality, and branching strategy. In 

the worst case, the algorithm may need to explore the 

entire solution space, leading to exponential time 

complexity O(bd), where b is the branching factor and d 

is the maximum depth of the search tree. 

However, effective bounding functions can 

dramatically reduce the practical runtime by enabling 

aggressive pruning. The space complexity is typically 

O(d) for storing the current path in the search tree, 

although implementations may require additional 

memory for maintaining the set of active nodes. 

B. Combinatorial Optimization in Scheduling 

1) Problem Classification 

Scheduling problems belong to the class of 

combinatorial optimization problems, where the goal is 

to find the best arrangement or assignment from a finite 

set of possibilities. These problems involve allocating 

limited resources (such as time) to various tasks while 

satisfying multiple constraints and optimizing one or 

more objectives. 

In the context of study scheduling, the problem 

involves assigning study sessions to time slots while 

respecting constraints such as subject deadlines, daily 

time limits, and subject priorities. The combinatorial 

nature arises from the discrete choices involved in 

scheduling decisions, which subject to study, when to 

study it, and for how long. 

 

2) Constraint Types in Scheduling 

Study scheduling problems typically involve 

several types of constraints: 

a) Hard Constraints:  

These are requirements that must be satisfied for 

any feasible solution. Examples include deadline 

constraints and time availability constraints. 

b) Soft Constraints:  

These represent preferences that should be 

satisfied if possible but can be violated if necessary. 

Examples include preferred study times for specific 

subjects or balanced workload distribution across 

days. 

c) Resource Constraints:  

These limit the availability of resources, such as 

the maximum number of study hours per day or the 

requirement that only one subject can be studied at a 

time. 

C. Alternative Scheduling Approaches 

1) Greedy Algorithm  

Greedy algorithms make locally optimal choices at 

each step, hoping to achieve a globally optimal 

solution. In scheduling contexts, greedy approaches 

typically prioritize tasks based on simple rules such as 

earliest deadline first, shortest processing time first, or 

highest priority first. 

While greedy algorithms are computationally 

efficient with time complexity typically O(n log n), 

they do not guarantee optimal solutions for complex 

scheduling problems. However, they often provide 

good approximate solutions and serve as effective 

baselines for comparison with more sophisticated 

methods. 

 

2) Heuristic Methods  

Heuristic approaches use problem-specific rules or 

guidelines to generate reasonable solutions quickly. 

Common heuristic strategies for study scheduling 

include round-robin allocation (rotating between 

subjects), workload balancing (distributing study time 

evenly), and urgency-based prioritization. These 

methods trade optimality for computational efficiency 

and are often suitable for dynamic environments where 

schedules need to be adjusted frequently. 

 

3) Random and Baseline Approaches 

Random scheduling serves as a baseline for 

evaluating other algorithms by providing a lower bound 
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on expected performance. While not practical for real 

use, random approaches help establish the value added 

by more sophisticated scheduling methods. 

D. Performance Evaluation Framework 

1) Solution Quality Metrics 

Evaluating scheduling algorithms requires multiple 

metrics to capture different aspects of solution quality: 

a) Deadline Compliance 

The percentage of subjects completed before their 

deadlines, indicating the algorithm's ability to meet 

time constraints. 

b) Schedule Efficiency  

A composite measure considering factors such as 

study time distribution, subject prioritization, and 

workload balance. 

c) Optimization Score 

A numerical value representing the overall quality 

of the schedule based on the objective function used 

by the algorithm. 

 

2) Computational Performance Metrics 

a) Runtime Complexity  

The time required to generate a schedule, which 

becomes critical for large-scale problems or real-time 

applications. 

b) Scalability:  

How algorithm performance changes as the 

problem size increases, measured by varying the 

number of subjects or planning horizon. 

c) Memory Usage:  

The space complexity of the algorithm, important 

for resource-constrained environments. 

