
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Product Search Application and SQL Injection Attack

Prevention Efforts Through Pattern Detection System

Using Regular Expression

Clarissa Nethania Tambunan 135230161,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 40132, Indonesia

E-mail: 113523016@std.stei.itb.ac.id, 2cntkreasi@gmail.com

Abstract—This article discusses the implementation of a

pattern detection system as one of the prevention efforts for SQL

Injection attacks in a product search application. The application

has product data connected to a database that is highly

vulnerable to such malicious attacks. SQL injection is a cyber

attack technique in which an attacker inserts malicious SQL

commands into data input from the user side with the aim of

manipulating or damaging queries that will be executed in the

database. The main purpose of creating a pattern detection

system in this application is to utilize Regular Expression (Regex)

to analyze and validate user input when searching for the desired

product. The implemented system works by identifying textual

patterns that have similarities with the characteristics of SQL

injection attacks before user input is forwarded to be stored in

the database which can then be processed. Based on the program,

this article also discusses the analysis to evaluate system

performance through a series of experimental tests involving

simulations of safe search input and those that have the potential

to be SQL injection, then analyzing how the system detects this

pattern by responding to each type of query to protect data

integrity.

Keywords—SQL injection; Regular Expression; pattern

detection; textual patterns; data integrity

I. INTRODUCTION

In today's digital economy, data has become the most
valuable asset for almost every organization or company. The
integrity and confidentiality of the data depend entirely on the
security of the applications that manage it. So application
security is not only a technical aspect but also the main basis of
public trust and business continuity of the organization or
company. However, the ever-growing scope of cyber threats
shows that creating a strong defense against all attacks is an
ongoing challenge. Security-related incidents that occur in the
world, for example, a security hole in the PostgreSQL database
system that was exploited as a zero-day to attack the security
company BeyondTrust [1], are a reminder that no system is
completely unattackable. This incident clearly emphasizes that
vulnerabilities can emerge from anywhere, even from our
trusted software components, and their impact can spread
throughout the application environment.

The incident that compromised BeyondTrust demonstrates
a crucial fact in cybersecurity that is every point in an

application that interacts with a data layer is a potential source
of attack. While zero-day attacks are sophisticated, their
underlying principles often stem from exploiting how an
application processes untrusted input or can lead to attacks on
the database. So the search feature in this application, although
seemingly simple, is essentially a direct interface to the heart of
the system, the database. Every word a user types into the
search box has the potential to be part of a command sent to the
database. If this user input is not processed very carefully, it
can lead to one of the most classic and effective attack
techniques, SQL injection.

The mechanism of this attack can first be understood
through what language is the target of this attack. SQL
(Structured Query Language) is a standard language designed
to manage and manipulate data in a relational database
management system (RDBMS) [2]. Then, SQL injection is a
cyber attack technique in which an attacker inserts or "injects"
a series of malicious SQL commands into data input from the
user side with the aim of tricking the application into running
unwanted commands on the database. If this attack is
successful, the impact can be fatal, starting from the breach and
leakage of all data in the database which can also potentially
change or delete data permanently. The consequences are not
only financial losses, but also result in the loss of customer
trust and reputational damage that is difficult to restore.

In overcoming this problem, a defense layer is needed that
is able to validate all input before entering the database. This
article focuses on the implementation of a detection system that
is able to act as a filter for incoming input from users to prevent
SQL injection attacks. This approach is fundamentally based
on the algorithmic concept of string matching, which is why
Regular Expression (Regex) is implemented in this product
search application. By using Regex, an effective pattern
detection system can be created to distinguish between
reasonable input text and suspicious input.

The system works as a validation gateway that ensures the
search keywords performed by the user by identifying textual
patterns or signatures that are syntactically identical to
common characteristics found in various SQL injection attack
techniques. This system is built to detect anomalies and
command structures that should not be present in a reasonable
search input without having to execute the query itself. By

mailto:13523016@std.stei.itb.ac.id
mailto:cntkreasi@gmail.com

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

performing this pattern-based filtering before the input is
forwarded for processing, the system can reject dangerous
commands or requests in the application so that the threat
cannot reach the database.

The main purpose of creating this application is to
demonstrate how vulnerabilities to SQL injection attacks can
be exploited in a simulated product search. In achieving this
goal, this article not only shows a vulnerable search method,
but also implements a pattern-based defense system using
Regular Expression to filter potentially dangerous input from
the database. Then, an analysis is carried out to evaluate the
effectiveness of each method implemented, starting from the
vulnerable method, the method with Regex detection, to the
safe prevention method in order to show which is more
practical in building an important layer of defense in protecting
data integrity in a system.

