
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Plagiarism Detection System in Academic Papers

Utilizing String Matching Techniques

Muhammad Raihaan Perdana - 13523124

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: perdanaraihan96@gmail.com, 13523124@std.stei.itb.ac.id

Abstract— Automated plagiarism detection is essential for

maintaining academic integrity, but its performance depends on

the efficiency of the underlying text-searching algorithms. This

paper provides a comparative analysis of three foundational

string matching algorithms—Brute-Force, Knuth-Morris-Pratt

(KMP), and Boyer-Moore—to determine their suitability for

detecting direct plagiarism in academic texts. The algorithms

were implemented in a conceptual detection system and tested on

a controlled dataset containing both original and copied

sentences, with performance measured by the total number of

character comparisons. Experimental results show that the

Boyer-Moore algorithm is overwhelmingly the most efficient,

reducing comparisons by nearly ninety percent compared to the

baseline. Unexpectedly, the KMP algorithm performed worse

than the simple Brute-Force approach, as the lack of repetitive

sub-patterns in natural language text nullified its primary

optimization. This study concludes that for processing natural

language, the Boyer-Moore algorithm is a superior foundational

choice, and demonstrates that real-world data characteristics can

be more influential on practical performance than theoretical

worst-case complexity.

Keywords— Plagiarism Detection; String Matching; Brute-

Force Algorithm; Knuth-Morris-Pratt; Boyer-Moore; Algorithm

Analysis.

I. INTRODUCTION

Fig 1.1 String Matching Illustration

(Source: medium)
Academic integrity is the cornerstone of all scholarly

pursuits. Without it, the trust in research and education erodes.
A primary challenge to this integrity today is plagiarism—the
act of using someone else's words or ideas without giving them
proper credit. This issue extends beyond simple academic
dishonesty; it actively harms the learning process by
discouraging students from developing their own critical
thinking and writing skills. In an age where digital text from

countless sources is instantly accessible, the "copy-paste"
culture has made it easier than ever for plagiarism to occur,
creating a significant and persistent problem for universities
committed to upholding high standards of originality.

For an educator, ensuring the originality of student work in
this environment has become a monumental task. Manually
checking a single paper against the billions of pages on the
internet, not to mention vast libraries of books and academic
journals, is simply not feasible. The sheer scale of the problem
demands an automated approach. This is where computer
science offers a powerful set of tools. At its heart, detecting
direct textual copying is a computational task. We can frame
the problem as a massive search operation: looking for specific
sequences of text (a "pattern" taken from a student's paper)
within a much larger body of source material (the "text"). The
central question then becomes: what is the most effective and
efficient algorithmic strategy to perform this large-scale
search?

To answer this, we turn to the field of algorithm strategies,
specifically focusing on techniques designed for string
matching. This paper will examine and compare three
foundational algorithms that offer different approaches to
solving this search problem. We start with the Brute-Force
algorithm, a direct and intuitive method that, while simple to
understand, often proves to be slow in practice. It serves as an
important baseline for measuring performance. Next, we
analyze the Knuth-Morris-Pratt (KMP) algorithm, a more
sophisticated technique that cleverly pre-processes the pattern
to learn from mismatches, allowing it to skip sections of the
text and avoid redundant comparisons. Finally, we investigate
the Boyer-Moore algorithm, which takes a counter-intuitive yet
highly effective approach by searching for the pattern from
right-to-left. This method often allows the algorithm to jump
across large sections of the source text, making it one of the
fastest algorithms in many practical applications.

The primary goal of this study is to bridge the theory of
these algorithms with the practical challenge of plagiarism
detection. To achieve this, our research will proceed with the
following objectives:

1. To propose a clear, conceptual framework for a basic
plagiarism detection system that utilizes string
matching as its core engine.

mailto:perdanaraihan96@gmail.com
mailto:13523124@std.stei.itb.ac.id
https://ai.plainenglish.io/string-pattern-matching-74639f027c61?gi=bb43d091273e

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

2. To simulate how the Brute-Force, KMP, and Boyer-
Moore algorithms would function within this
framework, analyzing the step-by-step process of how
each one handles the search.