 

3) Comparative Analysis Framework 

Effective algorithm comparison requires controlled 

experiments with standardized test cases, consistent 

evaluation metrics, and statistical analysis of results 

across multiple problem instances. The comparison 

should consider both solution quality and 

computational efficiency to provide practical insights 

for algorithm selection. 

III. PROBLEM FORMULATION 

A. Problem Statement 

The study scheduling optimization problem involves 

creating an optimal study schedule for a student managing 

multiple academic subjects over a flexible time horizon. 

The problem involves allocating available study time 

across multiple subjects and time periods while satisfying 

various constraints and optimizing multiple objectives. 

Each subject has specific characteristics including time 

requirements, deadlines, difficulty levels, and priority 

weights that must be considered in the scheduling process. 

The available study time is limited by daily capacity 

constraints and the student's availability. 

The scheduling problem allows for two types of study 

session allocation, which is assigning entire subjects to 

specific days for focused study and breaking subjects into 

smaller study sessions distributed across multiple days for 

spaced learning. This flexibility enables the algorithm to 

find schedules that balance intensive focused study with 

distributed practice, both of which are important for 

effective learning. 

The problem seeks to determine the optimal assignment 

of study sessions to time slots that maximizes the overall 

schedule quality while ensuring all hard constraints are 

satisfied.  

B. Input Parameters and Variables 

The study scheduling problem takes the following inputs 

and defines the corresponding variables: 

1) Input Parameters 

- S = {s₁, s₂, ..., sₙ}: Set of n subjects to be 

studied 

- T = {t₁, t₂, ..., tₘ}: Set of m time periods (days) 

in the planning horizon 

- H = {h₁, h₂, ..., hₖ}: Set of k daily time slots 

(hours) available for study 

For each subject sᵢ ∈ S, the following parameters are 

defined: 

- rᵢ: Total study time required for subject i (in 

hours) 

- dᵢ: Deadline for subject i (day number) 

- pᵢ: Priority weight for subject i (higher values 

indicate higher importance) 

- diffᵢ: Difficulty level for subject i (scale 0.1 to 

1.0) 

- prefᵢ: Preferred study time for subject i 

(morning=1, afternoon=2, evening=3) 

- depᵢ: Set of prerequisite subjects that must be 

studied before subject i 

 

System constraints: 

- Hₘₐₓ: Maximum study hours allowed per day 

- Hₘᵢₙ: Minimum study hours per session (e.g., 

1 hour minimum) 

 

2) Decision Variables 

- xᵢⱼₜ ∈ {0, 1}: Binary variable indicating 

whether subject i is studied for j hours on day 

t. 

- yᵢₜ ∈ {0, 1}: Binary variable indicating whether 

subject i is studied at all on day t. 

- cᵢ ∈ {0, 1}: Binary variable indicating whether 

subject i is completed before its deadline. 

C. Constraints 

The following constraints must be satisfied for any feasible 

solution: 

1) Time Constraints 
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∑ᵢ₌₁ⁿ ∑ⱼ₌₁ᴴᵐᵃˣ j · xᵢⱼₜ ≤ Hₘₐₓ ∀t ∈ T      

(Daily time limit) 

 

∑ₜ₌₁ᵐ ∑ⱼ₌₁ᴴᵐᵃˣ j · xᵢⱼₜ = rᵢ ∀i ∈ S      

(Total required hours per subject) 

 

2) Deadline Constraints 

∑ₜ₌₁ᵈⁱ ∑ⱼ₌₁ᴴᵐᵃˣ j · xᵢⱼₜ = rᵢ ∀i ∈ S      

(Subject completion before deadline) 

 

3) Dependency Constraints 

∑ₜ₌₁ᵗ* ∑ⱼ₌₁ᴴᵐᵃˣ j · xₖⱼₜ = rₖ → ∑ₜ₌₁ᵗ* ∑ⱼ₌₁ᴴᵐᵃˣ j · xᵢⱼₜ ≥ 0  ∀k 

∈ depᵢ, ∀i ∈ S, ∀t* ∈ T      

(Prerequisites must be completed first) 

 

