
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Smart Study Planning: Branch and Bound Algorithm

for Academic Schedule Optimization with

Performance Analysis

Jessica Allen - 13523059

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: jessicaallen.lim@gmail.com , 13523059@std.stei.itb.ac.id

Abstract—This paper presents the first systematic application

of Branch and Bound optimization to student study scheduling.

We formulate the scheduling problem as a constrained

optimization framework incorporating subject priorities,

deadlines, and time preferences, implementing a custom Branch

and Bound algorithm with domain-specific bounding functions.

The algorithm is compared against Greedy, Round Robin, and

Random scheduling approaches across 20 diverse problem

scenarios. Experimental results reveal that while Branch and

Bound guarantees optimality for small problems (≤5 subjects),

the Greedy algorithm surprisingly achieves superior overall

performance (499.7 vs 409.9 average score). The study

demonstrates that well-designed heuristics effectively exploit

academic scheduling constraints, with even random scheduling

achieving 99% of optimal performance. Branch and Bound

maintains efficiency for problems up to 6 subjects but becomes

impractical for larger scales. These findings provide clear

guidance: use Greedy scheduling as the default approach for its

speed and reliability, while reserving Branch and Bound for

critical small-scale scenarios requiring mathematical optimality.

Keywords—branch and bound; study scheduling; algorithm

comparison; optimization; academic planning

I. INTRODUCTION

Time management is one of the biggest challenges students
face in higher education. Academic environments are complex,
with multiple subjects running at the same time, each having
different requirements, deadlines, and difficulty levels. This
complexity requires better approaches to schedule optimization
than simple intuitive methods.

The study scheduling problem involves many connected
factors that must be optimized together to achieve the best
learning results while meeting all deadlines, including the time
needed for each subject, assignment and exam deadlines, daily
study time limits, subject importance levels, difficulty ratings,
and preferred study times.

Current methods used by students typically involve making
decisions on the spot or using simple approaches that focus on
the most urgent tasks first, without considering long-term
benefits. While these methods may work well for simple
situations, they show significant weaknesses when dealing with

complex academic schedules that have multiple competing
requirements and goals.

This research investigates whether advanced optimization
algorithms can provide better results than traditional scheduling
methods in academic settings. Specifically, we study the use of
Branch and Bound algorithm for student study scheduling,
providing the first detailed comparison of optimal versus
simple approaches in educational time management.

The main contributions of this work include defining the
study scheduling problem as an optimization framework,
developing a Branch and Bound algorithm with specialized
functions for academic scheduling, detailed experimental
comparison of optimal and simple scheduling methods, and
practical guidelines for when advanced optimization is actually
worth the extra computational cost in academic planning.

II. THEORETICAL BASIS

A. Branch and Bound Algorithm

Fig. 1. Branch and Bound (Source:

https://astikanand.github.io/techblogs/algorithms/branch-and-bound-

approach)

1) Core Principles and Methodology

Branch and Bound is a systematic optimization

technique that finds optimal solutions for combinatorial

problems by intelligently exploring the solution space.

The algorithm organizes the solution space as a tree

structure where each node represents a partial solution

and each branch represents a decision. It maintains

upper and lower bounds on the optimal solution value,

using these bounds to prune portions of the search tree

mailto:jessicaallen.lim@gmail.com
mailto:13523059@std.stei.itb.ac.id
https://astikanand.github.io/techblogs/algorithms/branch-and-bound-approach
https://astikanand.github.io/techblogs/algorithms/branch-and-bound-approach

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

that cannot contain optimal solutions. This approach

balances exhaustive search with intelligent pruning,

making it effective for solving NP-hard optimization

problems while guaranteeing optimal results within

reasonable time limits.

2) Algorithm Components and Workflow

a) Branching Strategy:

This component determines how the solution

space is divided into smaller subproblems. The

branching process creates a tree structure where each

node represents a partial solution, and branches

represent different choices or assignments.

b) Bounding Function:

The bounding component estimates the best

possible solution value that can be achieved from any

node in the search tree. A good bounding function

should be both providing accurate estimates and

computationally efficient. This component also

handles pruning, which is when the bound of a node

indicates it cannot lead to a better solution than the

current best, that entire subtree can be safely

eliminated.

The algorithm workflow is initialized with the root

node representing the entire problem, then select a node

from the current set of active nodes, branch from the

selected node to create child nodes, compute bounds

for each child node, prune nodes whose bounds

indicate they cannot improve the current best solution,

and repeat until all nodes are either solved or pruned.

3) Complexity Analysis

The time complexity of Branch and Bound varies

significantly depending on the problem structure,

bounding function quality, and branching strategy. In

the worst case, the algorithm may need to explore the

entire solution space, leading to exponential time

complexity O(bd), where b is the branching factor and d

is the maximum depth of the search tree.

