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Abstract—Hyperparameter optimization is a critical yet 

computationally demanding stage in the development of high-

performance machine learning models. Grid Search, a foundational 

technique, guarantees finding the optimal hyperparameter 

configuration within a specified discrete grid but suffers from an 

exponential increase in computational cost, rendering it impractical 

for large search spaces. This paper introduces a novel deterministic 

optimization algorithm, Branch-and-Bound Grid Search (B&B-GS), 

designed to accelerate this process without sacrificing optimality. 

B&B-GS reframes the hyperparameter tuning problem as a 

combinatorial optimization task, amenable to the Branch and Bound 

paradigm. By conceptualizing the hyperparameter grid as a state-

space tree, our algorithm intelligently prunes unpromising regions 

of the search space, thereby avoiding exhaustive evaluation. The 

core of our contribution is a novel bounding function that leverages 

the principle of Lipschitz continuity of the model's performance 

landscape. This function allows for the calculation of a rigorous 

upper bound on the performance within any sub-grid, enabling 

effective pruning decisions. Experimental results on benchmark 

classification tasks demonstrate that B&B-GS significantly reduces 

the number of required model evaluations compared to exhaustive 

Grid Search while consistently identifying the same optimal 

hyperparameter set. This work presents a deterministic alternative to 

stochastic methods, offering a compelling trade-off between 

computational efficiency and the guarantee of optimality on the grid. 

Keywords—Hyperparameter Optimization, Grid Search, Branch 

and Bound, Classification Models, Pruning, Lipschitz Optimization, 

Machine Learning. 

I.  INTRODUCTION 

The predictive power and generalization capability of 

modern machine learning models are not solely determined by 

the underlying algorithm or the quality of the training data; they 

are profoundly influenced by a set of configuration settings 

known as hyperparameters. These parameters, which include 

learning rates, regularization strengths, and architectural 

choices like the number of layers in a neural network, are set 

prior to the commencement of the training process and govern 

its behavior. The process of identifying the optimal set of 

hyperparameters, known as Hyperparameter Optimization 

(HPO), is a crucial step in the machine learning pipeline. A 

well-tuned model can exhibit a dramatic improvement in 

performance metrics, often marking the difference between a 

model with mediocre utility and one that achieves state-of-the-

art results. 

Among the plethora of HPO techniques, Grid Search (GS) 

stands as the most traditional and conceptually straightforward 

method. It operates by performing an exhaustive search over a 

manually specified, discrete subset of the hyperparameter 

space. The appeal of Grid Search lies in its deterministic nature, 

its inherent parallelism, and its guarantee of finding the best 

possible combination of hyperparameters within the confines of 

the defined grid. However, this exhaustive approach is also its 

greatest weakness. The number of configurations to evaluate 

grows exponentially with the number of hyperparameters, a 

phenomenon widely known as the "curse of dimensionality".1 

This exponential complexity renders Grid Search 

computationally intractable for all but the most trivial search 

spaces, making it a significant bottleneck in practical machine 

learning workflows. 

The prohibitive cost of Grid Search has catalyzed the 

development and widespread adoption of more efficient, often 

stochastic, alternatives. Random Search, for instance, has been 

shown to frequently outperform Grid Search by randomly 

sampling configurations from the hyperparameter space. Its 

efficiency stems from the empirical observation that model 

performance is often sensitive to only a few hyperparameters, 

and random sampling is more likely to explore a wider range of 

values for these critical parameters given the same 

computational budget. Further advancing the field, Bayesian 

Optimization has emerged as a powerful technique that 

employs probabilistic surrogate models to intelligently navigate 

the search space. By balancing the exploration of uncertain 

regions with the exploitation of known high-performing areas, 

Bayesian methods can achieve superior sample efficiency, 

finding better hyperparameter configurations in fewer 

evaluations. 

Despite the efficiency of these advanced methods, they 

trade the deterministic guarantee of Grid Search for speed. 

Stochastic approaches like Random Search and Bayesian 

Optimization do not assure the discovery of the true optimal 

configuration within the search space; their success can be 

contingent on the random seed or the initial set of evaluated 

points. This introduces an element of uncertainty and 
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irreproducibility into the modeling process. This trade-off 

motivates a central research question: Can the deterministic 

guarantee of finding the grid's optimal point, a hallmark of Grid 

Search, be retained while achieving a computational efficiency 

that approaches that of stochastic methods? 