4) Logical Constraints 

∑ⱼ₌₁ᴴᵐᵃˣ xᵢⱼₜ ≤ 1 ∀i ∈ S, ∀t ∈ T      

(At most one study session per subject per day) 

 

yᵢₜ = ∑ⱼ₌₁ᴴᵐᵃˣ xᵢⱼₜ ∀i ∈ S, ∀t ∈ T      

(Binary indicator consistency) 

 

5) Minimum Session Constraints 

j · xᵢⱼₜ ≥ Hₘᵢₙ · xᵢⱼₜ ∀i ∈ S, ∀j ∈ H, ∀t ∈ T      

(Minimum study session length) 

 

D. Objective Function 

The objective is to maximize the overall schedule quality 

score, which combines multiple factors that are important 

for effective studying: 

 

Z = ∑ᵢ₌₁ⁿ ∑ₜ₌₁ᵐ ∑ⱼ₌₁ᴴᵐᵃˣ (wₚ · pᵢ + wₜ · timeBonus(i,t) + wᵦ · 

balanceBonus(i,t) - wᵈ · deadlinePenalty(i,t)) · j · xᵢⱼₜ 

 

1) Weight Parameters 

- wₜ = 1.0: Weight for time preference matching  

- wᵦ = 2.0 : Weight for workload balance 

- wₚ = 3.0: Weight for subject priority  

- wᵈ = 4.0: Weight for deadline pressure penalty  

 

2) Component Functions 

a) Priority Component:  

pᵢ ∈ [1,5] - Base priority score for subject i 

 

b) Time Preference Bonus: 

timeBonus(i,t) = { 

  2.0 if studying subject i at its preferred time on day t 

  1.0 if studying at neutral time 

  0.5 if studying at non-preferred time 

} 

 

c) Balance Bonus: 

balanceBonus(i,t) = max(0, 2.0 - 

(total_daily_hours_on_day_t / Hₘₐₓ)) 

 

d) Deadline Pressure Penalty: 

deadlinePenalty(i,t) = max(0, (diffᵢ / 10) · (1 / (dᵢ - t + 

1))) 

 

The objective function rewards schedules that prioritize 

important subjects, respect time preferences, maintain 

balanced daily workloads, and avoid last-minute cramming 

for difficult subjects. 

IV. METHODOLOGY 

A. Branch and Bound Adaptation for Study Scheduling 

This approach adapts the classical Branch and Bound 

algorithm to the study scheduling domain by representing 

the solution space as a tree where each node corresponds to 

a partial schedule assignment. The root node represents an 

empty schedule, and each level of the tree corresponds to a 

scheduling decision for a specific subject-day-hour 

combination. 

The algorithm systematically explores the solution 

space by making scheduling decisions incrementally, 

maintaining upper and lower bounds on the objective 

function value at each node. When a node's bound 

indicates it cannot lead to a better solution than the current 

best, the entire subtree rooted at that node is pruned, 

significantly reducing the search space. 

The key adaptations for study scheduling include 

custom branching strategy based on subject-day 

assignments, domain-specific bounding function 

incorporating scheduling constraints, specialized pruning 

rules for infeasible partial schedules, and integration of 

multiple objectives into a single scoring function 

 

B. Branching Strategy 

The branching strategy organizes the search tree by 

day, where each level corresponds to scheduling decisions 

for a specific day across all subjects. This day-by-day 

approach respects temporal constraints and allows for 

efficient constraint checking. At each node representing 

day t, the algorithm creates child nodes by considering all 

possible combinations of subject assignments for that day, 

subject to the daily time limit constraint (Hₘₐₓ). Each child 

node represents a different allocation of study hours among 

subjects for day t. 