However, effective bounding functions can

dramatically reduce the practical runtime by enabling

aggressive pruning. The space complexity is typically

O(d) for storing the current path in the search tree,

although implementations may require additional

memory for maintaining the set of active nodes.

B. Combinatorial Optimization in Scheduling

1) Problem Classification

Scheduling problems belong to the class of

combinatorial optimization problems, where the goal is

to find the best arrangement or assignment from a finite

set of possibilities. These problems involve allocating

limited resources (such as time) to various tasks while

satisfying multiple constraints and optimizing one or

more objectives.

In the context of study scheduling, the problem

involves assigning study sessions to time slots while

respecting constraints such as subject deadlines, daily

time limits, and subject priorities. The combinatorial

nature arises from the discrete choices involved in

scheduling decisions, which subject to study, when to

study it, and for how long.

2) Constraint Types in Scheduling

Study scheduling problems typically involve

several types of constraints:

a) Hard Constraints:

These are requirements that must be satisfied for

any feasible solution. Examples include deadline

constraints and time availability constraints.

b) Soft Constraints:

These represent preferences that should be

satisfied if possible but can be violated if necessary.

Examples include preferred study times for specific

subjects or balanced workload distribution across

days.

c) Resource Constraints:

These limit the availability of resources, such as

the maximum number of study hours per day or the

requirement that only one subject can be studied at a

time.

C. Alternative Scheduling Approaches

1) Greedy Algorithm

Greedy algorithms make locally optimal choices at

each step, hoping to achieve a globally optimal

solution. In scheduling contexts, greedy approaches

typically prioritize tasks based on simple rules such as

earliest deadline first, shortest processing time first, or

highest priority first.

While greedy algorithms are computationally

efficient with time complexity typically O(n log n),

they do not guarantee optimal solutions for complex

scheduling problems. However, they often provide

good approximate solutions and serve as effective

baselines for comparison with more sophisticated

methods.

2) Heuristic Methods

Heuristic approaches use problem-specific rules or

guidelines to generate reasonable solutions quickly.

Common heuristic strategies for study scheduling

include round-robin allocation (rotating between

subjects), workload balancing (distributing study time

evenly), and urgency-based prioritization. These

methods trade optimality for computational efficiency

and are often suitable for dynamic environments where

schedules need to be adjusted frequently.

3) Random and Baseline Approaches

Random scheduling serves as a baseline for

evaluating other algorithms by providing a lower bound

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

on expected performance. While not practical for real

use, random approaches help establish the value added

by more sophisticated scheduling methods.

D. Performance Evaluation Framework

1) Solution Quality Metrics

Evaluating scheduling algorithms requires multiple

metrics to capture different aspects of solution quality:

a) Deadline Compliance

The percentage of subjects completed before their

deadlines, indicating the algorithm's ability to meet

time constraints.

b) Schedule Efficiency

A composite measure considering factors such as

study time distribution, subject prioritization, and

workload balance.

c) Optimization Score

A numerical value representing the overall quality

of the schedule based on the objective function used

by the algorithm.

2) Computational Performance Metrics

a) Runtime Complexity

The time required to generate a schedule, which

becomes critical for large-scale problems or real-time

applications.

b) Scalability:

How algorithm performance changes as the

problem size increases, measured by varying the

number of subjects or planning horizon.

c) Memory Usage:

The space complexity of the algorithm, important

for resource-constrained environments.

3) Comparative Analysis Framework

Effective algorithm comparison requires controlled

experiments with standardized test cases, consistent

evaluation metrics, and statistical analysis of results

across multiple problem instances. The comparison

should consider both solution quality and

computational efficiency to provide practical insights

for algorithm selection.

III. PROBLEM FORMULATION

A. Problem Statement

The study scheduling optimization problem involves

creating an optimal study schedule for a student managing

multiple academic subjects over a flexible time horizon.

The problem involves allocating available study time

across multiple subjects and time periods while satisfying

various constraints and optimizing multiple objectives.

Each subject has specific characteristics including time

requirements, deadlines, difficulty levels, and priority

weights that must be considered in the scheduling process.

The available study time is limited by daily capacity

constraints and the student's availability.

The scheduling problem allows for two types of study

session allocation, which is assigning entire subjects to

specific days for focused study and breaking subjects into

smaller study sessions distributed across multiple days for

spaced learning. This flexibility enables the algorithm to

find schedules that balance intensive focused study with

distributed practice, both of which are important for

effective learning.

The problem seeks to determine the optimal assignment

of study sessions to time slots that maximizes the overall

schedule quality while ensuring all hard constraints are

satisfied.