3. To conduct a detailed comparative analysis, using the
simulation results to evaluate the algorithms based on
their speed, computational efficiency, and overall
suitability for building a real-world plagiarism
detection tool.

The rest of this paper is structured to guide the reader
through our investigation. Section II delves into the theoretical
foundations of each of the three string matching algorithms.
Section III lays out the methodology of our study, including the
design of our conceptual system and the dataset used for
simulation. Section IV presents the results of our analysis and
discusses the performance of each algorithm. Finally, Section
V offers our conclusions and suggests ideas for future research
in this area.

II. THEORETICAL FOUNDATION

A. String Matching

String matching is one of the fundamental concepts in
computer science that deals with searching for a specific
pattern within a text. Formally, string matching is defined as
the process of finding occurrences of string P (pattern) with
length m within string T (text) with length n, where typically m
≤ n [1]. In this context, text T can be viewed as a collection of
characters T[0], T[1], ..., T[n-1], while pattern P is a collection
of characters P[0], P[1], ..., P[m-1].

The string matching process aims to find all positions i
where P[0..m-1] = T[i..i+m-1], or in other words, all positions
where pattern P appears as a substring of text T. For example,
if T = "ABCABCAB" and P = "ABC", then pattern P is found
at position 0 and position 3 in text T.

The efficiency of string matching algorithms is crucial in
various applications, including plagiarism detection systems. In
the context of plagiarism detection, text T can be a reference
source document, while pattern P can be a sentence or phrase
from the document being examined. The more efficient the
string matching algorithm used, the faster the system can detect
potential plagiarism [2].

There are various string matching algorithms with different
characteristics and complexities. These algorithms can be
categorized based on their matching strategies, ranging from
simple approaches that compare every possible position to
more sophisticated approaches that utilize preprocessed
information to avoid unnecessary comparisons.

B. The Brute-Force Algorithm

The Brute-Force algorithm, also known as the naive
algorithm, represents the most straightforward approach to
solving the string matching problem. This algorithm works by
attempting to match pattern P at every possible position in text
T sequentially from left to right [3].

The working mechanism of the Brute-Force algorithm can
be explained in the following steps:

1. Start from the first position of text T (index 0)

2. Compare the first character of pattern P with the
character of text T at that position

3. If they match, continue comparing the next characters
until all pattern characters are exhausted or a mismatch
is found

4. If all pattern characters match, record that position as a
result

5. Shift the search position one character to the right and
repeat the process

The main advantage of the Brute-Force algorithm lies in its
simplicity. This algorithm is easy to understand and implement
because it does not require preprocessing or complex additional
data structures. This makes the Brute-Force algorithm suitable
for simple applications or for understanding the basic concepts
of string matching.

However, the Brute-Force algorithm has significant
weaknesses in terms of time efficiency. At worst case, this
algorithm has a time complexity of O(mn), where m is the
length of the pattern and n is the length of the text. The worst
case occurs when almost all pattern characters match the text,
but the last character is always different, so the algorithm must
perform maximum comparisons at each position [4].

For example, if T = "AAAAAAAAAB" (length 10) and P
= "AAAB" (length 4), then the algorithm will perform 7 × 4 =
28 character comparisons before finding the pattern at position
6. In the best case, when the pattern is found at the beginning
of the text or does not exist at all, the time complexity can
reach O(n).

The main weakness of the Brute-Force algorithm is
performing many unnecessary comparisons. When a mismatch
is found at a certain position, the algorithm does not utilize
information obtained from previous comparisons and
immediately shifts the pattern by only one position, even
though it might be possible to shift further based on the
mismatched character..

C. The Knuth-Morris-Pratt (KMP) Algorithm

The Knuth-Morris-Pratt (KMP) algorithm is a string
matching algorithm developed to overcome the weaknesses of
the Brute-Force algorithm by avoiding unnecessary character
comparisons. This algorithm was discovered by Donald Knuth,
James H. Morris, and Vaughan Pratt in 1977 and became one
of the most efficient string matching algorithms [5].

