
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Optimal Decision Strategies in a Roguelike Game

using Dynamic Programming

David Bakti Lodianto - 13523083

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: david.lodianto@gmail.com , 13523083@std.stei.itb.ac.id

Abstract—This paper presents a analysis of optimization in a

simplified roguelike-style game where a player progresses

through a sequence of floors, making choices between combat,

resource gathering, and stat upgrades. The goal is to maximize

the gold accumulated by the end of the final floor while managing

health and attack stats. We model this problem using a dynamic

programming approach, defining a multi-dimensional state space

to represent player status. The DP explores all possible decision

paths efficiently and identifies the optimal strategy. Experiment

is done on a 5 to 15-floor configuration, which results reveal

trade-offs between aggression, saving, and survival.

Keywords—dynamic programming; optimization; roguelike

I. INTRODUCTION (HEADING 1)

As of late, a certain genre of single-player games has
exploded in popularity, known as roguelikes or rogue-lites.
This is due to its simplistic design, and high replayability. After
thorough observation, these games consistently highlight a few
key elements: strategic planning, resource management, and
survival under uncertainty. The player will often journey
through a series of procedurally generated levels, and each step
forces the player with choices, either fight, save resources, or
spend them to get stronger.

This constant push and pull creates the core fun of
roguelikes. Games like Slay the Spire, FTL, and the recent hit
Balatro are perfect examples. The player will be forced to
constantly balance what helps right now, short-term survival or
with what benefits in the long run. Spending it early on an
upgrade might make a current fight much easier. But that same
gold could have been saved to unlock something more
powerful later, or it might count towards the final score. On the
other hand, hoarding everything might seem smart for future
challenges, but it could also leave the player too weak to
handle what's directly ahead, leading to an early game over.

From its tricky blend of choices, this gives birth to a
fascinating optimization puzzle. A big reason these games are
so popular is the sheer number of ways you can play to try and
get the highest score or the best outcome. This deep strategic
element, combined with levels that are always changing, makes
roguelikes a great subject for deeper study. So, this paper will
try to create a simpler, more predictable version of a roguelike.
This will make it suitable for formal algorithmic analysis,

specifically with dynamic programming techniques to
determine optimal resource management strategies.

II. THEORETICAL FOUNDATION

A. Dynamic Programming

Dynamic Programming (DP) is a problem-solving strategy

designed to efficiently solve optimization problems by

breaking them into smaller overlapping sub-problems. The core

idea is to store intermediate results to avoid redundant

computation and to build up solutions to larger problems from

those sub-solutions.

The word “programming” refers to mathematical planning

and optimization, not computer code, while “dynamic” refers

to the step-by-step update of solutions as decisions evolve

across stages. It is a fundamental technique used in operations

research and algorithmic problem-solving. Unlike greedy

algorithms, which make locally optimal decisions at each step,

DP will evaluate multiple paths or states, comparing them to

find a globally optimal solution.

This makes DP algorithms superior to greedy algorithms in

solving optimization problems where the solution isn’t always

locally optimal. Problems such as 0/1 Knapsack or TSP can’t

be solved optimally with greedy, but solvable with DP.

However, this does come at a cost, as it needs to store the

previous computations done before and explore other

possibilities, where if the problem is NP-hard, it can be highly

costly in both time and memory complexity.

1. The Principle of Optimality

The foundation of dynamic programming rests on the

Principle of Optimality:

If the total solution is optimal, then any partial solution up

to stage k must also be optimal.[1]

This principle enables us to work from stage k to

stage k+1 using optimal results from stage k without

needing to recalculate from the beginning. The cost

relationship can be expressed as follows:

mailto:david.lodianto@gmail.com
mailto:13523083@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 C+ = C + C − ( + ) ()  +  =  () ()

where CK is the cost at stage k.