B. Input Parameters and Variables

The study scheduling problem takes the following inputs

and defines the corresponding variables:

1) Input Parameters

- S = {s₁, s₂, ..., sₙ}: Set of n subjects to be

studied

- T = {t₁, t₂, ..., tₘ}: Set of m time periods (days)

in the planning horizon

- H = {h₁, h₂, ..., hₖ}: Set of k daily time slots

(hours) available for study

For each subject sᵢ ∈ S, the following parameters are

defined:

- rᵢ: Total study time required for subject i (in

hours)

- dᵢ: Deadline for subject i (day number)

- pᵢ: Priority weight for subject i (higher values

indicate higher importance)

- diffᵢ: Difficulty level for subject i (scale 0.1 to

1.0)

- prefᵢ: Preferred study time for subject i

(morning=1, afternoon=2, evening=3)

- depᵢ: Set of prerequisite subjects that must be

studied before subject i

System constraints:

- Hₘₐₓ: Maximum study hours allowed per day

- Hₘᵢₙ: Minimum study hours per session (e.g.,

1 hour minimum)

2) Decision Variables

- xᵢⱼₜ ∈ {0, 1}: Binary variable indicating

whether subject i is studied for j hours on day

t.

- yᵢₜ ∈ {0, 1}: Binary variable indicating whether

subject i is studied at all on day t.

- cᵢ ∈ {0, 1}: Binary variable indicating whether

subject i is completed before its deadline.

C. Constraints

The following constraints must be satisfied for any feasible

solution:

1) Time Constraints

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

∑ᵢ₌₁ⁿ ∑ⱼ₌₁ᴴᵐᵃˣ j · xᵢⱼₜ ≤ Hₘₐₓ ∀t ∈ T

(Daily time limit)

∑ₜ₌₁ᵐ ∑ⱼ₌₁ᴴᵐᵃˣ j · xᵢⱼₜ = rᵢ ∀i ∈ S

(Total required hours per subject)

2) Deadline Constraints

∑ₜ₌₁ᵈⁱ ∑ⱼ₌₁ᴴᵐᵃˣ j · xᵢⱼₜ = rᵢ ∀i ∈ S

(Subject completion before deadline)

3) Dependency Constraints

∑ₜ₌₁ᵗ* ∑ⱼ₌₁ᴴᵐᵃˣ j · xₖⱼₜ = rₖ → ∑ₜ₌₁ᵗ* ∑ⱼ₌₁ᴴᵐᵃˣ j · xᵢⱼₜ ≥ 0 ∀k

∈ depᵢ, ∀i ∈ S, ∀t* ∈ T

(Prerequisites must be completed first)

4) Logical Constraints

∑ⱼ₌₁ᴴᵐᵃˣ xᵢⱼₜ ≤ 1 ∀i ∈ S, ∀t ∈ T

(At most one study session per subject per day)

yᵢₜ = ∑ⱼ₌₁ᴴᵐᵃˣ xᵢⱼₜ ∀i ∈ S, ∀t ∈ T

(Binary indicator consistency)

5) Minimum Session Constraints

j · xᵢⱼₜ ≥ Hₘᵢₙ · xᵢⱼₜ ∀i ∈ S, ∀j ∈ H, ∀t ∈ T

(Minimum study session length)

D. Objective Function

The objective is to maximize the overall schedule quality

score, which combines multiple factors that are important

for effective studying:

Z = ∑ᵢ₌₁ⁿ ∑ₜ₌₁ᵐ ∑ⱼ₌₁ᴴᵐᵃˣ (wₚ · pᵢ + wₜ · timeBonus(i,t) + wᵦ ·

balanceBonus(i,t) - wᵈ · deadlinePenalty(i,t)) · j · xᵢⱼₜ

1) Weight Parameters

- wₜ = 1.0: Weight for time preference matching

- wᵦ = 2.0 : Weight for workload balance

- wₚ = 3.0: Weight for subject priority

- wᵈ = 4.0: Weight for deadline pressure penalty

2) Component Functions

a) Priority Component:

pᵢ ∈ [1,5] - Base priority score for subject i

b) Time Preference Bonus:

timeBonus(i,t) = {

 2.0 if studying subject i at its preferred time on day t

 1.0 if studying at neutral time

 0.5 if studying at non-preferred time

}

c) Balance Bonus:

balanceBonus(i,t) = max(0, 2.0 -

(total_daily_hours_on_day_t / Hₘₐₓ))

d) Deadline Pressure Penalty:

deadlinePenalty(i,t) = max(0, (diffᵢ / 10) · (1 / (dᵢ - t +

1)))

The objective function rewards schedules that prioritize

important subjects, respect time preferences, maintain

balanced daily workloads, and avoid last-minute cramming

for difficult subjects.

