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Abstract—This paper presents a analysis of optimization in a 

simplified roguelike-style game where a player progresses 

through a sequence of floors, making choices between combat, 

resource gathering, and stat upgrades. The goal is to maximize 

the gold accumulated by the end of the final floor while managing 

health and attack stats. We model this problem using a dynamic 

programming approach, defining a multi-dimensional state space 

to represent player status. The DP explores all possible decision 

paths efficiently and identifies the optimal strategy. Experiment 

is done on a 5 to 15-floor configuration, which results reveal 

trade-offs between aggression, saving, and survival.  
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I.  INTRODUCTION (HEADING 1) 

As of late, a certain genre of single-player games has 
exploded in popularity, known as roguelikes or rogue-lites. 
This is due to its simplistic design, and high replayability. After 
thorough observation, these games consistently highlight a few 
key elements: strategic planning, resource management, and 
survival under uncertainty. The player will often journey 
through a series of procedurally generated levels, and each step 
forces  the player with choices, either fight, save resources, or 
spend them to get stronger. 

This constant push and pull creates the core fun of 
roguelikes. Games like Slay the Spire, FTL, and the recent hit 
Balatro are perfect examples. The player will be forced to 
constantly balance what helps right now, short-term survival or 
with what benefits in the long run. Spending it early on an 
upgrade might make a current fight much easier. But that same 
gold could have been saved to unlock something more 
powerful later, or it might count towards the final score. On the 
other hand, hoarding everything might seem smart for future 
challenges, but it could also leave the player too weak to 
handle what's directly ahead, leading to an early game over. 

From its tricky blend of choices, this gives birth to a 
fascinating optimization puzzle. A big reason these games are 
so popular is the sheer number of ways you can play to try and 
get the highest score or the best outcome. This deep strategic 
element, combined with levels that are always changing, makes 
roguelikes a great subject for deeper study. So, this paper will 
try to create a simpler, more predictable version of a roguelike. 
This will make it suitable for formal algorithmic analysis, 

specifically with dynamic programming techniques to 
determine optimal resource management strategies. 

II. THEORETICAL FOUNDATION 

A. Dynamic Programming 

Dynamic Programming (DP) is a problem-solving strategy 

designed to efficiently solve optimization problems by 

breaking them into smaller overlapping sub-problems. The core 

idea is to store intermediate results to avoid redundant 

computation and to build up solutions to larger problems from 

those sub-solutions. 

 

The word “programming” refers to mathematical planning 

and optimization, not computer code, while “dynamic” refers 

to the step-by-step update of solutions as decisions evolve 

across stages. It is a fundamental technique used in operations 

research and algorithmic problem-solving. Unlike greedy 

algorithms, which make locally optimal decisions at each step, 

DP will evaluate multiple paths or states, comparing them to 

find a globally optimal solution.  

 

This makes DP algorithms superior to greedy algorithms in 

solving optimization problems where the solution isn’t always 

locally optimal. Problems such as 0/1 Knapsack or TSP can’t 

be solved optimally with greedy, but solvable with DP. 

However, this does come at a cost, as it needs to store the 

previous computations done before and explore other 

possibilities, where if the problem is NP-hard, it can be highly 

costly in both time and memory complexity. 

1. The Principle of Optimality 

The foundation of dynamic programming rests on the 

Principle of Optimality:  

If the total solution is optimal, then any partial solution up 

to stage k must also be optimal.[1] 

This principle enables us to work from stage k to 

stage k+1 using optimal results from stage k without 

needing to recalculate from the beginning. The cost 

relationship can be expressed as follows: 
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 C+  = C + C − ( + )   ()    +   =  () () 

where CK is the cost at stage k. 