2. Suitable Problem Characteristics

A problem can be solved using dynamic

programming if it exhibits these characteristics:

• Multi-stage Structure

The problem can be divided into several stages,

with one decision made at each stage

• State Definition

Each stage consists of multiple states representing

various possible inputs at that stage

• State Transformation

Decisions at each stage transform the current state

to the next state in the following stage

• Cumulative Cost

Costs increase steadily as the number of stages

increases

• Cost Dependency

Cost at any stage depends on costs from previous

stages plus the transition cost

• Recursive Relationship

A recursive relationship exists that identifies the

best decision for each state at stage k, leading to

the best decision for each state at stage k+1

• Optimality Principle

The principle of optimality applies to the problem

3. Two Approaches

There are two approaches in solving a DP problem:

• Forward Dynamic Programming (Top-Down)

Build solutions progressively from the initial state

to the goal. This is useful when all start states are

known, and we explore all possible outcomes. This

is also known as tabulation.

• Backward Dynamic Programming (Bottom-Up)

Start from the goal and recursively determine

which previous states could lead to the optimal

result. Often paired with memoization, which is a

technique where results are stored to avoid doing

the same computations many times.

Here is a table that details their differences.

TABLE I. TOP-DOWN VS. BOTTOM-UP DP
[2]

 Top-Down Bottom-Up

 Top-Down Bottom-Up

State State transition
relation is relatively

difficult to think

State Transition
relation is easier to

think

Speed Fast, as we do not

have recursion call
overhead.

Slow due to a lot of

recursive calls.

Subpro

blem
solving

If all subproblems

must be solved at
least once, a bottom-

up dynamic

programming
algorithm definitely

outperforms a top-

down memoized
algorithm by a

constant factor

If some subproblems

in the subproblem
space need not be

solved at all, the

memoized solution
has the advantage of

solving only those

subproblems that are
required

Table

entries

In the Tabulated

version, starting from

the first entry, all

entries are filled one
by one

Unlike the Tabulated

version, all entries of

the lookup table are

not necessarily filled
in Memoized version.

The table is filled on

demand.

B. Roguelike Game Elements

Roguelike games, in a formal context, represent a class of
stage-limited sequential decision problems. These games are
composed of discrete decision points (e.g., game stages or
floors) where the player must make strategic choices that affect
future outcomes. While traditionally randomized or
procedurally generated, they can be abstracted as deterministic
models to study decision optimization under constraints.

1. Stateful Sequential Decisions

Each game state is defined by a set of quantifiable
variables (e.g., health, resources, combat ability), and
transitions between states occur based on player
actions. This setup resembles a finite state space,
where:

• States represent the player's current condition

• Actions transform one state into another

• The game progresses linearly, forming a multi-
stage decision process.

Although most roguelike games will have randomly
generated levels or resources, we restrict our
formulation to a deterministic setting where state
transitions and rewards are known in advance.

2. Resource-Constrained Optimization

Players manage a limited set of resources (such as
health, currency, etc.), and their choices influence both
short-term gain and long-term survival. This aligns
with well-known algorithmic problems, such as
knapsack-type problems, multi-stage scheduling, and
path-dependent planning.

3. Deterministic Decision Graph

Each player’s action will lead to a new,
deterministic game state, which can be represented as a
node in a directed graph of possible outcomes. This

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

formulation lends itself to graph traversal algorithms
and dynamic programming over state transitions.

a. State Space Modeling
State space modeling is the formal

representation of all possible configurations or
conditions the system can occupy. The player's
state will be defined by a tuple of key variables,
such as the player’s resources and current stage
level. Each unique combination of these attributes
represents a distinct state in the game. This finite,
discrete, and bounded representation is
fundamental to enabling dynamic programming: it
ensures that the number of reachable states is
computationally tractable and that transitions
between states can be explicitly enumerated. The
entire decision-making process can thus be viewed
as movement through a well-defined state space.

b. Action Space Analysis
At each decision point or state, the player is

presented with a limited set of available actions.
These may include fighting an enemy, taking a
safe treasure reward, or visiting a shop to trade
gold for improvements. This discrete and
deterministic action space defines the branching
possibilities from any given state. The decision at
each step determines how the current state
transitions to a new state in the next stage. From a
theoretical standpoint, the action space directly
influences the shape of the decision tree and the
size of the problem's solution space. Because the
actions are limited and deterministic, the full space
of outcomes can be systematically explored,
making the problem suitable for exhaustive
methods like dynamic programming.