The main concept behind the KMP algorithm is utilizing
information from pattern prefixes that are also suffixes (proper
prefixes that are also proper suffixes) to determine how far the
pattern can be shifted when a mismatch occurs. This
information is stored in an array called the border function or
failure function [6].

The border function π(j) for pattern P is defined as the
length of the longest proper prefix of P[0..j] that is also a suffix

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

of P[0..j]. For example, for pattern P = "ABCAB", the border
function is:

• π(0) = 0 (no proper prefix for a single character)

• π(1) = 0 (no proper prefix of "AB" that is also a suffix)

• π(2) = 0 (no proper prefix of "ABC" that is also a
suffix)

• π(3) = 1 (proper prefix "A" is also a suffix of "ABCA")

• π(4) = 2 (proper prefix "AB" is also a suffix of
"ABCAB")

The search process with the KMP algorithm works as
follows:

1. Preprocessing: Calculate the border function for
pattern P

2. Start matching from the initial position of text and
pattern

3. If characters match, continue to the next character

4. If a mismatch occurs, use the border function to
determine the new pattern position without losing
possible matches

5. Repeat until the entire text has been examined

The main advantage of the KMP algorithm is its optimal
time complexity of O(m+n), where m is the time for
preprocessing the border function and n is the time for
searching. This complexity applies to all cases, both best and
worst, because each text character is examined only once and
each mismatch can be resolved in constant time using the
border function [7].

In the context of plagiarism detection, the KMP algorithm
is very useful when the patterns being searched are relatively
long and contain repeated characters or substrings. The
efficiency of this algorithm allows plagiarism detection
systems to process large documents in reasonable time.

D. The Boyer-Moore Algorithm

The Boyer-Moore algorithm, developed by Robert S. Boyer
and J Strother Moore in 1977, is one of the most efficient string
matching algorithms for large alphabet sizes. This algorithm
uses a different approach from previous algorithms by
performing pattern matching from right to left (looking-glass
technique) [8].

The Boyer-Moore algorithm applies two main heuristics to
improve search efficiency:

1. Looking-glass technique: Matching is performed from
the last character of the pattern towards the first
character. When a mismatch occurs, this information
can be used to determine how far the pattern can be
shifted.

2. Character-jump technique: When a mismatch occurs
on a certain character in the text, the algorithm uses
information about the last occurrence of that character
in the pattern to determine the optimal shift distance.

To support the character-jump technique, the Boyer-Moore
algorithm uses a last occurrence function that stores the last
occurrence position of each character in the pattern. If a
character does not exist in the pattern, its last occurrence value
is -1. For example, for pattern P = "GCAGAGAG" and
alphabet {A, C, G, T}, the last occurrence function is:

• last(A) = 5 (last position of A in the pattern)

• last(C) = 1 (last position of C in the pattern)

• last(G) = 7 (last position of G in the pattern)

• last(T) = -1 (T does not exist in the pattern)

The Boyer-Moore search process works as follows:

1. Preprocessing: Create last occurrence function for all
characters in the alphabet

2. Align the pattern with the text starting from the initial
position

3. Start matching from the last character of the pattern

4. If all characters match, the pattern is found

5. If a mismatch occurs, calculate the shift distance based
on the last occurrence function

6. Shift the pattern by the calculated distance and repeat
the process

The time complexity of the Boyer-Moore algorithm in the
worst case is O(mn), but in practice, especially for large
alphabet sizes, this algorithm can achieve sublinear
performance O(n/m). This occurs because the algorithm can
make large jumps when it finds characters that do not exist in
the pattern [9].

The advantages of the Boyer-Moore algorithm are
particularly evident in plagiarism detection applications where
the examined text has a diverse alphabet (such as natural
language text with punctuation and numbers). The algorithm's
ability to make large jumps makes it very efficient for
processing long documents with relatively short patterns,
which is a common characteristic in sentence or phrase-based
plagiarism detection.

III. SYSTEM DESIGN AND METHODOLOGY

This section describes how a conceptual plagiarism
detection system was built using string matching algorithms.
The goal was to create a controlled experiment that would
show how well three different string matching methods work:
Brute-Force, Knuth-Morris-Pratt (KMP), and Boyer-Moore
algorithms.