 

1) Branch Prioritization 

a) Deadline Urgency  

Branches that schedule subjects with approaching 

deadlines are explored first 

b) Subject Priority  

Within the same urgency level, higher-priority 

subjects (higher pᵢ values) are considered first   

c) Completion Potential  

Branches that can complete entire subjects are 

prioritized over partial completions. 
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2) Branching Process 

For day t, generate child nodes by: 

a) Identify subjects that still need study hours: S' = {i 

∈ S | remaining_hours(i) > 0} 

b) Generate feasible combinations of (subject, hours) 

assignments that satisfy ∑ⱼ j ≤ Hₘₐₓ 

c) Sort combinations by priority score = wₚ · pᵢ + wᵈ · 

urgency_factor(i,t) 

d) Create child nodes in priority order 

 

C. Bounding Function Design 

The bounding function estimates the maximum possible 

objective function value achievable from any node in the 

subtree. For a partial schedule at day t, the bound consists 

of: 

 

1) Current Score: Points already earned from scheduled 

study sessions in days 1 to t-1 

 

2) Optimistic Future Score: Upper bound on points 

achievable from day t onwards, calculated as: 

 

Upper_Bound = Current_Score + ∑ᵢ∈S' 

max_possible_score(i, remaining_days) 

 

3) Bounding Function Formula: 

For each unscheduled subject i with rᵢ' remaining hours: 

max_score(i) = rᵢ' × (wₚ × pᵢ + wₜ × 2.0 + wᵦ × 2.0 + wᵈ 

× 0) 

 

This optimistic bound ensures that no feasible solution 

is pruned while enabling aggressive pruning of 

unpromising branches. 

 

D. Pruning Criteria 

1) Bound-based Pruning 

If Upper_Bound(node) ≤ Current_Best_Solution, prune 

the entire subtree rooted at that node, as no solution in 

the subtree can improve upon the current best. 

 

2) Infeasibility Pruning 

Prune branches where constraint violations make 

completion impossible: 

a) Deadline Infeasibility  

b) Time Insufficiency 

c) Dependency Violation  

 

3) Dominance Pruning 

Among nodes representing the same day with identical 

remaining work, prune nodes with lower objective 

scores, because they represent strictly inferior partial 

solutions. 

 

4) Practical Pruning 

a) Memory Limits  

Prune deepest nodes first when memory constraints 

are reached. 

b) Time Limits  

Implement time-based cutoffs for real-time 

applications. 

 

E. Algorithm Workflow 

1) Initialization 

a) Create root node representing empty schedule (day 

0) 

b) Initialize best_solution = null, best_score = -∞ 

c) Initialize priority queue with root node 

d) Calculate initial bounds for root node 

 

2) Main Loop 

While priority queue is not empty: 

a) Node Selection: Extract node with highest upper 

bound from priority queue 

b) Pruning Check: If node's bound ≤ best_score, 

continue to next iteration 

c) Completion Check: If node represents complete 

schedule (all days assigned): 

 - If node's score > best_score: update best_solution 

and best_score 

 - Continue to next iteration 

d) Branching: Generate all valid child nodes for next 

day 

e) Bounding: Calculate upper bounds for each child 

node 

f)  Filtering: Apply pruning criteria to eliminate 

infeasible/dominated children 

g) Queue Update: Add remaining children to priority 

queue 

 

3) Termination 

Return best_solution when priority queue is empty or 

time/memory limits are reached. 

 

4) Complexity Considerations 

a) Worst-case time: O(k^(n×m)) where k = possible 

hours per session 

b) Expected time: Significantly reduced through 

effective pruning 

c) Space complexity: O(depth × branching_factor) for 

storing active nodes 
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V. IMPLEMENTATION 

Note: Source code and test results can be accessed in the github link below 

A. System Architecture and Design 

The study scheduling system is implemented in Python 

using an object-oriented design approach that promotes 

modularity, maintainability, and extensibility. The system 

consists of six main components, each handling specific 

aspects of the scheduling problem: 

1) Data Structures Module (study_task.py): Defines 

problem representation and node structures 

2) Branch and Bound Solver 

(branch_bound_scheduler.py): Implements the main 

optimization algorithm 

3) Baseline Algorithms (baseline_algorithms.py): Provides 

comparison algorithms for performance evaluation 

4) Problem Generator (problem_generator.py): Creates 

various test scenarios for algorithm validation 

5) Results Analyzer (results_analyzer.py): Handles 

performance analysis and visualization 

6) Main Interface (main.py): Provides user interface and 

demonstrates system capabilities 

 

B. Data Structures and Problem Representation 

1) StudyTask Class 

The StudyTask class encapsulates all properties of a 

subject that needs to be studied: 

 
This class stores the subject's scheduling parameters 

and provides utility methods for tracking completion 

status and calculating progress percentages. 