c. Cumulative Reward Functions
A key characteristic of this decision problem

is that rewards accumulate over time, depending
on the player's choices. The objective of
optimization is to maximize the final gold after all
decisions are made. This introduces a cumulative
reward function, where the total utility of a
decision sequence is the sum of rewards obtained
at each stage. This additive structure is essential to
dynamic programming, as it enables the use of
recursive relationships to evaluate and compare
partial solutions. The ability to associate value
with each transition allows the algorithm to
propagate optimality forward across stages,
ensuring that local decisions contribute
meaningfully to the global objective.

d. Terminal Conditions
Terminal conditions define when the

decision process ends, either because the game has
reached its natural conclusion (such as defeating
the boss, reaching the final floor), or because the
player can no longer continue (HP ≤ 0). These
conditions form the boundaries of the state space
and help determine the feasibility of decision

sequences. Any state where the player has no
remaining health is considered invalid and
excluded from further computation. On the other
hand, reaching the final stage with any positive HP
leads to an evaluation of the accumulated reward.
These terminal rules are vital in constraining the
optimization problem and ensuring that only viable
paths through the game state graph are considered.
They also support pruning during computation,
improving both efficiency and correctness.

III. IMPLEMENTATION

In this paper’s implementation, we will try to recreate a
simplified deterministic rogue-like game.

A. Core Game Mechanics

As mentioned previously, the current implementation
adopts a simplified roguelike model, in which all game
mechanics and outcomes are deterministic. This simplification
enables the use of dynamic programming (DP) techniques to
exhaustively and efficiently explore the space of possible
player decisions across multiple game stages (or floors). Each
decision leads to a predictable outcome, allowing the algorithm
to precisely evaluate the long-term consequences of each
action.

The core gameplay is structured into a series of floors, each
representing a discrete decision point. At every floor, the player
can choose one of three actions:

1. Enter Combat
Engaging in combat against a floor-specific enemy
involves turn-based exchanges of damage. The player
always attacks first, followed by the enemy if it
survives. Combat is resolved deterministically, and the
result affects the player's HP. If the player wins, they
are rewarded with a predetermined amount of gold.

2. Collect Treasure
The player can opt to take a safe, flat gold reward
without engaging in combat. This path ensures no loss
of HP but yields lower long-term potential for
improvement.

3. Enter Shop
The player may spend gold on upgrades, including
restoring HP or increasing attack power (ATK). This
introduces trade-offs between short-term resource
reduction and long-term survival or strength gains.

Each action transforms the player’s current state into a new
state, defined by the tuple:

(floor, HP, ATK, Gold).

These state transitions form the basis of the DP recurrence.

B. Constraints

To maintain computational feasibility and adhere to the

structure of a typical stage-limited decision problem, the

following constraints are enforced:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

1. Finite Floors

The game progresses through a fixed number of stages

(e.g., 5 floors), after which the process terminates.

2. Bounded State Variables

o HP has both a minimum (HP ≥ 0) and a maximum

(HP ≤ 100).

o ATK and Gold are also capped to a certain upper

bound to prevent unbounded state growth.

3. Deterministic Transitions

All state updates are predictable and depend solely on

the current state and selected action. There is no

randomness in outcomes.

4. Terminal States

Any state where HP ≤ 0 is considered invalid and

excluded from further transitions. Only states with strictly

positive HP are carried forward to the next floor.

5. Interest Mechanic

To encourage resource-saving strategies, an interest

bonus is applied at the end of each floor, where players

gain +1 gold for every 10 gold saved (up to a cap of +5 per

round). This mechanic adds a strategic layer encouraging

gold conservation.

C. Source Code

The following program implementation is done using

Python.