A. Conceptual System Architecture

The plagiarism detection system was designed to be
straightforward yet effective for educational purposes. Instead
of building something overly complicated, the approach
focused on showing how string matching algorithms work in

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

practice while keeping the computational requirements
reasonable.

The system has four main parts that work together to find
potential plagiarism:

1. Input Processing

First, two documents are needed for comparison. One
document serves as the reference - think of it as the
"original" source material. The other document is the
student submission to be checked. This setup is pretty
common in real classrooms where teachers need to
verify if students copied from known sources.

2. Text Preparation

After getting the documents, they need to be prepared
for the computer algorithms to use. The reference
document stays as one long piece of text - this becomes
the search area. The student document gets broken up
into separate sentences, and each sentence becomes
something to search for. Sentences were chosen
because that's usually how students copy - they take
whole sentences or phrases, not just random words.

3. Core Matching Process

This is where the real work happens. Each sentence
from the student paper gets searched for in the
reference document. Three different algorithms were
tested to see which one works best. While doing this,
tracking was done on how hard each algorithm had to
work by counting every time it compared characters.

4. Results and Analysis

Finally, the findings are analyzed. Two main things get
calculated: how efficient each algorithm was (by
counting comparisons) and how much plagiarism was
detected (what percentage of sentences matched). This
gives both technical performance data and practical
results for plagiarism detection.

The whole process flows like this: get documents →
prepare text → search for matches → analyze performance →
report findings.

B. Dataset for Simulation

To make sure the results are reliable and easy to replicate, a
specific test dataset was created that shows typical plagiarism
situations found in student papers.

1. Source Text

The reference document contains two paragraphs about
renewable energy, with about 500 words total:

"Renewable energy is energy that is collected from
renewable resources that are naturally replenished on
a human timescale. It includes sources such as
sunlight, wind, the movement of water, and geothermal
heat. Although most renewable energy sources are
sustainable, some are not. For example, some biomass
sources are considered unsustainable at current rates
of exploitation. These resources stand in contrast to

fossil fuels, which are being used far more quickly than
they are being formed. Renewable energy often
provides energy in four important areas: electricity
generation, air and water heating/cooling,
transportation, and rural energy services. The use of
renewables is growing rapidly as technology improves
and costs fall."

2. Submission Text

The student paper being tested contains a mix of
original writing and copied material:

"There are many ways to generate power in the
modern world. Some methods are more sustainable
than others and are important for the future of our
planet. Renewable energy is energy that is collected
from renewable resources that are naturally
replenished on a human timescale. It includes sources
such as sunlight, wind, the movement of water, and
geothermal heat. In conclusion, adopting these energy
sources is vital for a sustainable future."

3. Dataset Analysis

When the submission gets split into sentences, five
separate pieces emerge for analysis. The first sentence
is the student's own introduction: "There are many
ways to generate power in the modern world." Since
this is original writing, it shouldn't match anything in
the source text.

The second sentence also looks original: "Some
methods are more sustainable than others and are
important for the future of our planet." This appears to
be the student's own commentary, so it shouldn't
trigger any matches either.

The third sentence shows clear copying: "Renewable
energy is energy that is collected from renewable
resources that are naturally replenished on a human
timescale." This text appears word-for-word in the
source document, so all three algorithms should find it.

The fourth sentence is another case of direct copying:
"It includes sources such as sunlight, wind, the
movement of water, and geothermal heat." This
sentence comes right after the previous one in the
original source.

The last sentence goes back to original content: "In
conclusion, adopting these energy sources is vital for a
sustainable future." This conclusion represents the
student's own thinking and shouldn't match anything in
the source.

This dataset works well for the study because it contains
both copied and original content, just like real student papers.
The analysis can show how each algorithm handles both
successful searches (when text exists) and unsuccessful ones
(when it doesn't). Given this composition, plagiarism should be
found in 40% of the sentences since two out of five contain
direct copying.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

C. Analysis Procedure

Getting good results from the comparative study required a
fair way to test each string matching algorithm. Character
comparisons were chosen as the main measurement because
this number directly shows how much computational work
each algorithm does, no matter what computer or programming
language gets used.