2) ScheduleNode Class 

The ScheduleNode represents a state in the Branch and 

Bound search tree: 

 
Each node contains the current day being scheduled, a 

dictionary of study assignments made so far, and the 

list of remaining tasks. The class implements methods 

for calculating objective scores and upper bounds 

essential for the Branch and Bound algorithm. 

3) SchedulingProblem Class’ 

The SchedulingProblem class defines the complete 

problem instance: 

 
This class stores all problem constraints and 

parameters, including the objective function weights. It 

provides methods for feasibility checking and problem 

validation. 

 

C. Branch and Bound Algorithm Implementation 

1) Core Algorithm Structure 

The BranchAndBoundScheduler class implements the 

main optimization algorithm with several key methods: 

a) Solve Method:  

The main entry point that initializes the search tree, 

manages the priority queue, and controls the 

exploration process. The method uses a best-first 

search strategy, always expanding the node with the 

highest upper bound first. 

b) Node Generation 

The _generate_children() method creates child nodes 

by considering all feasible study assignments for the 

next day. For larger problems, it uses smart 

combination generation to focus on high-priority 

subjects and avoid combinatorial explosion. 

c) Bounding Function 

The calculate_upper_bound() method provides 

optimistic estimates of the best possible score 

achievable from any given node. The bound 

considers deadline pressure and uses realistic 

assumptions about future scheduling decisions. 

d) Pruning Mechanisms 

Multiple pruning strategies eliminate unpromising 

branches: 

- Bound-based pruning: Eliminates nodes whose 

upper bound cannot improve the current best 

solution 

- Feasibility pruning: Removes nodes where 

constraint violations make completion 

impossible 

- Queue management: Limits memory usage by 

maintaining only the most promising nodes in 

large problems 

 

2) Smart Branching Strategy 

For problems with more than 5 subjects, the algorithm 

employs focused branching strategies: 

 
This approach generates targeted combinations rather 

than exhaustive enumeration, to reduce the search 

space while maintaining solution quality. 

 

3) Performance Optimizations 

Several optimizations ensure the algorithm scales to 

realistic problem sizes: 
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- Priority-based exploration: Branches are 

explored in order of deadline urgency and 

subject priority 

- Dynamic queue size management: Prevents 

memory overflow in large problems by limiting 

active nodes 

- Adaptive time limits: Provides early termination 

for real-time applications 

- Progress monitoring: Tracks nodes explored, 

pruned, and current search depth 

 

D. Baseline Algorithm Implementation 

1) Greedy Scheduler 

The GreedyScheduler implements a deadline-first 

approach: 

 
This algorithm prioritizes subjects by deadline 

proximity and importance, providing a fast heuristic 

solution for comparison. 

 

2) Random Scheduler 

The RandomScheduler provides a baseline for 

algorithm evaluation: 

 
Random assignment helps create the lower bound of 

expected performance and validates that other 

algorithms provide meaningful improvements. 

 

3) Round Robin Scheduler 

The RoundRobinScheduler implements fair time 

distribution: 

 
This approach provides balanced subject coverage and 

serves as a middle-ground baseline between random 

and greedy strategies. 

 

E. Testing Framework and Problem Generation 

1) Problem Generator 

The ProblemGenerator class in the program creates 

diverse test scenarios: 

- Small problems: 3-5 subjects over 1 week for 

algorithm validation 

- Medium problems: 6-8 subjects over 2 weeks 

for realistic testing 

- Large problems: 10+ subjects over 3-4 weeks 

for scalability analysis 

- Specialized scenarios: Tight deadlines, subject 

dependencies, and balanced workloads 

 

2) Results Analysis System 

The ResultsAnalyzer class provides comprehensive 

performance evaluation: 

 
The analyzer generates statistical summaries, creates 

performance visualizations, and identifies the best 

algorithm for different scenarios. 