II. THEORITICAL FOUNDATION

A. Application Security

Application Security is the science and practice of
protecting application software from external threats through
the application of security measures during the software
development lifecycle (SDLC). The goal is to prevent theft or
piracy of data and code. The foundation of application security
is often based on three main principles known as the CIA
Triad: Confidentiality, Integrity, and Availability [8]. SQL
Injection attacks directly threaten two of these three pillars:
they violate confidentiality by leaking data that should not be
accessed, and they violate integrity by giving an attacker the
ability to change or delete data.

One of the most fundamental practices in application
security to maintain integrity and confidentiality is input
validation. This principle states that all data originating from
untrusted sources, especially from user input, must be strictly
checked and filtered before being processed by the application.
Failure to perform proper input validation is often the root of
many security vulnerabilities, including SQL Injection. The
pattern detection system discussed in this article is one form of
implementation of input validation practices.

B. SQL and Relational Datbases

Structured Query Language, better known as SQL, is a
standardized language designed specifically for managing data
in a relational database system. SQL serves as a
communication bridge between applications and databases,
allowing programs to perform fundamental operations such as
storing, manipulating, and most importantly, retrieving data
[2]. Its comprehensive capabilities make it the foundation for
almost all modern applications that rely on structured data
storage.

SQL commands, or SQL statements, are generally
categorized based on their function. The most commonly used
category in application development is Data Manipulation
Language (DML), which consists of commands to interact with
existing data. For example, in a product search application, the
SELECT command is used to retrieve product data from the
database to display to the user. The command might look like

this: SELECT nama_produk, harga FROM produk WHERE
kategori = 'Electronics';. Other DML commands include
INSERT to add new data and UPDATE to change data. In
addition to DML, there is also Data Definition Language
(DDL) which is used to define the structure of the database
itself, with commands such as CREATE TABLE used to build
table schemas [3]. In the context of SQL injection attacks,
attackers focus on manipulating DML statements, especially
SELECT, to change their logic and extract data outside of their
intended scope.

A relational database itself is a database model in which
data is organized into one or more interrelated tables. Each
table consists of rows, which represent an individual record or
entity, and columns, which represent attributes or properties of
that entity. As a concrete example in this application, the
product table is used to store information about each item sold.
Each row in this table represents a unique product, for example
'Baju Kemeja Pria Lengan Panjang'. Meanwhile, columns such
as id, nama_produk, kategori, and harga are attributes that
describe the product. This structured model is what allows SQL
queries to retrieve data precisely. MariaDB, which is used in
the implementation of this project, is one example of a popular
open-source RDBMS that uses SQL as its main interaction
language.

C. MariaDB

Fig 2.1 Illustration of MariaDB
(Source: https://github.com/mariadb)

MariaDB is an open-source, community-developed

Relational Database Management System (RDBMS) and one
of the most popular forks of MySQL. The project was started
by the original MySQL developers after concerns about the
takeover of MySQL by Oracle Corporation [4]. MariaDB was
designed to be a direct (drop-in) replacement for MySQL with
high compatibility, while offering better performance, richer
features, and a completely free and open license (GPL). As an
RDBMS, MariaDB relies on SQL as its primary language for
all data operations. In this study, MariaDB was chosen as the
database platform to implement and test the product search
application because of its stability, speed, and open-source
nature.

D. SQL Injection Attack

According to OWASP (Open Web Application Security
Project), Injection attacks are generally ranked third in the list
of the ten most critical web application security risks in 2021,
with 94% of tested applications having traces of Injection
vulnerabilities in some form [9]. Among the various types of
injection attacks, SQL injection is one of the most damaging to
databases. This attack occurs when malicious data that usually
comes from user input is combined into an SQL query by the

https://github.com/mariadb

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

application. Attackers exploit this vulnerability to insert
malicious SQL syntax, which is ultimately executed by the
database as part of the original command.

The basic mechanism of this attack is to "break" the data
context and enter the command context. For example, in a
query that searches for products by name (... WHERE
nama_produk = 'user_input'), an attacker could enter input such
as ' OR '1'='1'. The first single quote (') is intended to close the
data string early. The next part, OR '1'='1', is then interpreted
by the database not as a product name, but as a new logical
condition that is always true. As a result, the WHERE clause
becomes true for all rows, causing the database to return the
entire data in the table [9]. Another common attack is to use the
UNION SELECT operator to combine the results of
completely different queries, allowing the attacker to read data
from other tables that would otherwise be inaccessible.