IV. METHODOLOGY

A. Branch and Bound Adaptation for Study Scheduling

This approach adapts the classical Branch and Bound

algorithm to the study scheduling domain by representing

the solution space as a tree where each node corresponds to

a partial schedule assignment. The root node represents an

empty schedule, and each level of the tree corresponds to a

scheduling decision for a specific subject-day-hour

combination.

The algorithm systematically explores the solution

space by making scheduling decisions incrementally,

maintaining upper and lower bounds on the objective

function value at each node. When a node's bound

indicates it cannot lead to a better solution than the current

best, the entire subtree rooted at that node is pruned,

significantly reducing the search space.

The key adaptations for study scheduling include

custom branching strategy based on subject-day

assignments, domain-specific bounding function

incorporating scheduling constraints, specialized pruning

rules for infeasible partial schedules, and integration of

multiple objectives into a single scoring function

B. Branching Strategy

The branching strategy organizes the search tree by

day, where each level corresponds to scheduling decisions

for a specific day across all subjects. This day-by-day

approach respects temporal constraints and allows for

efficient constraint checking. At each node representing

day t, the algorithm creates child nodes by considering all

possible combinations of subject assignments for that day,

subject to the daily time limit constraint (Hₘₐₓ). Each child

node represents a different allocation of study hours among

subjects for day t.

1) Branch Prioritization

a) Deadline Urgency

Branches that schedule subjects with approaching

deadlines are explored first

b) Subject Priority

Within the same urgency level, higher-priority

subjects (higher pᵢ values) are considered first

c) Completion Potential

Branches that can complete entire subjects are

prioritized over partial completions.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

2) Branching Process

For day t, generate child nodes by:

a) Identify subjects that still need study hours: S' = {i

∈ S | remaining_hours(i) > 0}

b) Generate feasible combinations of (subject, hours)

assignments that satisfy ∑ⱼ j ≤ Hₘₐₓ

c) Sort combinations by priority score = wₚ · pᵢ + wᵈ ·

urgency_factor(i,t)

d) Create child nodes in priority order

C. Bounding Function Design

The bounding function estimates the maximum possible

objective function value achievable from any node in the

subtree. For a partial schedule at day t, the bound consists

of:

1) Current Score: Points already earned from scheduled

study sessions in days 1 to t-1

2) Optimistic Future Score: Upper bound on points

achievable from day t onwards, calculated as:

Upper_Bound = Current_Score + ∑ᵢ∈S'

max_possible_score(i, remaining_days)

3) Bounding Function Formula:

For each unscheduled subject i with rᵢ' remaining hours:

max_score(i) = rᵢ' × (wₚ × pᵢ + wₜ × 2.0 + wᵦ × 2.0 + wᵈ

× 0)

This optimistic bound ensures that no feasible solution

is pruned while enabling aggressive pruning of

unpromising branches.

D. Pruning Criteria

1) Bound-based Pruning

If Upper_Bound(node) ≤ Current_Best_Solution, prune

the entire subtree rooted at that node, as no solution in

the subtree can improve upon the current best.

2) Infeasibility Pruning

Prune branches where constraint violations make

completion impossible:

a) Deadline Infeasibility

b) Time Insufficiency

c) Dependency Violation

3) Dominance Pruning

Among nodes representing the same day with identical

remaining work, prune nodes with lower objective

scores, because they represent strictly inferior partial

solutions.

4) Practical Pruning

a) Memory Limits

Prune deepest nodes first when memory constraints

are reached.

b) Time Limits

Implement time-based cutoffs for real-time

applications.

E. Algorithm Workflow

1) Initialization

a) Create root node representing empty schedule (day

0)

b) Initialize best_solution = null, best_score = -∞

c) Initialize priority queue with root node

d) Calculate initial bounds for root node

2) Main Loop

While priority queue is not empty:

a) Node Selection: Extract node with highest upper

bound from priority queue

b) Pruning Check: If node's bound ≤ best_score,

continue to next iteration

c) Completion Check: If node represents complete

schedule (all days assigned):

 - If node's score > best_score: update best_solution

and best_score

 - Continue to next iteration

d) Branching: Generate all valid child nodes for next

day

e) Bounding: Calculate upper bounds for each child

node

f) Filtering: Apply pruning criteria to eliminate

infeasible/dominated children

g) Queue Update: Add remaining children to priority

queue

3) Termination

Return best_solution when priority queue is empty or

time/memory limits are reached.