F. User Interface and Integration 

1) Main Interface 

The main.py script demonstrates system usage and 

provides two operation modes, single algorithm mode 

(tests Branch and Bound with detailed output) and 

comparison mode (runs all algorithms and generates 

comparative analysis). 

 

2) Input/Output Handling 

The system accepts problem instances through Python 

objects and can export results in JSON format for 

further analysis.  

 

VI. RESULTS AND ANALYSIS 

A. Experimental Setup 

1) Problem Instance Design 

Six different problem categories were designed to 

evaluate algorithm performance across various 

scenarios: 

a) Small Problems (3-5 subjects, 7 days): 

- Total study hours: 15-20 hours 

- Moderate deadline pressure 

- Simple constraint structure 

b) Medium Problems (6-8 subjects, 14 days): 

- Total study hours: 35-50 hours 

- Mixed deadline urgency 

- Realistic academic workload 

c) Large Problems (10+ subjects, 28 days): 

- Total study hours: 80-120 hours 

- Complex scheduling requirements 

- Stress-testing algorithm scalability 

d) Tight Deadline Problems: 

- High deadline pressure (deadline utilization > 

80%) 

- Requires efficient time management 

- Tests algorithm response to urgency 

e) Dependency Problems: 

- Subject prerequisites relationships 

- Sequential learning requirements 

- Tests constraint handling capabilities 
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f) Balanced Problems: 

- Realistic academic scenarios 

- Mixed priorities and difficulties 

- Representative of typical student situations 

 

2) Evaluation Metrics 

Algorithm performance was measured using multiple 

metrics: 

- Solution Quality: Objective function score 

reflecting schedule optimality 

- Computational Efficiency: Runtime and nodes 

explored during search 

- Success Rate: Percentage of problems solved 

within time limits 

- Scalability: Performance degradation as 

problem size increases 

- Practical Applicability: Schedule feasibility and 

student usability 

B. Algorithm Performance Comparison 

1) Overall Performance Summary 

 

Fig. 2. Graphs Generated from Python Code (Source: Private Documents) 

TABLE I.   

Algorithm 
Avg 

Score 

Success 

Rate 

Avg 

Runti

me (s) 

Problem Size 

Limit 

Greedy 499.7 100% <0.01 Unlimited 

Random 496.1 100% <0.01 Unlimited 

Round 

Robin 
494.8 100% <0.01 Unlimited 

Branch and 

Bound 
409.9 100% 2.45a ≤6 subjects 

(practical) 

a. Average includes one 49-second outlier; typical runtime <0.1 seconds 

Fig. 3. Overall Performance Summary based on 20 problem scenarios 

(Source: Private Documents) 

Surprisingly, the Greedy algorithm achieved the 

highest average score across all test cases. However, 

B&B approach still maintained excellent performance 

optimality for problems ≤6 subjects, but with 

computational overhead 

 

2) Performance by Problem Scale 

a) Small Problems (≤5 subjects) 

- Branch and Bound: 340.4 average score (best 

performance) 

- Greedy: 336.4 average score 

- Recommendation: B&B worth using for 

optimality guarantee 

b) Medium Problems (6 subjects) 

- Branch and Bound: 653.1 average score 

- Greedy: 751.5 average score (performs better) 

- Greedy outperforms B&B by 15% in medium 

problems, so B&B search may not be reaching 

optimal solutions in time limit 

c) Large Problems (8+ subjects) 

- Branch and Bound: Not practical (excluded 

from testing because it exceeds the time limit) 

- Greedy: 1174-1526 score range, consistent 

performance 

- Quality difference: not determined due to B&B 

scalability limits 

- Greedy is suitable for all large-scale problems 

 

3) Performance Under Different Scenarios 

Here are the complete performance based on the 

results provided in different scenarios. 