1. Constraints & Configurations

Picture 3.1. Game Constraints and Configurations

2. Algorithms

a. simulate_combat

Picture 3.2 simulate_combat algorithm

b. apply_interest

Picture 3.3 apply_interest algorithm

c. find_optimal_path

Picture 3.4 find_optimal_path algorithm

d. trace_optimal_sequence

Picture 3.5 trace_optimal_sequence algorithm

e. solve_roguelike

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Picture 3.6 solve_roguelike algorithm

IV. RESULT AND ANALYSIS

A. Experimental Setup

We evaluated our dynamic programming algorithm on

several procedurally generated dungeon layouts ranging from

5 to 15 floors. Each floor contained a deterministic event:

battle, shop, or healing. The initial player state is defined by a

tuple (floor, hp, gold, atk). We ran the algorithm from a fixed

initial state to simulate a complete dungeon run and collect all

reachable states and their associated optimal values.

Picture 4.1 Sample Program Output (5 Floors)

B. State Space Growth

The number of unique states grew exponentially with the
number of floors due to branching choices (e.g., shop
purchases, whether to use potions, fight or flee).

TABLE II. STATE SPACE GROWTH TABLE

Floors Unique States

Explored

0 1

1 2

2 7

3 23

4 84

5 226

6 529

7 1085

8 1914

9 3078

10 4651

11 6631

12 8813

13 10868

14 12603

15 13921

This growth is mitigated by state pruning, where dominated
states, or those worse in all dimensions than others, are
discarded at each step.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

C. Optimal Strategy Patterns

Analysis of optimal strategies revealed several consistent

patterns, such as:

1. Delayed Spending

The algorithm often chooses to save gold rather than

spending early in shops, especially when later shops

offer better value (e.g., healing or rare items).

2. Aggressive Trading

When HP is high, the strategy chooses aggressive

options (e.g., battles) to maximize score rather than

play conservatively.

D. Limitations and Edge Cases

In rare cases, multiple paths lead to the same final state.

This implementation favors the lexicographically smaller path,

which may not always align with player intuition.

Furthermore, we need to take note that although determinism

may simplify analysis, this makes it ignore randomness, which

comes in real typical roguelikes. Introducing randomness

would require probabilistic DP.

V. CONCLUSION

In this paper, we presented a dynamic programming
approach to solve a simplified, deterministic roguelike game.
By modeling the game as a stage-limited decision process, we
constructed a state space that stores all relevant player
attributes, which are as follows: health; gold; attack power; and
computed optimal strategies through exhaustive value
propagation.

Our implementation ensures that decision-making is not
driven by immediate reward alone, but by the maximization of
long-term outcomes, such as survivability and final resource
value. By integrating components like shop actions, combat
simulation, and treasure restrictions into the state, we
demonstrated that strategic planning across multiple floors can
yield significantly better results than greedy or myopic
heuristics.

The results show that the dynamic programming algorithm
naturally discovers human-like strategies such as delaying
purchases, prioritizing survivability when health is low and
optimizing when to collect one-time rewards.

ACKNOWLEDGMENT

I would like to acknowledge and express my gratitude to
the Algorithm Strategies lecturers, Dr. Ir. Rinaldi Munir, M.T.
and Dr. Nur Ulfa Maulidevi, S.T., M.Sc. for all of their efforts
to teach me and my peers throughout the semester, which
contributed a lot on making this paper possible. Their lectures
and tasks given has greatly boosted my understanding of the
subject matter, especially the topic I have chosen, dynamic
programming.

I am also grateful to my peers and colleagues in the who
provided constructive feedback and support during the research
and writing process.

REFERENCES

[1] R. Munir, Program Dinamis (Dynamic Programming) Bagian 1.
[Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-
Program-Dinamis-(2025)-Bagian1.pdf/

[2] GeeksforGeeks, "Tabulation vs Memoization," GeeksforGeeks.
[Online]. Available: https://www.geeksforgeeks.org/dsa/tabulation-vs-
memoization/

[3] Puterman, M. L. (2005). Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons.

[4] Martello, S., & Toth, P. (1990). Knapsack Problems: Algorithms and
Computer Implementations. Wiley-Interscience.R. Nicole, “Title of
paper with only first word capitalized,” J. Name Stand. Abbrev.

[5] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).
Introduction to Algorithms (3rd ed.). MIT Press.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

David Bakti Lodianto 13523083

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf/
https://www.geeksforgeeks.org/dsa/tabulation-vs-memoization/
https://www.geeksforgeeks.org/dsa/tabulation-vs-memoization/