The impact of a SQL Injection attack varies greatly
depending on the access rights the application has to the
database, but is almost always serious. The most common
impact is the leakage of sensitive data, such as user details,
financial information, or trade secrets. In addition, attackers
can also modify or even delete data (for example by inserting
DELETE or DROP TABLE commands), which can completely
disrupt business operations. In some cases, SQL injection can
even be used to take full control of the database server itself
[9].

E. String Matching

String matching is a classical problem that focuses on
designing algorithms to efficiently find all occurrences of a
short string, known as a pattern (P), within a much longer
string, called a text (T) [6]. The application of this concept is
very broad, ranging from the "search" function in text editors to
DNA sequence analysis. In the context of application security
discussed in this paper, the concept is applied directly: the
"text" is the entire input string sent by the user, while the
"pattern" is the signature or fingerprint of a known malicious
code fragment.

While there are many highly efficient classic string
matching algorithms, such as brute-force, Knuth-Morris-Pratt
(KMP), or Boyer-Moore, these algorithms are generally
designed to find exact matches of literal strings. However,
cyberattacks rarely come in one fixed form. An attacker can
vary their attack in many ways, such as using different cases or
adding spaces. Therefore, a more flexible matching approach is
needed, one that does not only look for the same text, but is
able to recognize a more abstract pattern. This is where Regular
Expressions play a major role in this application.

F. Regular Expression (Regex)

Regular Expression (Regex) is a technique in the form of a

sequence of characters that defines a specific search pattern.

Rather than searching for text literally, Regex allows

searching based on abstract rules that can recognize complex

text formats [6]. The main strength of Regex lies in the use of

special characters called metacharacters, each of which has its

own meaning and function in defining a pattern. This ability

makes Regex a very effective tool for tasks such as input

validation, log scanning, and in the context of this research,

security anomaly detection. The following is the general

notation of Regular Expression.

Fig 2.2 Basic Notation of Regex
(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/24-String-Matching-dengan-Regex-(2025).pdf)

In the SQL Injection detection system built, several of these
metacharacters are combined to form a comprehensive
detection pattern. The pipe operator |, which functions as an
"OR" logic, is used to combine several sub-patterns into one.
For example, a pattern can be designed to search for the
presence of a single quote character (') OR the SQL comment
symbol (--) OR the or keyword enclosed in spaces. Thus, a
single Regex expression is able to perform efficient multi-
condition checks on an input string to identify various possible
red flags.

G. PreparedStatement as a Prevention Method

In addition to detection, prevention is an important aspect of
security. In the context of Java programming language, the
most recommended SQL injection prevention method is to use
PreparedStatement. This is a feature of the JDBC (Java
Database Connectivity) interface that allows the execution of
pre-compiled SQL queries [7]. The security mechanism of
PreparedStatement is the separation of logic and data. The SQL
query template with placeholders (?) is first sent to the database
for compilation. After that, user input is sent separately only as
parameter values. In this way, user input will never be
interpreted as part of the SQL command, effectively
eliminating the root cause of SQL injection vulnerabilities.

III. PRODUCT SEARCH APPLICATION

This application describes the technical aspects of the
research, starting from the implementation of the database
structure used, the design of classes in the application, to a
detailed explanation of each search method implemented. The
purpose of this application is to provide a clear picture of how
the pattern detection system and prevention methods are built
in a simulation application, which will be the basis for
experimental testing in the next chapter.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

A. Product Database Implementation

The foundation of this application is a relational database
designed to store product data. This database is created on a
MariaDB server with the name data_product. The main
structure of this database is a single table named produk, which
is designed to store essential information about each item. The
schema of this table and the initial data used for testing are
initialized using the following SQL code.

Fig 3.1 Implementation of product.sql
(Source: https://github.com/ClarissaNT44/Product-Search-

Application_13523016/blob/main/database/product.sql)

B. Product Representation Implementation

Before the search algorithm can be formed, two main

classes are needed in Java language to manage data and

services. The first class is Produk contained in

src/Produk.java, which serves as a data model to represent

each row of the product table as an object. This allows data to

be managed in a more structured way within the application.

Here is the code for the Product class that was created.