1. Why Character Comparisons Matter

Counting character comparisons gives insight into how
efficient each algorithm really is. Every time an
algorithm checks if a character from the pattern
matches a character from the text, it does one unit of
work. By adding up these comparisons for all search
operations, determination can be made about which
algorithm needs the least effort to finish the same job.

2. Experimental Approach

The analysis was set up to handle each sentence pattern
one at a time, which allows observation of how the
algorithms behave in different situations. For all five
sentence patterns, each of the three algorithms gets run
and their performance recorded. This method helps
understand not just overall efficiency, but also how
each algorithm deals with finding matches versus
coming up empty-handed.

Here's how it works: fresh counters start for each
algorithm, then each sentence pattern gets processed
systematically. While each algorithm searches for the
current pattern, addition happens to its comparison
counter every time it looks at a pair of characters. Once
all patterns finish, the results get added up to see which
algorithm did the least total work.

3. Implementation and Validation

The Python code keeps things simple enough for
educational purposes while making sure performance
gets measured accurately. Each algorithm follows
standard textbook approaches - Brute-Force uses basic
nested loops, KMP includes proper border function
calculations, and Boyer-Moore uses character jumping
with last occurrence tables.

To double-check the results, detailed step-by-step tracking
gets included for one example pattern. This breakdown shows
exactly how each algorithm moves through the text, where it
hits mismatches, and how it handles different situations.
Having this detailed analysis helps confirm that the
measurement approach captures real algorithmic behavior.

Verification also happens to ensure all three algorithms find
the same matches when given identical input. This check
confirms that performance differences come from algorithmic
efficiency rather than coding mistakes.

IV. RESULT AND ANALYSIS

This chapter presents the experimental results from testing
all three string matching algorithms on the plagiarism detection
dataset. The analysis reveals interesting patterns about how

each algorithm performs with real-world text data and provides
insights into their practical applications.

A. Brute-Force Simulation

The Brute-Force algorithm served as the baseline for
performance comparison. As expected from theory, this
algorithm performed extensive character-by-character
comparisons throughout the search process.

Fig 4.1 Result of Brute-Force Simulation

(Source: Screenshot by the Author)

Looking at the detailed trace for Pattern 3 ("Renewable
energy is energy that is collected from renewable resources that
are naturally replenished on a human timescale"), the Brute-
Force algorithm demonstrated its straightforward approach:

• Position 0: Found complete match after 122
comparisons (full pattern length)

• Positions 1-9: Quick mismatches with only 1
comparison each

• Total for this pattern: 753 comparisons

The algorithm's behavior matches exactly what theory
predicts. When a pattern exists at the beginning of the text,
Brute-Force must compare every character to confirm the
match. For positions where no match exists, it can exit early
after the first character mismatch, which explains why
positions 1-9 only needed one comparison each.

Across all five patterns, the Brute-Force algorithm required
a total of 3,477 character comparisons:

• Pattern 1 (no match): 685 comparisons

• Pattern 2 (no match): 644 comparisons

• Pattern 3 (match found): 753 comparisons

• Pattern 4 (match found): 736 comparisons

• Pattern 5 (no match): 659 comparisons

The high comparison counts reflect the algorithm's
exhaustive nature. For each pattern, it systematically checked
nearly every possible position in the source text. Patterns that
resulted in matches required more comparisons because the
algorithm had to verify complete character sequences before
confirming success.

The large number of comparisons stems from Brute-Force's
fundamental approach. With a source text of 736 characters
and patterns ranging from 50 to 122 characters, the algorithm
potentially checks hundreds of positions for each pattern. Even
though many positions fail quickly due to early mismatches,

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

the cumulative effect across all patterns and positions creates
substantial computational work.

B. KMP Simulation

The Knuth-Morris-Pratt algorithm was expected to improve
upon Brute-Force performance through intelligent pattern
preprocessing and mismatch handling.

Before examining the search results, let's look at the border
function computed for Pattern 3:

Fig 4.2 Result of KMP Simulation

(Source: Screenshot by the Author)

Pattern: "Renewable energy is energy that is collected from
renewable resources that are naturally replenished on a human
timescale."