2. Suitable Problem Characteristics 

A problem can be solved using dynamic 

programming if it exhibits these characteristics: 

• Multi-stage Structure 

The problem can be divided into several stages, 

with one decision made at each stage  

• State Definition 

Each stage consists of multiple states representing 

various possible inputs at that stage 

• State Transformation 

Decisions at each stage transform the current state 

to the next state in the following stage 

• Cumulative Cost 

Costs increase steadily as the number of stages 

increases 

• Cost Dependency 

Cost at any stage depends on costs from previous 

stages plus the transition cost 

• Recursive Relationship 

A recursive relationship exists that identifies the 

best decision for each state at stage k, leading to 

the best decision for each state at stage k+1 

• Optimality Principle 

The principle of optimality applies to the problem 

3. Two Approaches 

There are two approaches in solving a DP problem: 

 

• Forward Dynamic Programming (Top-Down) 

Build solutions progressively from the initial state 

to the goal. This is useful when all start states are 

known, and we explore all possible outcomes. This 

is also known as tabulation. 

• Backward Dynamic Programming (Bottom-Up) 

Start from the goal and recursively determine 

which previous states could lead to the optimal 

result. Often paired with memoization, which is a 

technique where results are stored to avoid doing 

the same computations many times. 

 

Here is a table that details their differences. 

TABLE I.  TOP-DOWN VS. BOTTOM-UP DP 
[2] 

 Top-Down Bottom-Up 

 Top-Down Bottom-Up 

State State transition 
relation is relatively 

difficult to think 

State Transition 
relation is easier to 

think 

Speed Fast, as we do not 

have recursion call 
overhead. 

Slow due to a lot of 

recursive calls. 

Subpro

blem 
solving 

If all subproblems 

must be solved at 
least once, a bottom-

up dynamic 

programming 
algorithm definitely 

outperforms a top-

down memoized 
algorithm by a 

constant factor 

If some subproblems 

in the subproblem 
space need not be 

solved at all, the 

memoized solution 
has the advantage of 

solving only those 

subproblems that are 
required  

Table 

entries 

In the Tabulated 

version, starting from 

the first entry, all 

entries are filled one 
by one 

Unlike the Tabulated 

version, all entries of 

the lookup table are 

not necessarily filled 
in Memoized version. 

The table is filled on 

demand. 

B. Roguelike Game Elements 

Roguelike games, in a formal context, represent a class of 
stage-limited sequential decision problems. These games are 
composed of discrete decision points (e.g., game stages or 
floors) where the player must make strategic choices that affect 
future outcomes. While traditionally randomized or 
procedurally generated, they can be abstracted as deterministic 
models to study decision optimization under constraints. 

1. Stateful Sequential Decisions 

Each game state is defined by a set of quantifiable 
variables (e.g., health, resources, combat ability), and 
transitions between states occur based on player 
actions. This setup resembles a finite state space, 
where:  

• States represent the player's current condition 

• Actions transform one state into another 

• The game progresses linearly, forming a multi-
stage decision process. 

Although most roguelike games will have randomly 
generated levels or resources, we restrict our 
formulation to a deterministic setting where state 
transitions and rewards are known in advance. 

2. Resource-Constrained Optimization 

Players manage a limited set of resources (such as 
health, currency, etc.), and their choices influence both 
short-term gain and long-term survival. This aligns 
with well-known algorithmic problems, such as 
knapsack-type problems, multi-stage scheduling, and 
path-dependent planning. 

3. Deterministic Decision Graph 

Each player’s action will lead to a new, 
deterministic game state, which can be represented as a 
node in a directed graph of possible outcomes. This 
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formulation lends itself to graph traversal algorithms 
and dynamic programming over state transitions.  

a. State Space Modeling 
State space modeling is the formal 

representation of all possible configurations or 
conditions the system can occupy. The player's 
state will be defined by a tuple of key variables, 
such as the player’s resources and current stage 
level. Each unique combination of these attributes 
represents a distinct state in the game. This finite, 
discrete, and bounded representation is 
fundamental to enabling dynamic programming: it 
ensures that the number of reachable states is 
computationally tractable and that transitions 
between states can be explicitly enumerated. The 
entire decision-making process can thus be viewed 
as movement through a well-defined state space. 