Fig 3.2 Implementation of Produk.java
(Source: https://github.com/ClarissaNT44/Product-Search-

Application_13523016/blob/main/src/Produk.java)

The second class is SearchProduk which is located in

src/SearchProduk.java, which acts as a service layer. This

class is responsible for accommodating all logic related to

interaction with the database. It contains three different search

methods that are the core of this experiment. The relationship

between these two classes is very close, namely the

SearchProduk class will take raw data from the database and

convert it into a list of Produk objects before displaying it.

Here is the code for the SearchProduk class that was created.

Fig 3.3 Implementation of SearchProduk.java
(Source: https://github.com/ClarissaNT44/Product-Search-

Application_13523016/blob/main/src/SearchProduk.java)

C. Implementation of Vulnerable Method

The first method, searchVulnerable(), was designed to
demonstrate unsafe programming practices and serve as a basis
for comparison. The crux of the vulnerability lies in the way
the SQL query is constructed, by concatenating user keyword
input directly into the SQL string using the + (string
concatenation) operator.
String sql = "SELECT * FROM produk WHERE
nama_produk LIKE '%" + keyword + "%'";

https://github.com/ClarissaNT44/Product-Search-Application_13523016/blob/main/database/product.sql
https://github.com/ClarissaNT44/Product-Search-Application_13523016/blob/main/database/product.sql
https://github.com/ClarissaNT44/Product-Search-Application_13523016/blob/main/src/Produk.java
https://github.com/ClarissaNT44/Product-Search-Application_13523016/blob/main/src/Produk.java
https://github.com/ClarissaNT44/Product-Search-Application_13523016/blob/main/src/SearchProduk.java
https://github.com/ClarissaNT44/Product-Search-Application_13523016/blob/main/src/SearchProduk.java

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

With this approach, the application does not differentiate
between data and commands, leaving an opening for attackers
to insert malicious SQL syntax into keywords and manipulate
the logic of the query to be executed.

D. Implementation of Regex Detection Method

The second method, searchWithRegexProtection(),

implements a preventive defense layer. Before building the

SQL query, the user's keyword input is validated using a

predefined Regular Expression pattern to look for signs of

attacks.

String sqlInjectionPattern = ".*'.*|.*--

.*|.*#.*|.*\\s(or|and|union|select)\\s.*";

if (Pattern.matches(sqlInjectionPattern,

keyword.toLowerCase())) {

 return;

}

This Regex pattern serves as a security rule to detect the

presence of suspicious textual patterns, such as single quote

characters ('), SQL comments (--), or the keywords or and

union. If such a pattern is found, this method will immediately

reject the input and stop the process before a malicious query

can be formed and sent to the database.

E. Implementation of Safe Prevention Method

The third method, searchSecure(), implements the best
practice for database interaction in Java, namely using
PreparedStatement. This approach is fundamentally different
and eliminates the root cause of the vulnerability.
String sql = "SELECT * FROM produk WHERE
nama_produk LIKE ?";
PreparedStatement pstmt = conn.prepareStatement(sql)
pstmt.setString(1, "%" + keyword + "%");
The process consists of two steps, that is first, an SQL
"template" with placeholders (?) is sent to the database for pre-
compilation. Second, the user's keyword input is sent
separately as a parameter value using the setString() method.
This way, the database will never interpret the keyword as part
of the SQL command, but only as plain literal string data, thus
completely thwarting SQL Injection attacks.

IV. RESULTS AND ANALYSIS

This chapter presents the results of experimental testing
conducted on a product search simulation application. Each
search method implemented in the previous chapter was tested
using a series of input scenarios, both normal input and input
containing SQL injection attack loads. The purpose of this
chapter is to present the test results objectively and to conduct
an in-depth analysis of the behavior of each method to evaluate
its effectiveness.

A. Test Scenario

Testing was done by running the Main class found in
src/Main.java, which then ran three different experiments to
compare each search approach. The three methods tested were
searchVulnerable() which uses string concatenation,
searchWithRegexProtection() which implements Regex pattern
validation, and searchSecure() which uses PreparedStatement.

To ensure a fair comparison, each method was tested using the
same set of inputs. The inputs, which included normal search
keywords and various variations of malicious keywords to
simulate SQL injection attacks defined directly in the
Main.java code, as will be shown in the following test results
section.

Fig 4.1 Implementation of Main.java
(Source: https://github.com/ClarissaNT44/Product-Search-

Application_13523016/blob/main/src/Main.java)

B. Test Results

The result of executing the Main.java program produces
output recorded in the table. The following is a summary of the
results.