Border function: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
0,
0,
0, 0]

This border function reveals something important about
natural language text. Every value is 0, meaning no proper
prefix of any substring also serves as a suffix. This
characteristic significantly impacts KMP's effectiveness since
the algorithm's main advantage comes from using non-zero
border values to skip redundant comparisons.

The step-by-step trace shows KMP making steady progress
through the text:

• Found Pattern 3 at position 0 after 737 comparisons

• Continued through the entire text systematically

• Total across all patterns: 3,684 comparisons

Unexpectedly, KMP performed worse than Brute-Force,
requiring 207 additional comparisons (6% more work). This
result initially seems counterintuitive given KMP's theoretical
advantages.

Why KMP Underperformed? Several factors explain this
unexpected outcome:

1. Border Function Limitation: With all border values at
0, KMP gained no advantage from pattern
preprocessing. The algorithm couldn't skip any
positions during mismatches.

2. Implementation Overhead: KMP includes additional
conditional checks and border function consultations

that add computational overhead without providing
benefits when border values are zero.

3. Natural Text Characteristics: English sentences
typically don't contain the repetitive patterns that make
KMP shine. Academic text about renewable energy
lacks the internal repetition that would create useful
border function values.

This result demonstrates an important lesson: theoretical
efficiency doesn't always translate to practical performance,
especially when data characteristics don't align with algorithm
strengths.

C. Boyer-Moore Simulation

The Boyer-Moore algorithm delivered dramatically
different results, showcasing its effectiveness with natural
language text.

For Pattern 3, the algorithm constructed this last occurrence
table:

{'R': 0, 'e': 120, 'n': 110, 'w': 54, 'a': 118, 'b': 56, 'l': 119, ' ': 111, 'r':
89, 'g': 24, 'y': 87, 'i': 113, 's': 116, 't': 112, 'h': 106, 'c': 117, 'o': 101,
'd': 99, 'f': 45, 'm': 114, 'u': 107, 'p': 91, '.': 121}

This table enables the algorithm to make intelligent
decisions about how far to shift the pattern when mismatches
occur. Characters appearing late in the pattern (like 'e' at
position 120) allow smaller shifts, while characters not in the
pattern would trigger maximum shifts.

The step-by-step trace reveals Boyer-Moore's jumping
capability:

• Step 1: Found match at position 0 (122 comparisons)

• Step 2: Mismatch at ' ', shift by 10 positions

• Step 4: Mismatch at 's', shift by 5 positions

• Step 5: Mismatch at 'r', shift by 32 positions

• Step 14: Mismatch at ',', shift by 122 positions (full
pattern length!)

These large jumps demonstrate the algorithm's ability to
skip substantial portions of the text, leading to remarkable
efficiency gains.

Fig 4.3 Result of Boyer-Moore Simulation

(Source: Screenshot by the Author)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Boyer-Moore achieved exceptional results with only 374
total comparisons across all patterns:

• Pattern 1: 32 comparisons

• Pattern 2: 36 comparisons

• Pattern 3: 155 comparisons

• Pattern 4: 117 comparisons

• Pattern 5: 34 comparisons

The algorithm's success stems from several factors:

1. Large Alphabet Advantage: English text contains many
different characters, enabling frequent large jumps
when mismatches occur with characters not in the
pattern.

2. Right-to-Left Matching: Starting comparisons from the
pattern's end often leads to quick mismatches,
triggering beneficial shifts.

3. Intelligent Shift Calculation: The last occurrence
function provides optimal shift distances, allowing the
algorithm to skip many potential matching positions.

4. Natural Text Compatibility: The diverse character
distribution in academic English text maximizes
Boyer-Moore's jumping opportunities.

D. Comparative Analysis

The experimental results provide valuable insights into
each algorithm's practical performance characteristics and
suitability for plagiarism detection applications.