a) Scale-Based Analysis: 

- XS Scale (3 subjects), Random (143.4) > 

B&B/Greedy (143.3) 

- S Scale (4 subjects), Greedy (170.0) > B&B 

(166.4) 

- M Scale (6 subjects), B&B (528.5) > Greedy 

(523.7)  

- L Scale (8 subjects), Greedy (1174.1) dominant, 

B&B not tested 

- XL Scale (10 subjects), Greedy (1525.7) reliable 

performance 

b) Pressure-Based Analysis: 

- Low Pressure, Round Robin (267.2) 

- Medium Pressure, Greedy (317.9) > B&B 

(317.6) 

- High Pressure, Greedy (382.4) > B&B (382.0) 

- Extreme Pressure, Round Robin (-36.7) 

c) Specialized Scenarios: 

- All High Priority, Greedy (473.1) > B&B 

(472.6)  

- Mixed Priority, B&B (316.5) is slightly better 

than alternatives 

- All Easy Subjects, B&B (473.0) optimal 

performance 

- Final Exam Period, B&B (1294.4) > Greedy 

(1289.1) 
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C. Detailed Algorithm Analysis 

1) Branch and Bound Performance Characteristics 

Branch and Bound demonstrates excellent 

computational efficiency for small problems (0.00-0.06 

seconds, 8-315 nodes explored) with 88-95% pruning 

effectiveness, but has scalability limitations beyond 6 

subjects as shown by one outlier case requiring 49.2 

seconds and 62,019 nodes for a single large task. The 

algorithm consistently achieves optimal performance 

for problems with ≤5 subjects and excels in critical 

scenarios like final exam scheduling (1294.4 vs 

1289.1), but shows unexpected quality degradation in 

medium-sized problems due to exponential search 

complexity and time limit constraints that prevents 

reaching optimal solutions. 

 

2) Greedy Algorithm Analysis 

The Greedy algorithm demonstrates exceptional 

overall performance with the highest average score of 

499.7 across all test scenarios, showing great 

consistency and pressure resilience from 3 to 10+ 

subjects without performance degradation. It 

significantly outperforms Branch and Bound in 

medium problems (751.5 vs 653.1, a 15% 

improvement) and dominates large-scale scenarios 

(1174-1526 range) while maintaining sub-millisecond 

execution speed and 100% reliability. The algorithm's 

effectiveness stems from its deadline prioritization 

strategy and practical optimization approach, 

demonstrating that simple heuristic rules can often 

outperform complex optimization methods by 

achieving near-optimal results without exhaustive 

search. 

 

3) Baseline Algorithm Insights 

The baseline algorithms demonstrate surprising 

competitiveness, with Random scheduling achieving 

496.1 average score (99% of Greedy performance) and 

even outperforming sophisticated algorithms in specific 

scenarios like XS Scale (143.4) while successfully 

meeting all deadlines despite random allocation. Round 

Robin provides consistent performance (494.8 average) 

with balanced subject attention and excels under 

pressure extremes, achieving best results in both low 

pressure (267.2) and extreme pressure (-36.7) 

scenarios. In extreme pressure situations where all 

algorithms produced negative scores, simple 

approaches proved better with Round Robin (-36.7) 

outperforming Random (-71.2), Greedy (-76.1), and 

Branch and Bound (-76.9), suggesting that constraint 

satisfaction may be more valuable than optimization 

sophistication in impossible scenarios. 

 

D. Practical Implications and Recommendations 

1) Revised Algorithms Selection Guidelines 

Algorithm selection should be based on specific 

problem characteristics and requirements, use Branch 

and Bound for small critical problems (≤5 subjects) 

where mathematical optimality is essential and 

computational time up to 1 minute is acceptable, such 

as thesis deadlines or final exam preparation. Greedy is 

suitable as the default choice for any problem size, 

especially medium to large scenarios (6+ subjects), 

deadline pressure situations. If immediate results 

(<0.01 seconds) are required, use Round Robin when 

all subjects have equal importance, extreme pressure 

situations arise, or predictable balanced coverage is 

preferred, and use Random for baseline comparisons, 

exploring alternative patterns, or simple constraint 

satisfaction without optimization needs. 