Table 4.1 Summary of Test Results

Experiment Method Input Result
Initial

Conclusions

Vulnerable searchV
ulnerabl
e

baju
Found 2
products

Functioning
normally

' OR
'1'='1'

Show all
30
products

Very
vulnerable

a' --
Found 1
product

vulnerable

'
UNION
SELEC
T ...

SQL
error

Very
vulnerable

Regex
Protection

searchW
ithRegex
Protectio
n

baju
Found 2
products

Functioning
normally

' OR
'1'='1'

Request
Blocked

Safe

a' --
Request
Blocked

Safe

'
UNION
SELEC
T ...

Request
Blocked

Safe

https://github.com/ClarissaNT44/Product-Search-Application_13523016/blob/main/src/Main.java
https://github.com/ClarissaNT44/Product-Search-Application_13523016/blob/main/src/Main.java

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Safe Search searchSe
cure

baju
Found 2
products

Functioning
normally

' OR
'1'='1'

No
Results

Safe

a' --
No
Results

Safe

'
UNION
SELEC
T ...

No
Results

Safe

C. Result Analysis

The result of executing the Main.java program produces
output recorded in the table. The following is a summary of the
results.

1. Vulnerable Method Analysis (searchVulnerable)
The searchVulnerable method showed a complete failure to
handle malicious input and validated the existence of a
critical security vulnerability. In the classic ' OR '1'='1'
attack, the application concatenates the input into a SQL
string, resulting in a query ... LIKE '%' OR '1'='1'%'. The
OR '1'='1' clause, which is always true, effectively breaks
the logic of the WHERE clause, causing the database to
return all 30 existing product records. This is a clear
demonstration of a massive data leak. Then, a comment-
based attack such as a' -- also successfully changes the
query logic to search for products whose names end with
the letter 'a', proving that an attacker can manipulate the
search function to their liking. Although the UNION
SELECT attack results in a
SQLIntegrityConstraintViolationException error, this result
only further strengthens the evidence of the vulnerability.
The error occurs not because of a security mechanism, but
because of a column mismatch. This shows that the
application is willing to pass malicious commands to the
database, and the attack could have succeeded if the
attacker guessed the number of columns correctly.

2. Regex Detection Method Analysis
(searchWithRegexProtection)

The searchWithRegexProtection method consistently
demonstrated its effectiveness as a preventive defense layer.
When tested with normal input, the system correctly
identified it as safe input and continued the search process
without any false positives. However, in all malicious input
scenarios, the Regex pattern-based detection system
successfully identified and blocked the request before the
SQL query could be constructed. The ' OR '1'='1' attack was
detected because the pattern .*'.*|.*\\s(or|and...)... matched
the presence of single quotes and the or keyword. Similarly,
comment and UNION-based attacks were also successfully
stopped because they contained textual patterns (--, select,
union) that have been defined as malicious. These results
prove that the string matching algorithm strategy
implemented through Regular Expressions is capable of
functioning as a reliable validation filter at the application
layer to reject input that does not conform to the expected
format.

3. Safe Prevention Method Analysis (searchSecure)

The searchSecure method validates this approach as the
most robust and fundamentally secure. Across all simulated
malicious input types, it consistently returns "No products
found". This behavior occurs because PreparedStatement
removes the root cause of the SQL injection vulnerability
itself, by separating the command logic from the data.
When the application uses a placeholder (?), malicious
strings such as ' OR '1'='1' are no longer interpreted as part
of the SQL command. Instead, they are sent to the database
purely as literal data values. As a result, the database will
safely try to find product names that literally contain the
text ' OR '1'='1', which of course does not exist in the table.
This method has been proven to not only detect the
symptoms of an attack, but prevent the attack from
occurring in the first place by ensuring that user input is
never executed as code.

V. CONCLUSION

Based on the implementation and analysis of the test
results, this study shows that the application development
method that relies on direct string concatenation to build SQL
queries is proven to be very unsafe. Simulation testing
validates that this approach not only fails to handle malicious
input, but can also be easily exploited to cause all data leakage,
which reaffirms how dangerous the practice is. In contrast, this
study successfully proves that the implementation of Regular
Expression (Regex) as an implementation of the string
matching algorithm strategy is an effective detection method.
The pattern-based system is able to identify and block all
variations of simulated attacks, confirming its role as a reliable
defense layer at the application level to filter input before
interacting with the database.