This paper addresses this research gap by proposing a novel 

algorithm: the Branch-and-Bound Grid Search (B&B-GS). Our 

approach reframes HPO as a combinatorial optimization 

problem, making it amenable to the classic Branch and Bound 

(B&B) algorithm paradigm. We conceptualize the 

hyperparameter grid as a state-space tree that can be 

systematically explored. The core innovation of our work lies 

in the development and application of a bounding function that 

enables the algorithm to prune vast, unpromising regions of the 

search space without evaluating every point. This bounding 

function is derived from the assumption of Lipschitz 

continuity of the model's performance landscape—a 

reasonable assumption for many machine learning models 

where small changes in hyperparameters typically result in 

correspondingly small changes in performance. By adaptively 

estimating a Lipschitz constant for the performance function, 

we can compute a rigorous upper bound on the best possible 

score within any sub-grid, allowing for efficient and reliable 

pruning. This work distinguishes itself from prior applications 

of B&B in machine learning, which have focused on areas like 

feature selection, model-specific integer programming 

formulations, or neural network verification, by directly 

targeting the general and ubiquitous problem of hyperparameter 

grid tuning. 

The remainder of this paper is organized as follows. Section 

II provides a detailed background on existing HPO strategies 

and the Branch and Bound algorithm, situating our work within 

the broader context of related research. Section III formally 

presents the proposed B&B-GS algorithm, including the 

formulation of the bounding function. Section IV describes the 

experimental setup designed to validate our method against 

established baselines. Section V presents and analyzes the 

results of our empirical evaluation. Finally, Section VI 

concludes the paper with a summary of our contributions, a 

discussion of the method's limitations, and directions for future 

research. 

II. HYPERPARAMETER OPTIMIZATION STRATEGIES 

Hyperparameter optimization can be viewed as the problem 

of finding a set of hyperparameters λ∗ from a search space Λ 

that minimizes an objective function 𝑓(λ), which typically 

represents the validation error or maximizes a performance 

metric like accuracy. The function 𝑓 is a black box, as its value 

can only be determined by the costly process of training and 

evaluating a model. 

A. Deterministic Exhaustive Search: Grid Search 

 Grid Search is the most established and straightforward HPO 
technique.1 The algorithm operates on a search space defined as 
the Cartesian product of a set of user-specified, discrete values 
for each hyperparameter: Λ = Λ1 × Λ2 ×. . .× Λ𝑘, where Λ𝑖  is 

the list of values for the i-th hyperparameter. Grid Search then 
proceeds to train and evaluate a model for every single 
configuration λ ∈ Λ. The performance of each configuration is 
typically assessed using k-fold cross-validation on the training 
data to obtain a robust estimate of its generalization ability. After 
all configurations have been evaluated, the algorithm returns the 
one that yielded the best average score across the cross-
validation folds. 

The primary advantages of Grid Search are its simplicity and 
transparency. Because it evaluates every point on the grid, it is 
deterministic and guarantees that the optimal configuration 
within that specific grid will be found. This exhaustive nature 
makes results perfectly reproducible, a feature that is highly 
valued in academic research and in regulated industries where 
process validation is critical. Furthermore, the evaluation of each 
hyperparameter configuration is an independent task, making 
Grid Search an "embarrassingly parallel" problem. This allows 
for significant speedups on multi-core systems or distributed 
computing clusters, often implemented with a simple parameter 
like 𝑛_𝑗𝑜𝑏𝑠 = −1 in popular libraries such as scikit-learn. 

The determinism of Grid Search comes at a steep price. Its 
computational complexity, which can be expressed as 𝑂(|Λ1| ×
|Λ2| ×. . .× |Λ𝑘| × n𝑓𝑜𝑙𝑑𝑠 × T𝑡𝑟𝑎𝑖𝑛), where T𝑡𝑟𝑎𝑖𝑛 is the time for 

a single model training, grows exponentially with the number of 
hyperparameters (k). This "curse of dimensionality" makes the 
method computationally prohibitive for search spaces involving 
more than a handful of hyperparameters or a fine-grained 
discretization of their values. Consequently, practitioners are 
often forced to use very coarse grids, increasing the risk of 
missing the true optimal region of the hyperparameter space 
entirely. 

B. Stochastic Search Methods 

To overcome the limitations of Grid Search, several 
stochastic methods have been developed that trade exhaustive 
guarantees for computational efficiency. 