4) Complexity Considerations

a) Worst-case time: O(k^(n×m)) where k = possible

hours per session

b) Expected time: Significantly reduced through

effective pruning

c) Space complexity: O(depth × branching_factor) for

storing active nodes

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

V. IMPLEMENTATION

Note: Source code and test results can be accessed in the github link below

A. System Architecture and Design

The study scheduling system is implemented in Python

using an object-oriented design approach that promotes

modularity, maintainability, and extensibility. The system

consists of six main components, each handling specific

aspects of the scheduling problem:

1) Data Structures Module (study_task.py): Defines

problem representation and node structures

2) Branch and Bound Solver

(branch_bound_scheduler.py): Implements the main

optimization algorithm

3) Baseline Algorithms (baseline_algorithms.py): Provides

comparison algorithms for performance evaluation

4) Problem Generator (problem_generator.py): Creates

various test scenarios for algorithm validation

5) Results Analyzer (results_analyzer.py): Handles

performance analysis and visualization

6) Main Interface (main.py): Provides user interface and

demonstrates system capabilities

B. Data Structures and Problem Representation

1) StudyTask Class

The StudyTask class encapsulates all properties of a

subject that needs to be studied:

This class stores the subject's scheduling parameters

and provides utility methods for tracking completion

status and calculating progress percentages.

2) ScheduleNode Class

The ScheduleNode represents a state in the Branch and

Bound search tree:

Each node contains the current day being scheduled, a

dictionary of study assignments made so far, and the

list of remaining tasks. The class implements methods

for calculating objective scores and upper bounds

essential for the Branch and Bound algorithm.

3) SchedulingProblem Class’

The SchedulingProblem class defines the complete

problem instance:

This class stores all problem constraints and

parameters, including the objective function weights. It

provides methods for feasibility checking and problem

validation.

C. Branch and Bound Algorithm Implementation

1) Core Algorithm Structure

The BranchAndBoundScheduler class implements the

main optimization algorithm with several key methods:

a) Solve Method:

The main entry point that initializes the search tree,

manages the priority queue, and controls the

exploration process. The method uses a best-first

search strategy, always expanding the node with the

highest upper bound first.

b) Node Generation

The _generate_children() method creates child nodes

by considering all feasible study assignments for the

next day. For larger problems, it uses smart

combination generation to focus on high-priority

subjects and avoid combinatorial explosion.

c) Bounding Function

The calculate_upper_bound() method provides

optimistic estimates of the best possible score

achievable from any given node. The bound

considers deadline pressure and uses realistic

assumptions about future scheduling decisions.

d) Pruning Mechanisms

Multiple pruning strategies eliminate unpromising

branches:

- Bound-based pruning: Eliminates nodes whose

upper bound cannot improve the current best

solution

- Feasibility pruning: Removes nodes where

constraint violations make completion

impossible

- Queue management: Limits memory usage by

maintaining only the most promising nodes in

large problems

2) Smart Branching Strategy

For problems with more than 5 subjects, the algorithm

employs focused branching strategies:

This approach generates targeted combinations rather

than exhaustive enumeration, to reduce the search

space while maintaining solution quality.

3) Performance Optimizations

Several optimizations ensure the algorithm scales to

realistic problem sizes:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

- Priority-based exploration: Branches are

explored in order of deadline urgency and

subject priority

- Dynamic queue size management: Prevents

memory overflow in large problems by limiting

active nodes

- Adaptive time limits: Provides early termination

for real-time applications

- Progress monitoring: Tracks nodes explored,

pruned, and current search depth

D. Baseline Algorithm Implementation

1) Greedy Scheduler

The GreedyScheduler implements a deadline-first

approach:

This algorithm prioritizes subjects by deadline

proximity and importance, providing a fast heuristic

solution for comparison.

2) Random Scheduler

The RandomScheduler provides a baseline for

algorithm evaluation:

Random assignment helps create the lower bound of

expected performance and validates that other

algorithms provide meaningful improvements.

3) Round Robin Scheduler

The RoundRobinScheduler implements fair time

distribution:

This approach provides balanced subject coverage and

serves as a middle-ground baseline between random

and greedy strategies.

E. Testing Framework and Problem Generation

1) Problem Generator

The ProblemGenerator class in the program creates

diverse test scenarios:

- Small problems: 3-5 subjects over 1 week for

algorithm validation

- Medium problems: 6-8 subjects over 2 weeks

for realistic testing

- Large problems: 10+ subjects over 3-4 weeks

for scalability analysis

- Specialized scenarios: Tight deadlines, subject

dependencies, and balanced workloads

2) Results Analysis System

The ResultsAnalyzer class provides comprehensive

performance evaluation:

The analyzer generates statistical summaries, creates

performance visualizations, and identifies the best

algorithm for different scenarios.

F. User Interface and Integration

1) Main Interface

The main.py script demonstrates system usage and

provides two operation modes, single algorithm mode

(tests Branch and Bound with detailed output) and

comparison mode (runs all algorithms and generates

comparative analysis).

2) Input/Output Handling

The system accepts problem instances through Python

objects and can export results in JSON format for

further analysis.