Fig 4.4 Overall Result

(Source: Screenshot by the Author)

Algorithm Total
Comparisons

Efficiency vs
Baseline

Preprocessing
Required

Brute-Force 3,477 Baseline None

KMP 3,684 -6.0% (worse) Border Function

Boyer-
Moore

374 +89.2% (better) Last Occurence

 Table 4.1 Comparison Table for All Algorithms

Key Findings: The results reveal interesting discrepancies
between theoretical expectations and real-world performance.

KMP's unexpected underperformance despite optimal
O(m+n) complexity demonstrates how algorithm effectiveness
depends on data characteristics. Natural language text lacks the
repetitive patterns that make KMP's border function valuable.

Boyer-Moore's exceptional performance (89.2%
improvement) validates its design for natural language
processing. The algorithm's ability to make large jumps
through diverse character text proves ideal for this application.

Brute-Force remained surprisingly competitive, particularly
compared to KMP, due to its straightforward implementation
and lack of computational overhead.

V. CONCLUSION

This chapter presents the experimental results from testing
all three string matching algorithms on the plagiarism detection
dataset. The analysis reveals interesting patterns about how
each algorithm performs with real-world text data and provides
insights into their practical applications.

This research successfully demonstrates the practical
application of string matching algorithms for plagiarism
detection, revealing that Boyer-Moore is the most efficient
choice for natural language text processing, achieving 89.2%
fewer character comparisons than Brute-Force through
intelligent pattern jumping. Surprisingly, KMP underperformed
due to natural text lacking the repetitive patterns that activate
its optimization mechanisms, highlighting the crucial
difference between theoretical complexity and real-world
performance. The study confirms that algorithm selection must
consider data characteristics rather than complexity analysis
alone—Boyer-Moore's average-case O(n/m) behavior proves
far more relevant than its O(mn) worst-case scenario for typical
academic text.

While this string matching approach effectively detects
direct copying, significant limitations remain: the system
cannot identify paraphrasing, synonym substitution, or
semantic plagiarism. Future research should integrate fuzzy
string matching for near-duplicate detection, semantic analysis
using natural language processing techniques, and machine
learning approaches to identify sophisticated plagiarism
patterns. The efficiency gains demonstrated here provide a
solid foundation for scaling these advanced techniques to
handle large document databases, ultimately contributing to
more comprehensive academic integrity tools.

APPENDIX

The complete source code for the plagiarism detection
system simulation described in this paper is available at the
following public repository: https://github.com/fliegenhaan/-
Prototype-Plagiarism-Detection-System-in-Academic-Papers-
Utilizing-String-Matching-Techniques.git

VIDEO LINK AT YOUTUBE

Link of my YouTube video for this paper:
https://youtu.be/i4dmtFqmHxA?si=bWBtHVcayy-KypQk

ACKNOWLEDGMENT

https://github.com/fliegenhaan/-Prototype-Plagiarism-Detection-System-in-Academic-Papers-Utilizing-String-Matching-Techniques.git
https://github.com/fliegenhaan/-Prototype-Plagiarism-Detection-System-in-Academic-Papers-Utilizing-String-Matching-Techniques.git
https://github.com/fliegenhaan/-Prototype-Plagiarism-Detection-System-in-Academic-Papers-Utilizing-String-Matching-Techniques.git
https://youtu.be/i4dmtFqmHxA?si=bWBtHVcayy-KypQk

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The author would like to express his deepest gratitude to
God Almighty for the blessings of health, guidance, and
strength, which enabled the completion of this paper, entitled
"Plagiarism Detection System in Academic Papers Utilizing
String Matching Techniques", in a timely manner. The author
is profoundly grateful to his beloved mother and sister for their
unwavering moral and material support, as well as their
constant prayers, which have been a source of strength
throughout his academic journey, especially during the writing
of this paper. A special and heartfelt tribute is dedicated to the
author's father, who recently passed away. His lifelong
encouragement and support have been invaluable. The author
kindly requests readers to offer a prayer for him. Sincere
appreciation is extended to Mr. Monterico Adrian, Mr. Rinaldi
Munir, and Mrs. Nur Ulfa Maulidevi, the lecturers for the
IF2211 Algorithm Strategies course, for his invaluable
guidance, insightful knowledge, and unwavering support,
which were instrumental in the development of this paper.
Lastly, the author would like to thank his friends and
colleagues for their companionship, encouragement, and
insightful discussions throughout this learning process.