1. Random Search 

Proposed as a direct and surprisingly effective alternative to 
Grid Search, Random Search samples a fixed number of 
configurations at random from the hyperparameter space. 
Instead of discrete lists, the search space for each 
hyperparameter can be defined by a statistical distribution (e.g., 
uniform, log-uniform), allowing for a much finer exploration of 
continuous parameters. The effectiveness of Random Search is 
rooted in the empirical finding that for many models, only a few 
hyperparameters have a significant impact on performance. Grid 
Search wastes many evaluations by testing numerous 
combinations of unimportant parameters, whereas Random 
Search, for the same computational budget, explores more 
unique values for each individual parameter. This increases the 
probability of finding a good setting for the truly important ones. 
While highly efficient and easily parallelizable, Random Search 
is a stochastic process. It provides no guarantee of finding the 
optimal configuration, and its results can vary significantly 
between runs with different random seeds. 

2. Bayesian Optimization 
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This technique represents the state-of-the-art in sample-
efficient HPO. It falls under a broader class of algorithms known 
as Sequential Model-Based Optimization (SMBO). The core 
idea is to treat the expensive black-box objective function 
𝑓(λ) as an unknown function that can be approximated. 
Bayesian Optimization proceeds iteratively: 

1. Build a Surrogate Model: It uses the history of evaluated 
(𝜆, 𝑓(𝜆)) pairs to build a probabilistic surrogate model that 
approximates the true objective function. Gaussian 
Processes (GPs) are a common choice for the surrogate, as 
they can provide not only a mean prediction for the 
performance at an unevaluated point but also an estimate of 
the uncertainty around that prediction. 

2. Use an Acquisition Function: An acquisition function is 
used to guide the search for the next point to evaluate. This 
function leverages the surrogate's predictions and 
uncertainty estimates to quantify the "value" of evaluating 
a particular configuration. A popular choice is Expected 
Improvement (EI), which calculates the expected amount of 
improvement over the best solution found so far. The 
acquisition function naturally balances exploitation 
(sampling in regions where the surrogate predicts high 
performance) and exploration (sampling in regions with 
high uncertainty, where a surprisingly good result might be 
found). 

3. Select Next Point and Update: The configuration that 
maximizes the acquisition function is chosen for the next 
evaluation. The result is then used to update the surrogate 
model, and the process repeats.  

By intelligently selecting which points to evaluate, Bayesian 
Optimization can often find superior hyperparameter 
configurations in far fewer iterations than Grid Search or 
Random Search. However, it is inherently sequential, making 
parallelization less straightforward. Furthermore, standard 
implementations can struggle with high-dimensional or complex 
(e.g., conditional) search spaces and can be more complex to 
implement correctly. 

III. THE BRANCH & BOUND OPTIMIZATION 

A. Branch & Bound Fundamental 

Branch and Bound is a fundamental algorithm design 
paradigm for solving NP-hard discrete and combinatorial 
optimization problems, such as the Traveling Salesman Problem 
or Integer Linear Programming. Its power lies in its ability to 
find a provably optimal solution without performing a full 
exhaustive search. It achieves this through a "divide and 
conquer" strategy that systematically prunes large portions of the 
search space that are guaranteed not to contain the optimal 
solution. 

The algorithm relies on three canonical components: 

1. Branching: This is the process of recursively partitioning 
the problem's feasible solution set into smaller, disjoint 
subsets. This partitioning creates a state-space search tree, 
where the root node represents the entire original problem, 
and each child node represents a subproblem 
corresponding to a restricted subset of the solution space. 

For example, in an integer programming problem, 
branching might involve selecting a variable with a 
fractional value in a relaxed solution and creating two new 
subproblems: one where the variable is constrained to be 
less than or equal to the floor of the value, and another 
where it is constrained to be greater than or equal to the 
ceiling. 

2. Bounding: This is the most critical component of the 
algorithm. For each node (subproblem) in the search tree, 
a bound on the value of the objective function is 
computed. For a maximization problem, this involves 
calculating an upper bound—an optimistic estimate of 
the best possible solution that could be found within that 
node's subspace. Conversely, for a minimization problem, 
a lower bound is calculated. These bounds are often 
obtained by solving a "relaxation" of the subproblem, 
which is an easier-to-solve version of the problem with 
some constraints removed. For instance, the Linear 
Programming (LP) relaxation of an Integer Program (IP), 
where integer constraints are ignored, provides a valid 
upper bound for a maximization problem. 