VI. RESULTS AND ANALYSIS

A. Experimental Setup

1) Problem Instance Design

Six different problem categories were designed to

evaluate algorithm performance across various

scenarios:

a) Small Problems (3-5 subjects, 7 days):

- Total study hours: 15-20 hours

- Moderate deadline pressure

- Simple constraint structure

b) Medium Problems (6-8 subjects, 14 days):

- Total study hours: 35-50 hours

- Mixed deadline urgency

- Realistic academic workload

c) Large Problems (10+ subjects, 28 days):

- Total study hours: 80-120 hours

- Complex scheduling requirements

- Stress-testing algorithm scalability

d) Tight Deadline Problems:

- High deadline pressure (deadline utilization >

80%)

- Requires efficient time management

- Tests algorithm response to urgency

e) Dependency Problems:

- Subject prerequisites relationships

- Sequential learning requirements

- Tests constraint handling capabilities

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

f) Balanced Problems:

- Realistic academic scenarios

- Mixed priorities and difficulties

- Representative of typical student situations

2) Evaluation Metrics

Algorithm performance was measured using multiple

metrics:

- Solution Quality: Objective function score

reflecting schedule optimality

- Computational Efficiency: Runtime and nodes

explored during search

- Success Rate: Percentage of problems solved

within time limits

- Scalability: Performance degradation as

problem size increases

- Practical Applicability: Schedule feasibility and

student usability

B. Algorithm Performance Comparison

1) Overall Performance Summary

Fig. 2. Graphs Generated from Python Code (Source: Private Documents)

TABLE I.

Algorithm
Avg

Score

Success

Rate

Avg

Runti

me (s)

Problem Size

Limit

Greedy 499.7 100% <0.01 Unlimited

Random 496.1 100% <0.01 Unlimited

Round

Robin
494.8 100% <0.01 Unlimited

Branch and

Bound
409.9 100% 2.45a ≤6 subjects

(practical)

a. Average includes one 49-second outlier; typical runtime <0.1 seconds

Fig. 3. Overall Performance Summary based on 20 problem scenarios

(Source: Private Documents)

Surprisingly, the Greedy algorithm achieved the

highest average score across all test cases. However,

B&B approach still maintained excellent performance

optimality for problems ≤6 subjects, but with

computational overhead

2) Performance by Problem Scale

a) Small Problems (≤5 subjects)

- Branch and Bound: 340.4 average score (best

performance)

- Greedy: 336.4 average score

- Recommendation: B&B worth using for

optimality guarantee

b) Medium Problems (6 subjects)

- Branch and Bound: 653.1 average score

- Greedy: 751.5 average score (performs better)

- Greedy outperforms B&B by 15% in medium

problems, so B&B search may not be reaching

optimal solutions in time limit

c) Large Problems (8+ subjects)

- Branch and Bound: Not practical (excluded

from testing because it exceeds the time limit)

- Greedy: 1174-1526 score range, consistent

performance

- Quality difference: not determined due to B&B

scalability limits

- Greedy is suitable for all large-scale problems

3) Performance Under Different Scenarios

Here are the complete performance based on the

results provided in different scenarios.

a) Scale-Based Analysis:

- XS Scale (3 subjects), Random (143.4) >

B&B/Greedy (143.3)

- S Scale (4 subjects), Greedy (170.0) > B&B

(166.4)

- M Scale (6 subjects), B&B (528.5) > Greedy

(523.7)

- L Scale (8 subjects), Greedy (1174.1) dominant,

B&B not tested

- XL Scale (10 subjects), Greedy (1525.7) reliable

performance

b) Pressure-Based Analysis:

- Low Pressure, Round Robin (267.2)

- Medium Pressure, Greedy (317.9) > B&B

(317.6)

- High Pressure, Greedy (382.4) > B&B (382.0)

- Extreme Pressure, Round Robin (-36.7)

c) Specialized Scenarios:

- All High Priority, Greedy (473.1) > B&B

(472.6)

- Mixed Priority, B&B (316.5) is slightly better

than alternatives

- All Easy Subjects, B&B (473.0) optimal

performance

- Final Exam Period, B&B (1294.4) > Greedy

(1289.1)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

C. Detailed Algorithm Analysis

1) Branch and Bound Performance Characteristics

Branch and Bound demonstrates excellent

computational efficiency for small problems (0.00-0.06

seconds, 8-315 nodes explored) with 88-95% pruning

effectiveness, but has scalability limitations beyond 6

subjects as shown by one outlier case requiring 49.2

seconds and 62,019 nodes for a single large task. The

algorithm consistently achieves optimal performance

for problems with ≤5 subjects and excels in critical

scenarios like final exam scheduling (1294.4 vs

1289.1), but shows unexpected quality degradation in

medium-sized problems due to exponential search

complexity and time limit constraints that prevents

reaching optimal solutions.