b. Action Space Analysis 
At each decision point or state, the player is 

presented with a limited set of available actions. 
These may include fighting an enemy, taking a 
safe treasure reward, or visiting a shop to trade 
gold for improvements. This discrete and 
deterministic action space defines the branching 
possibilities from any given state. The decision at 
each step determines how the current state 
transitions to a new state in the next stage. From a 
theoretical standpoint, the action space directly 
influences the shape of the decision tree and the 
size of the problem's solution space. Because the 
actions are limited and deterministic, the full space 
of outcomes can be systematically explored, 
making the problem suitable for exhaustive 
methods like dynamic programming. 

c. Cumulative Reward Functions 
A key characteristic of this decision problem 

is that rewards accumulate over time, depending 
on the player's choices. The objective of 
optimization is to maximize the final gold after all 
decisions are made. This introduces a cumulative 
reward function, where the total utility of a 
decision sequence is the sum of rewards obtained 
at each stage. This additive structure is essential to 
dynamic programming, as it enables the use of 
recursive relationships to evaluate and compare 
partial solutions. The ability to associate value 
with each transition allows the algorithm to 
propagate optimality forward across stages, 
ensuring that local decisions contribute 
meaningfully to the global objective. 

d. Terminal Conditions 
Terminal conditions define when the 

decision process ends, either because the game has 
reached its natural conclusion (such as defeating 
the boss, reaching the final floor), or because the 
player can no longer continue (HP ≤ 0). These 
conditions form the boundaries of the state space 
and help determine the feasibility of decision 

sequences. Any state where the player has no 
remaining health is considered invalid and 
excluded from further computation. On the other 
hand, reaching the final stage with any positive HP 
leads to an evaluation of the accumulated reward. 
These terminal rules are vital in constraining the 
optimization problem and ensuring that only viable 
paths through the game state graph are considered. 
They also support pruning during computation, 
improving both efficiency and correctness. 

III. IMPLEMENTATION 

In this paper’s implementation, we will try to recreate a 
simplified deterministic rogue-like game. 

A. Core Game Mechanics 

As mentioned previously, the current implementation 
adopts a simplified roguelike model, in which all game 
mechanics and outcomes are deterministic. This simplification 
enables the use of dynamic programming (DP) techniques to 
exhaustively and efficiently explore the space of possible 
player decisions across multiple game stages (or floors). Each 
decision leads to a predictable outcome, allowing the algorithm 
to precisely evaluate the long-term consequences of each 
action. 

The core gameplay is structured into a series of floors, each 
representing a discrete decision point. At every floor, the player 
can choose one of three actions: 

1. Enter Combat 
Engaging in combat against a floor-specific enemy 
involves turn-based exchanges of damage. The player 
always attacks first, followed by the enemy if it 
survives. Combat is resolved deterministically, and the 
result affects the player's HP. If the player wins, they 
are rewarded with a predetermined amount of gold. 

2. Collect Treasure 
The player can opt to take a safe, flat gold reward 
without engaging in combat. This path ensures no loss 
of HP but yields lower long-term potential for 
improvement. 

3. Enter Shop 
The player may spend gold on upgrades, including 
restoring HP or increasing attack power (ATK). This 
introduces trade-offs between short-term resource 
reduction and long-term survival or strength gains. 

Each action transforms the player’s current state into a new 
state, defined by the tuple: 

(floor, HP, ATK, Gold). 

These state transitions form the basis of the DP recurrence.  

B. Constraints 

To maintain computational feasibility and adhere to the 

structure of a typical stage-limited decision problem, the 

following constraints are enforced: 
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1. Finite Floors  

The game progresses through a fixed number of stages 

(e.g., 5 floors), after which the process terminates. 

2. Bounded State Variables  

o HP has both a minimum (HP ≥ 0) and a maximum 

(HP ≤ 100). 

o ATK and Gold are also capped to a certain upper 

bound to prevent unbounded state growth. 