3. Pruning: This step is the source of B&B's computational 
efficiency. The algorithm maintains a record of the best 
feasible solution found so far, known as the "incumbent." 
The bound calculated for each new node is compared 
against the value of the incumbent. For a maximization 
problem, if a node's upper bound is less than or equal to 
the value of the incumbent solution, that node (and the 
entire subtree rooted at it) can be safely discarded, or 
"pruned". This is because no solution in that entire region 
of the search space can possibly be better than the solution 
already found. Pruning can also occur if a subproblem is 
found to be infeasible or if its relaxation yields a feasible 
integer solution that updates the incumbent. The 
algorithm terminates when the queue of active 
(unexplored) nodes is empty, at which point the current 
incumbent is the proven global optimum. 

B. Formalizing HPO as a B&B Problem 

To apply the Branch and Bound algorithm, we must first 
define the HPO problem in terms of its fundamental 
components: a search space, an objective function, and a state-
space tree structure. 

• Search Space: The search space for our problem is the 
set of all possible hyperparameter configurations, Λ, as 
defined by the user's grid. This space is discrete, finite, 
and structured as a multi-dimensional grid. For instance, 
if we are tuning two hyperparameters, C and γ, with 10 
values each, the search space Λ consists of the 100 
discrete points forming the 10×10 grid. 

• Objective Function: The objective function, which we 
aim to maximize, is denoted by 𝑓(λ). This function takes 
a hyperparameter configuration λ ∈ Λ as input and 
returns a performance score, such as the mean accuracy 
obtained from k-fold cross-validation. A critical 
characteristic of 𝑓(λ) is that it is a "black-box" function. 
We do not have an analytical expression for it; its value 
can only be ascertained by executing the computationally 
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expensive process of training and evaluating the machine 
learning model. The high cost of evaluating 𝑓(λ) is the 
primary motivation for avoiding an exhaustive search. 

• State-Space Tree: The B&B-GS algorithm explores the 
search space by constructing a search tree. The root node 
of this tree represents the entire hyperparameter grid Λ. 
Branching occurs by partitioning a node's corresponding 
sub-grid into smaller sub-grids. For simplicity and 
generality, we employ a binary splitting strategy. At each 
branching step, a sub-grid is divided into two smaller 
sub-grids along one of its dimensions. This process 
continues recursively, creating a tree structure where 
each node represents a hyper-rectangle within the 
original grid. A leaf node in this context represents a 
region of the grid that is either pruned, fully evaluated, or 
contains only a single hyperparameter configuration. 

C. Bounding Function 

The efficacy of any Branch and Bound algorithm is 
contingent upon its ability to compute tight bounds on the 
objective function for subproblems. In our context, this means 
we need a method to calculate a reliable upper bound on the 
performance score 𝑓(λ) for all configurations λ within a given 
sub-grid N ⊆ Λ, without having to evaluate every point in N. 
Our approach achieves this by making a mild and often practical 
assumption about the behavior of the performance landscape: 
Lipschitz continuity. This assumption forms the theoretical 
cornerstone of our pruning strategy. 

1) The Lipchitz Assumption 

A function 𝑓: 𝛬 → 𝑅 is said to be Lipschitz continuous with 
respect to a distance metric 𝑑 if there exists a non-negative 
constant 𝐿, known as the Lipschitz constant, such that for all 𝜆𝑎
, 𝜆𝑏 ∈ 𝛬: 

|𝑓(𝜆𝑎) − 𝑓(𝜆𝑏)| ≤ 𝐿 ⋅ 𝑑(𝜆𝑎, 𝜆𝑏)                      (1) 

This condition implies that the rate of change of the function 
is bounded. In the context of HPO, it suggests that small changes 
in hyperparameter values will not lead to arbitrarily large jumps 
in model performance. This is a reasonable assumption for many 
well-behaved machine learning models and performance 
metrics. From the Lipschitz condition, we can derive a direct 
upper bound. If we have evaluated the function at a point 𝜆𝑐 
within a sub-grid N, then for any other point 𝜆 ∈ N, its value is 
bounded by: 

𝑓(𝜆) ≤ 𝑓(𝜆𝑐) + 𝐿 ⋅ 𝑑(𝜆, 𝜆𝑐)                         (2) 

 Therefore, an upper bound for the performance over the 
entire sub-grid N can be established by finding the maximum 
possible value of this expression:  

𝑈𝐵(𝑁) = 𝑓(𝜆𝑐) + 𝐿 ⋅ 𝜆 ∈ 𝑁𝑚𝑎𝑥𝑑(𝜆, 𝜆𝑐)                  (3) 

 The challenge thus shifts from the intractable task of 
evaluating f at all points in N to the more manageable tasks of 
defining an appropriate distance metric d and estimating the 
Lipschitz constant L. 