 

2) Key Research Discoveries 

The research revealed several unexpected findings 

that challenge conventional optimization assumptions: 

Greedy algorithm achieved the highest overall 

performance (499.7 average) despite lacking optimality 

guarantees, Branch and Bound exhibited a sharp 

scalability difference beyond 5 subjects rather than 

gradual degradation, and Random scheduling 

surprisingly achieved 99% of Greedy performance, 

suggesting that study scheduling problems are 

inherently well-constrained. These results indicate that 

well-designed heuristics may capture most optimization 

benefits due to the natural structure of academic 

scheduling constraints, leading to worse returns from 

sophisticated algorithms in realistic problems and 

demonstrating that complex optimization methods may 

be less optimal under extreme conditions than simple 

systematic approaches. 

 

3) Real-World Application Guidelines 

Students should use Greedy algorithm as their 

default choice for all academic scheduling needs, 

applying Branch and Bound only for critical periods 

with ≤5 subjects, while Round Robin serves as a 

reliable backup strategy that requires minimal time 

investment (0.01 seconds) for near-optimal results. 

Hybrid approaches are unnecessary since Greedy alone 

handles the full spectrum of problem sizes effectively, 

suggesting simple user interfaces with algorithm 

selection based on problem size and performance 

monitoring to enable unlimited user base deployment. 

 

4) Limitations and Future Work 

The research demonstrates significant student 

benefits including minimal time investment (<0.1 

seconds) for optimal small-problem scheduling, 

mathematical optimality guarantees for critical periods, 

flexible algorithm switching based on problem 

characteristics, and 100% reliability in meeting 

scheduling constraints. Implementation 

recommendations suggest a hybrid approach using 
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Branch and Bound for important 1-2 week periods 

while applying Greedy for longer-term planning, with 

automatic switching to Greedy for >6 subjects, pressure 

detection monitoring deadline utilization, and user 

choice options balancing speed versus optimality. 

Academic institutions can apply these principles, using 

Branch and Bound for individual student schedules and 

Greedy for institutional planning, implementing 

automated optimal scheduling during high-stress exam 

periods, coordinating balanced study group scheduling 

for collaborative learning, and extending the resource 

allocation principles to classroom and facility 

scheduling systems. 

E. Scalability and Limitations 

The test results show clear limits for the algorithms, 

with Branch and Bound working well for up to 8 subjects 

over 14 days but struggling with larger problems due to 

growing time and memory needs (50-200 MB for medium 

problems). Both algorithms have weaknesses, Branch and 

Bound cannot handle full semester scheduling and works 

differently depending on the problem, while Greedy is fast 

but may miss the best possible solutions. Future 

improvements could include combining both algorithms to 

get the best of both, using machine learning to learn what 

students prefer, handling schedule changes in real-time, 

and better balancing different scheduling goals, showing 

that advanced algorithms can help with academic 

scheduling when the extra computing time is worth the 

better results. 

VII. CONCLUSION 

This research presents the first systematic application of 

Branch and Bound optimization to student study scheduling. 

Through comprehensive testing across 20 problem scenarios, 

we found that while Branch and Bound guarantees optimality 

for small problems (≤5 subjects), the Greedy algorithm 

surprisingly achieved superior overall performance (499.7 vs 

409.9 average score), challenging conventional optimization 

assumptions. The results reveal that well-designed heuristics 

effectively exploit academic scheduling constraints, with even 

random scheduling achieving 99% of optimal performance. 

These findings suggest to use Greedy scheduling as the default 

choice for its speed and reliability, while reserving Branch and 

Bound for critical small-scale scenarios requiring 

mathematical optimality. 

VIDEO LINK AT YOUTUBE  

https://www.youtube.com/watch?v=GZ7CfaT_BLk  

GITHUB LINK 

https://github.com/allen2610/MakalahSTIMA  
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