3. Deterministic Transitions  

All state updates are predictable and depend solely on 

the current state and selected action. There is no 

randomness in outcomes. 

4. Terminal States 

Any state where HP ≤ 0 is considered invalid and 

excluded from further transitions. Only states with strictly 

positive HP are carried forward to the next floor. 

5. Interest Mechanic 

To encourage resource-saving strategies, an interest 

bonus is applied at the end of each floor, where players 

gain +1 gold for every 10 gold saved (up to a cap of +5 per 

round). This mechanic adds a strategic layer encouraging 

gold conservation. 

C. Source Code 

The following program implementation is done using 

Python. 

1. Constraints & Configurations 

 
Picture 3.1. Game Constraints and Configurations 

2. Algorithms 

a. simulate_combat 

 
Picture 3.2 simulate_combat algorithm 

b. apply_interest 

 
Picture 3.3 apply_interest algorithm 

c. find_optimal_path 

 
Picture 3.4 find_optimal_path algorithm 

d. trace_optimal_sequence 

 
Picture 3.5 trace_optimal_sequence algorithm 

e. solve_roguelike 
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Picture 3.6 solve_roguelike algorithm 

IV. RESULT AND ANALYSIS 

A. Experimental Setup 

We evaluated our dynamic programming algorithm on 

several procedurally generated dungeon layouts ranging from 

5 to 15 floors. Each floor contained a deterministic event: 

battle, shop, or healing. The initial player state is defined by a 

tuple (floor, hp, gold, atk). We ran the algorithm from a fixed 

initial state to simulate a complete dungeon run and collect all 

reachable states and their associated optimal values.  

 
Picture 4.1 Sample Program Output (5 Floors) 

B. State Space Growth 

The number of unique states grew exponentially with the 
number of floors due to branching choices (e.g., shop 
purchases, whether to use potions, fight or flee). 

TABLE II.  STATE SPACE GROWTH TABLE 

Floors Unique States 

Explored 

0 1 

1 2 

2 7 

3 23 

4 84 

5 226 

6 529 

7 1085 

8 1914 

9 3078 

10 4651 

11 6631 

12 8813 

13 10868 

14 12603 

15 13921 

 

This growth is mitigated by state pruning, where dominated 
states, or those worse in all dimensions than others, are 
discarded at each step. 
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C. Optimal Strategy Patterns 

Analysis of optimal strategies revealed several consistent 

patterns, such as:  

1. Delayed Spending 

The algorithm often chooses to save gold rather than 

spending early in shops, especially when later shops 

offer better value (e.g., healing or rare items). 

2. Aggressive Trading 

When HP is high, the strategy chooses aggressive 

options (e.g., battles) to maximize score rather than 

play conservatively. 

D. Limitations and Edge Cases 

In rare cases, multiple paths lead to the same final state. 

This implementation favors the lexicographically smaller path, 

which may not always align with player intuition. 

Furthermore, we need to take note that although determinism 

may simplify analysis, this makes it ignore randomness, which 

comes in real typical roguelikes. Introducing randomness 

would require probabilistic DP. 

V. CONCLUSION 

In this paper, we presented a dynamic programming 
approach to solve a simplified, deterministic roguelike game. 
By modeling the game as a stage-limited decision process, we 
constructed a state space that stores all relevant player 
attributes, which are as follows: health; gold; attack power; and 
computed optimal strategies through exhaustive value 
propagation. 

Our implementation ensures that decision-making is not 
driven by immediate reward alone, but by the maximization of 
long-term outcomes, such as survivability and final resource 
value. By integrating components like shop actions, combat 
simulation, and treasure restrictions into the state, we 
demonstrated that strategic planning across multiple floors can 
yield significantly better results than greedy or myopic 
heuristics. 

The results show that the dynamic programming algorithm 
naturally discovers human-like strategies such as delaying 
purchases, prioritizing survivability when health is low and 
optimizing when to collect one-time rewards.  
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