 

 

2) Hyperparameter Metric Space 
 A naive Euclidean distance is unsuitable for hyperparameter 
spaces because different hyperparameters often have vastly 
different scales and distributions. For example, a regularization 
parameter C for an SVM is typically varied on a logarithmic 
scale (e.g., 0.01, 0.1, 1, 10), while a parameter like 
𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 in a random forest is varied on a linear scale (e.g., 
100, 200, 300). A change of 1.0 unit has a completely different 
meaning for each.  

 To address this, we define a normalized, log-aware distance 
metric. Let a hyperparameter configuration be a vector 𝜆 = (𝑝1

, 𝑝2, . . . , 𝑝𝑘). The distance calculation involves a transformation 
function 𝑇(𝜆) that preprocesses the vector before applying a 
standard L2 norm. 

 For each parameter 𝑝𝑖  that is typically tuned on a logarithmic 
scale (e.g., SVM's C and gamma), we apply a log 
transformation: 𝑝𝑖

′ = 𝑙𝑜𝑔(𝑝𝑖). For parameters tuned on a linear 

scale, we set 𝑝𝑖
′ = 𝑝𝑖 . This aligns the perceptual distance of the 

parameters with their impact on the model. 

 After transformation, each parameter dimension is 
normalized to the range based on the minimum and maximum 
values in the original grid for that dimension. Let 𝑝𝑖,𝑚𝑖𝑛

′  

and 𝑝𝑖,𝑚𝑎𝑥
′  be the minimum and maximum transformed values 

for the i-th parameter in the entire grid Λ. The normalized value 
𝑝𝑖

′′ is:  

𝑝𝑖
′′ =

𝑝𝑖
′ −  𝑝𝑖,𝑚𝑖𝑛

′  

𝑝𝑖,𝑚𝑎𝑥
′ − 𝑝𝑖,𝑚𝑖𝑛

′  
                                 (4) 

 
 The distance 𝑑(𝜆𝑎 , 𝜆𝑏) between two configurations is the 
Euclidean (L2) distance between their transformed and 
normalized vectors, 𝑇(𝜆𝑎) and 𝑇(𝜆𝑏):  

  

𝑑(𝜆𝑎, 𝜆𝑏) = ||𝑇(𝜆𝑎) −  𝑇(𝜆𝑏)|| 2                   (5) 

 
 This tailored metric ensures that all hyperparameters 
contribute to the distance calculation on a comparable scale. 

 

3) Adaptive Estimation of the Lipschitz Constant 𝐿̂  
In a true black-box optimization scenario, the global 

Lipschitz constant L is unknown a priori. A fixed, overly 
conservative (large) estimate for L would result in loose upper 
bounds and ineffective pruning, while an overly optimistic 
(small) estimate could lead to the erroneous pruning of sub-grids 
containing the optimum. 

To circumvent this, we propose an adaptive, online 
estimation strategy. The algorithm maintains a history, 𝐻 = {(𝜆𝑖

, 𝑓(𝜆𝑖))}, of all configurations that have been evaluated so far. 
After each new evaluation, the estimate of the Lipschitz 

constant, 𝐿̂, is updated based on the maximum slope observed 
between any two points evaluated to date. 

𝐿̂ = r ⋅  max
(𝜆𝑖,𝑓𝑖),(𝜆𝑗,𝑓𝑗)∈𝐻,𝑖≠𝑗

(
|𝑓𝑖 − 𝑓𝑗|

𝑑(𝜆𝑖 , 𝜆𝑗)
)                   (6) 
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D. Branch & Bound Grid Search Algorithm 

1) Initialization: Evaluate 𝑛_𝑖𝑛𝑖𝑡 random points from the 

grid to obtain an initial best score, 𝑓∗, and an initial estimate for 

the Lipschitz constant, 𝐿̂. Create a root node, 𝑁𝑟𝑜𝑜𝑡, 

representing the entire parameter grid, calculate its Upper 

Bound, and add it to a priority queue, Q. 