Although Regex-based detection has proven to be effective,
the most fundamental and robust prevention method is the use
of PreparedStatements in Java. This approach essentially
eliminates the root cause of SQL injection vulnerabilities by
clearly separating the SQL command logic from the data
inputted by the user. Therefore, it is recommended that the use
of PreparedStatements be made a standard practice in
developing secure applications. In the meantime, Regex-based
detection systems can serve as an invaluable additional layer of
security, such as in Web Application Firewalls (WAFs) to log
and reject attack attempts as an initial defense. Further research
can be conducted to explore the development of more complex
Regex patterns to be able to recognize more sophisticated
attack techniques.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

VI. APPENDIX

The application or program in this article can be accessed
here.

The author also made a video explanation of this article can
be accessed here.

ACKNOWLEDGMENT

The author would like to express gratitude and thanks to
God Almighty because thanks to His grace the author was able
to complete this article well. In particular, the author would
also like to thank the lecturers and people who have provided
much support in the preparation of this paper, namely:

1. Mrs. Dr. Nur Ulfa Maulidevi, S.T., M.Sc. as a lecturer of
IF2211 Strategi Algoritma class 01 who has guide the
author in teaching/knowledge to understands this course.

2. Mr. Dr. Ir. Rinaldi Munir, M.T. as a lecturer of IF2211
Strategi Algoritma class 02, and the author uses many of his
books.

3. Friends who provided a lot of input and ideas about this
article.

4. The family who always supports the author and gives
general views.

This article is certainly still not perfect, therefore the

author expects constructive criticism and suggestions from

various parties for improvement in the future. Hopefully this

article is useful for readers.

REFERENCES

[1] Abrams, L. 2024. PostgreSQL flaw exploited as zero-day in
BeyondTrust breach. BleepingComputer.
https://www.bleepingcomputer.com/news/security/postgresql-flaw-
exploited-as-zero-day-in-beyondtrust-breach/ (Accessed 9 June 2025)

[2] GeeksforGeeks. (2023). What is SQL?.
https://www.geeksforgeeks.org/what-is-sql/ (Accessed 9 June 2025)

[3] MariaDB Corporation. (n.d.). SQL Statements. MariaDB Knowledge
Base. https://mariadb.com/docs/server/reference/sql-statements
(Accessed 14 June 2025)

[4] MariaDB Foundation. (n.d.). About MariaDB. MariaDB.org.
https://mariadb.org/about/ (Accessed 14 June 2025)

[5] MariaDB Foundation. (n.d.). MariaDB Server Source Code Repository.
Github. https://github.com/mariadb (Accessed 14 June 2025)

[6] Munir, R. 2024. String Matching dengan Regular Expression. Institut
Teknologi Bandung.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-
String-Matching-dengan-Regex-(2025).pdf (Accessed 8 June 2025)

[7] Oracle Corporation. (n.d.). Interface PreparedStatement. Java®
Platform, Standard Edition & Java Development Kit Version 17 API
Specification.
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Prep
aredStatement.html (Accessed 21 June 2025)

[8] OWASP Foundation. (n.d.). OWASP Developer Guide: Security
Fundamentals. https://devguide.owasp.org/en/02-foundations/01-
security-fundamentals/ (Accessed 22 June 2025)

[9] OWASP Foundation. (2021). A03:2021 – Injection. OWASP Top 10.
https://owasp.org/Top10/A03_2021-Injection/ (Accessed 22 June 2025)

STATEMENT OF ORIGINALITY

I hereby declare that the article I wrote is my own writing, not

an adaptation or translation of someone else's article, and is

not plagiarized.

Bandung, 24 Juni 2025

Clarissa Nethania Tambunan 13523016

https://github.com/ClarissaNT44/Product-Search-Application_13523016.git
https://www.youtube.com/watch?v=YhrPLPbVB8Q
https://www.bleepingcomputer.com/news/security/postgresql-flaw-exploited-as-zero-day-in-beyondtrust-breach/
https://www.bleepingcomputer.com/news/security/postgresql-flaw-exploited-as-zero-day-in-beyondtrust-breach/
https://www.geeksforgeeks.org/what-is-sql/
https://mariadb.com/docs/server/reference/sql-statements
https://mariadb.org/about/
https://github.com/mariadb
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://devguide.owasp.org/en/02-foundations/01-security-fundamentals/
https://devguide.owasp.org/en/02-foundations/01-security-fundamentals/
https://owasp.org/Top10/A03_2021-Injection/