REFERENCES

[1] S. Lee, “Mastering String Matching in Combinatorial Algorithms.”
[Online]. Available: https://www.numberanalytics.com/blog/ultimate-
guide-string-matching-combinatorial-algorithms . [Accessed: 19-Jun-
2025].

[2] GeeksForGeeks, “Application of String Matching Algorithms.”
[Online]. Available: https://www.geeksforgeeks.org/applications-of-
string-matching-algorithms/ . [Accessed: 19-Jun-2025].

[3] H. Chhangani, “Pattern Matching Algorithm.” [Online]. Available:
https://medium.com/%40harshitachhangani/pattern-matching-algorithm-
4ca950792c95 . [Accessed: 19-Jun-2025].

[4] StackOverflow, “Exact Number of Character Comparisons in Naive
Exact Algorithm.” [Online]. Available:
https://stackoverflow.com/questions/31499937/exact-number-of-
character-comparisons-in-naive-exact-algorithm . [Accessed: 19-Jun-
2025].

[5] S. Lee, “Mastering KMP Algorithm.” [Online]. Available:
https://www.numberanalytics.com/blog/mastering-kmp-algorithm .
[Accessed: 19-Jun-2025].

[6] Heycoach, “Failure Function in KMP Algorithm.” [Online]. Available:
https://blog.heycoach.in/failure-function-in-kmp-algorithm . [Accessed:
21-Jun-2025].

[7] N. Jahnavi, “A Deep Dive into the KMP Algorithm: Understanding Its
Linear Time Complexity.” [Online]. Available:
https://medium.com/%40knj192000/a-deep-dive-into-the-kmp-
algorithm-understanding-its-linear-time-complexity-12825a9840b4 .
[Accessed: 19-Jun-2025].

[8] GeeksForGeeks, “Boyer Moore Algorithm for Pattern Searching.”
[Online]. Available: https://www.geeksforgeeks.org/dsa/boyer-moore-
algorithm-for-pattern-searching/ . [Accessed: 20-Jun-2025].

[9] R. Choudhary, A. Rasool, and N. Khare, “Variation of Boyer-Moore
String Matching Algorithm: A Comparative Analysis.” [Online].
Available:
https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Text/Docs/Bo
yer-Moore-variants.pdf . [Accessed: 20-Jun-2025].

DECLARATION

I hereby declare that this paper I have written is my own

writing, not a copy, or a translation of someone else's

paper, and not plagiarism.

Bandung, 22 June 2025

Muhammad Raihaan Perdana - 13523124

https://www.numberanalytics.com/blog/ultimate-guide-string-matching-combinatorial-algorithms
https://www.numberanalytics.com/blog/ultimate-guide-string-matching-combinatorial-algorithms
https://www.geeksforgeeks.org/applications-of-string-matching-algorithms/
https://www.geeksforgeeks.org/applications-of-string-matching-algorithms/
https://medium.com/%40harshitachhangani/pattern-matching-algorithm-4ca950792c95
https://medium.com/%40harshitachhangani/pattern-matching-algorithm-4ca950792c95
https://stackoverflow.com/questions/31499937/exact-number-of-character-comparisons-in-naive-exact-algorithm
https://stackoverflow.com/questions/31499937/exact-number-of-character-comparisons-in-naive-exact-algorithm
https://www.numberanalytics.com/blog/mastering-kmp-algorithm
https://blog.heycoach.in/failure-function-in-kmp-algorithm
https://medium.com/%40knj192000/a-deep-dive-into-the-kmp-algorithm-understanding-its-linear-time-complexity-12825a9840b4
https://medium.com/%40knj192000/a-deep-dive-into-the-kmp-algorithm-understanding-its-linear-time-complexity-12825a9840b4
https://www.geeksforgeeks.org/dsa/boyer-moore-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/dsa/boyer-moore-algorithm-for-pattern-searching/
https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Text/Docs/Boyer-Moore-variants.pdf
https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Text/Docs/Boyer-Moore-variants.pdf