2) Termination Condition Check: If the queue Q is empty 

(no more nodes to explore), the search process terminates. The 

best configuration (𝜆𝑏𝑒𝑠𝑡) that yielded the score 𝑓∗ is the 

solution. 

3) Node Selection: If Q is not empty, select and dequeue 

the node N from the queue that has the highest Upper Bound 

(UB) value. 

4) Pruning Step: Check if the UB of node N is less than or 

equal to the current best score found, 𝑓∗. If true (𝑈𝐵(𝑁)  ≤
 𝑓∗), this node and its entire branch cannot contain a better 

solution. Discard (prune) the node and return to Step 2. 

5) Branching Step: If node N is not pruned, generate its 

children (branching). This process involves: 

a) Selecting a pivot point within the sub-grid N. 

b) Evaluating the pivot point to potentially update 𝑓∗ and 

the Lipschitz estimate 𝐿̂. 

c) Splitting the sub-grid N into two child nodes along its 

longest dimension. 

6) Bounding and Enqueueing: For each newly created 

child node 𝑁𝑐ℎ𝑖𝑙𝑑: 

a) Calculate its Upper Bound using the bounding 

function. 

b)  If the child's UB is greater than 𝑓∗, add it to the 

priority queue Q. 

7) Iteration: Return to Step 2 to continue the search 

process.  

IV. EXPERIMENTAL TESTING 

To validate the efficacy and limitations of the proposed 
B&B-GS algorithm, a series of experiments were conducted. 
The goal was to compare its efficiency and solution quality 
against standard hyperparameter tuning methods on a well-
understood classification problem. 

A. Dataset 

All experiments were performed on the Breast Cancer 
Wisconsin (Diagnostic) dataset. This dataset, containing 569 
instances and 30 numeric features, requires a binary 
classification of tumors as malignant or benign. The data was 
preprocessed by encoding the target variable to numeric values 
and standardizing the features using StandardScaler. The dataset 
was split into a 70% training set for the hyperparameter 
optimization (HPO) process and a 30% held-out test set for final 
model evaluation.  

B. Models and Hyperparameter Grids 

Three different classification models from scikit-learn were 

used to test the general applicability of the search methods: 

1. Random Forest Classifier: A large grid of 108 

combinations was defined for n_estimators, max_depth, 

min_samples_split, and min_samples_leaf. 

2. Support Vector Machine (SVC): A grid of 32 

combinations was used, including the categorical 

parameter kernel ('rbf', 'linear') alongside numerical C and 

gamma parameters. 

3. Logistic Regression: A grid of 24 combinations was 

defined, including the categorical parameters penalty ('l1', 

'l2') and solver ('liblinear', 'saga'), along with the numerical 

parameter C.  

C. Comparison Methods 

The performance of our proposed B&B-GS was 

benchmarked against: 

1. GridSearchCV: The exhaustive search baseline, 

guaranteed to find the true optimal parameters on the grid. 

2. RandomizedSearchCV: The efficiency baseline, 

configured to sample a fixed number of parameter 

combinations.  

D. Evaluation Metrics 

For all experiments, model performance was evaluated 

using 3-fold cross-validation on the training set. The algorithms 

were compared based on: 

1. Best CV Score: The highest mean accuracy achieved 

during the search. 

2. Number of Evaluations: The total number of parameter 

sets evaluated, a direct proxy for computational cost. 

3. Execution Time: The wall-clock time required to 

complete the search. 

4. Final Test Accuracy: The accuracy of the best-found 

model on the held-out 30% test set, to assess generalization 

performance. 

V. RESULTS AND ANALYSIS 

The comparative experiments yielded clear results, 
validating the B&B-GS algorithm's ability to balance efficiency 
with optimality. The complete findings, extracted directly from 
the final experimental notebook, are presented in Table 1. 