2) Greedy Algorithm Analysis

The Greedy algorithm demonstrates exceptional

overall performance with the highest average score of

499.7 across all test scenarios, showing great

consistency and pressure resilience from 3 to 10+

subjects without performance degradation. It

significantly outperforms Branch and Bound in

medium problems (751.5 vs 653.1, a 15%

improvement) and dominates large-scale scenarios

(1174-1526 range) while maintaining sub-millisecond

execution speed and 100% reliability. The algorithm's

effectiveness stems from its deadline prioritization

strategy and practical optimization approach,

demonstrating that simple heuristic rules can often

outperform complex optimization methods by

achieving near-optimal results without exhaustive

search.

3) Baseline Algorithm Insights

The baseline algorithms demonstrate surprising

competitiveness, with Random scheduling achieving

496.1 average score (99% of Greedy performance) and

even outperforming sophisticated algorithms in specific

scenarios like XS Scale (143.4) while successfully

meeting all deadlines despite random allocation. Round

Robin provides consistent performance (494.8 average)

with balanced subject attention and excels under

pressure extremes, achieving best results in both low

pressure (267.2) and extreme pressure (-36.7)

scenarios. In extreme pressure situations where all

algorithms produced negative scores, simple

approaches proved better with Round Robin (-36.7)

outperforming Random (-71.2), Greedy (-76.1), and

Branch and Bound (-76.9), suggesting that constraint

satisfaction may be more valuable than optimization

sophistication in impossible scenarios.

D. Practical Implications and Recommendations

1) Revised Algorithms Selection Guidelines

Algorithm selection should be based on specific

problem characteristics and requirements, use Branch

and Bound for small critical problems (≤5 subjects)

where mathematical optimality is essential and

computational time up to 1 minute is acceptable, such

as thesis deadlines or final exam preparation. Greedy is

suitable as the default choice for any problem size,

especially medium to large scenarios (6+ subjects),

deadline pressure situations. If immediate results

(<0.01 seconds) are required, use Round Robin when

all subjects have equal importance, extreme pressure

situations arise, or predictable balanced coverage is

preferred, and use Random for baseline comparisons,

exploring alternative patterns, or simple constraint

satisfaction without optimization needs.

2) Key Research Discoveries

The research revealed several unexpected findings

that challenge conventional optimization assumptions:

Greedy algorithm achieved the highest overall

performance (499.7 average) despite lacking optimality

guarantees, Branch and Bound exhibited a sharp

scalability difference beyond 5 subjects rather than

gradual degradation, and Random scheduling

surprisingly achieved 99% of Greedy performance,

suggesting that study scheduling problems are

inherently well-constrained. These results indicate that

well-designed heuristics may capture most optimization

benefits due to the natural structure of academic

scheduling constraints, leading to worse returns from

sophisticated algorithms in realistic problems and

demonstrating that complex optimization methods may

be less optimal under extreme conditions than simple

systematic approaches.

3) Real-World Application Guidelines

Students should use Greedy algorithm as their

default choice for all academic scheduling needs,

applying Branch and Bound only for critical periods

with ≤5 subjects, while Round Robin serves as a

reliable backup strategy that requires minimal time

investment (0.01 seconds) for near-optimal results.

Hybrid approaches are unnecessary since Greedy alone

handles the full spectrum of problem sizes effectively,

suggesting simple user interfaces with algorithm

selection based on problem size and performance

monitoring to enable unlimited user base deployment.

4) Limitations and Future Work

The research demonstrates significant student

benefits including minimal time investment (<0.1

seconds) for optimal small-problem scheduling,

mathematical optimality guarantees for critical periods,

flexible algorithm switching based on problem

characteristics, and 100% reliability in meeting

scheduling constraints. Implementation

recommendations suggest a hybrid approach using

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Branch and Bound for important 1-2 week periods

while applying Greedy for longer-term planning, with

automatic switching to Greedy for >6 subjects, pressure

detection monitoring deadline utilization, and user

choice options balancing speed versus optimality.

Academic institutions can apply these principles, using

Branch and Bound for individual student schedules and

Greedy for institutional planning, implementing

automated optimal scheduling during high-stress exam

periods, coordinating balanced study group scheduling

for collaborative learning, and extending the resource

allocation principles to classroom and facility

scheduling systems.

E. Scalability and Limitations

The test results show clear limits for the algorithms,

with Branch and Bound working well for up to 8 subjects

over 14 days but struggling with larger problems due to

growing time and memory needs (50-200 MB for medium

problems). Both algorithms have weaknesses, Branch and

Bound cannot handle full semester scheduling and works

differently depending on the problem, while Greedy is fast

but may miss the best possible solutions. Future

improvements could include combining both algorithms to

get the best of both, using machine learning to learn what

students prefer, handling schedule changes in real-time,

and better balancing different scheduling goals, showing

that advanced algorithms can help with academic

scheduling when the extra computing time is worth the

better results.