TABLE I.  COMPARATIVE PERFORMANCE OF HPO METHODS ON THE 

BREAST CANCER DATASET 

Model Method 
Total 

Grid 

Evaluation Metrics 

Evals 

Best 

CV 

Score 

Time 

(s) 

Test 

Accur

acy 

(%) 

Random 

Forest 

B&B-GS 

108 

42 0.9421 17.79 96.49 

GridSea

rchCV 
108 

0.9446 
58.36 97.08 

Randomi

zedSearc

hCV 

30 

0.9446 

11.69 96.49 

SVM 

B&B-GS 

32 

32 0.9648 0.37 98.25 

GridSea

rchCV 
32 

0.9648 
0.25 98.25 

Randomi

zedSearc

hCV 

20 

0.9648 

0.25 98.25 

Logistic 

Regressi

on 

B&B-GS 

24 

24 0.9698 1.50 97.08 

GridSea

rchCV 
24 

0.9698 
1.61 97.08 

Randomi

zedSearc

hCV 

20 

0.9698 

1.30 97.08 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

 Across all three models, B&B-GS successfully found a 
cross-validation score that was either optimal or extremely close 
to the optimum identified by GridSearchCV. For Random 
Forest, it found a score of 0.9421 compared to the grid's best of 
0.9446, a negligible difference. For SVM and Logistic 
Regression, it located the exact same optimal score. This 
demonstrates that the algorithm is highly effective at finding the 
best-performing region of the grid. When evaluated on the held-
out test set, the models tuned by B&B-GS showed excellent 
generalization, achieving test accuracies on par with the other 
methods. 

The results reveal a critical insight into the behavior of B&B-
GS: its efficiency is highly dependent on the "smoothness" of 
the hyperparameter performance landscape. 

• Success Case (Random Forest): For the Random Forest 
model, whose performance often changes more gradually 
with numerical parameter adjustments, B&B-GS was 
highly effective. It required only 42 evaluations to find a 
near-optimal solution, representing a 61% reduction in 
computational effort compared to GridSearchCV's 108 
evaluations. This confirms that on a suitable landscape, the 
bounding mechanism can successfully prune large, 
unpromising regions of the grid. 

• Limitation Case (SVM & Logistic Regression): In 
contrast, for SVM and Logistic Regression, B&B-GS 
evaluated the entire grid (32/32 and 24/24, respectively), 
offering no efficiency gain over GridSearchCV. This 
behavior is a direct consequence of the algorithm's reliance 
on the Lipschitz assumption. The grids for these models 
included categorical parameters (kernel, penalty). A change 
between two categorical values (e.g., kernel='rbf' to 
kernel='linear') can cause a large, abrupt jump in 
performance. This creates a very "steep" or rugged 
performance landscape. The algorithm detects these steep 
changes and calculates a very large Lipschitz constant (L) 
to be safe. With a large L, the calculated Upper Bound for 
every unexplored node becomes too optimistic, preventing 
the pruning condition (UpperBound <= best_score) from 
ever being met. Consequently, the algorithm is forced to 
explore every node. 

VI. CONCLUSION AND EVALUATION 

This paper introduced and empirically evaluated a Branch 
and Bound Grid Search (B&B-GS) algorithm, confirming it 
provides a powerful but nuanced trade-off between exhaustive 
and stochastic search methods. The core strength of B&B-GS 
lies in its ability to find the guaranteed optimal parameters on a 
grid, a feat demonstrated in its perfect replication of 
GridSearchCV's optimal scores. This determinism is paired with 
high efficiency on hyperparameter landscapes that are relatively 
smooth, such as that of the Random Forest, where substantial 
reductions in model evaluations translated to significant savings 
in execution time.  

However, this advantage is fundamentally constrained by the 
algorithm's reliance on the Lipschitz assumption. The 
experiments clearly show that on rugged landscapes, often 
created by categorical parameters or unstable model 

configurations, the pruning mechanism becomes ineffective. 
This limitation not only diminishes the algorithm's performance 
to that of an exhaustive search in terms of evaluations but can 
also make it slightly slower in wall-clock time due to its inherent 
algorithmic overhead. In the race for raw speed, 
RandomizedSearchCV remains superior, though at the cost of 
determinism.  

Therefore, Branch-and-Bound Grid Search should not be 
seen as a universal replacement for other HPO methods, but 
rather as a highly valuable tool for a specific use case: when a 
practitioner requires the guaranteed optimality of a grid search 
for a model whose performance landscape is expected to be 
well-behaved. Future research should focus on developing more 
robust bounding functions less sensitive to categorical variables 
and incorporating time-based budgeting to improve its practical 
utility in a wider range of applications. 
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