VII. CONCLUSION

This research presents the first systematic application of

Branch and Bound optimization to student study scheduling.

Through comprehensive testing across 20 problem scenarios,

we found that while Branch and Bound guarantees optimality

for small problems (≤5 subjects), the Greedy algorithm

surprisingly achieved superior overall performance (499.7 vs

409.9 average score), challenging conventional optimization

assumptions. The results reveal that well-designed heuristics

effectively exploit academic scheduling constraints, with even

random scheduling achieving 99% of optimal performance.

These findings suggest to use Greedy scheduling as the default

choice for its speed and reliability, while reserving Branch and

Bound for critical small-scale scenarios requiring

mathematical optimality.

VIDEO LINK AT YOUTUBE

https://www.youtube.com/watch?v=GZ7CfaT_BLk

GITHUB LINK

https://github.com/allen2610/MakalahSTIMA

ACKNOWLEDGMENT

The author would like to express deep gratitude to the

Almighty God for the divine blessings and guidance that have

been crucial throughout the research and writing process,

providing the strength and wisdom necessary to complete this

work. Heartfelt appreciation is extended to the author's parents

for their constant support, encouragement, and unwavering

belief in the author's capabilities, whose motivation and

presence have been a significant driving force behind this

accomplishment. Special thanks are offered to Dr. Ir. Rinaldi

Munir, M.T. and Dr. Nur Ulfa Maulidevi, the esteemed

professors from the IF2211 Algorithm Strategies course,

whose exceptional mentorship, insightful guidance, and

profound knowledge have greatly enhanced the author's

understanding of algorithmic optimization and scheduling

theory. The author is deeply grateful for the immeasurable

contributions of these individuals, whose collective support,

wisdom, and encouragement have been essential to the

successful completion of this research.

REFERENCES

[1] R. Munir, "Strategi Algoritma 2024-2025," Institut Teknologi Bandung,
2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/stima24-25.htm. [Accessed: 21-Jun-2025].

[2] "Branch-and-Bound Algorithm Design - an overview," ScienceDirect
Topics. [Online]. Available:
https://www.sciencedirect.com/topics/computer-science/branch-and-
bound-algorithm-design. [Accessed: 21-Jun-2025].

[3] S. Lee, "Branch and Bound: The Optimization Technique,"
NumberAnalytics, Jun. 12, 2025. [Online]. Available:
https://www.numberanalytics.com/blog/branch-and-bound-optimization-
technique. [Accessed: 21-Jun-2025].

[4] "CS 6363 Lecture Notes," University of Texas at Dallas. [Online].
Available:
https://personal.utdallas.edu/~dxd056000/cs6363/LectureNotes.pdf.
[Accessed: 21-Jun-2025].

[5] "The Power of Combinatorial Optimization," Lightning Bolt Solutions,
Aug. 16, 2024. [Online]. Available: https://www.lightning-
bolt.com/blog/combinatorial-optimization-provider-scheduling/.
[Accessed: 21-Jun-2025].

[6] R.-G. Stan, L. Băjenaru, C. Negru, and F. Pop, "Evaluation of Task
Scheduling Algorithms in Heterogeneous Computing Environments,"
Sensors, vol. 21, no. 17, art. 5906, Sep. 2021. [Online]. Available:
https://www.researchgate.net/publication/354416484_Evaluation_of_Ta
sk_Scheduling_Algorithms_in_Heterogeneous_Computing_Environmen
ts. [Accessed: 21-Jun-2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Jessica Allen - 13523059

https://www.youtube.com/watch?v=GZ7CfaT_BLk
https://github.com/allen2610/MakalahSTIMA
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/stima24-25.htm
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/stima24-25.htm
https://www.sciencedirect.com/topics/computer-science/branch-and-bound-algorithm-design
https://www.sciencedirect.com/topics/computer-science/branch-and-bound-algorithm-design
https://www.numberanalytics.com/blog/branch-and-bound-optimization-technique
https://www.numberanalytics.com/blog/branch-and-bound-optimization-technique
https://personal.utdallas.edu/~dxd056000/cs6363/LectureNotes.pdf
https://www.lightning-bolt.com/blog/combinatorial-optimization-provider-scheduling/
https://www.lightning-bolt.com/blog/combinatorial-optimization-provider-scheduling/
https://www.researchgate.net/publication/354416484_Evaluation_of_Task_Scheduling_Algorithms_in_Heterogeneous_Computing_Environments
https://www.researchgate.net/publication/354416484_Evaluation_of_Task_Scheduling_Algorithms_in_Heterogeneous_Computing_Environments
https://www.researchgate.net/publication/354416484_Evaluation_of_Task_Scheduling_Algorithms_in_Heterogeneous_Computing_Environments

