
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Multi-Paradigm Algorithmic Approach to Compiler

Optimization: Integrating Graph Analysis, Dynamic

Programming, and Branch-and-Bound Strategies
A Comprehensive Framework for Code Generation, Register Allocation, and Instruction

Scheduling Optimization

Farrel Athalla Putra - 13523118

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: farrelxag@gmail.com , 13523118@std.stei.itb.ac.id

Abstract—Compiler optimization is a core challenge in

computer science, aiming to transform source code into efficient

machine code while preserving program semantics. As software

complexity and hardware sophistication increase, there is a

growing need for advanced optimization techniques that enhance

performance and reduce resource usage. Traditional approaches

often rely on isolated algorithms targeting individual optimization

phases, which can lead to suboptimal outcomes due to missed

inter-phase interactions. This paper introduces a comprehensive

multi-paradigm framework that overcomes these limitations by

integrating graph algorithms, dynamic programming, branch-

and-bound strategies, greedy heuristics, and string matching. The

proposed approach treats compiler optimization as an

interconnected problem, benefiting from coordinated algorithmic

solutions. Specifically, graph analysis supports control flow and

loop detection; dynamic programming addresses register

allocation through interference graph coloring; greedy algorithms

manage instruction scheduling with dependency resolution;

branch-and-bound enhances code generation; and string

matching enables pattern-based transformations. By combining

these strategies, the methodology demonstrates strong potential to

outperform conventional techniques, delivering notable

improvements in code quality and compilation efficiency.

Keywords—compiler optimization, multi-paradigm algorithms,

graph algorithms, dynamic programming, register allocation, code

generation, compilation efficiency

I. INTRODUCTION

In today’s computing landscape, software performance and
efficiency are key to system success and user satisfaction. As
applications grow in complexity and computational demands
rise, generating highly optimized machine code from high-level
programming languages becomes a critical challenge. The gap
between naively compiled and well-optimized code can lead to
major differences in execution speed, memory usage, and energy
efficiency, influencing everything from mobile battery life to
data center costs.

 Compiler optimization plays a central role in bridging
human-readable code with efficient machine execution.

However, traditional compilers often rely on isolated
algorithmic solutions, addressing optimization problems such as
register allocation, instruction scheduling, and dead code
elimination independently. This fragmented approach can lead
to suboptimal results, as decisions in one phase may
unintentionally hinder optimizations in another.

The complexity of compiler optimization lies in the
interconnected nature of transformation problems. For instance,
register allocation affects instruction scheduling, loop
optimizations alter memory access patterns, and control flow
analysis shapes dead code elimination. These interdependencies
suggest that coordinated, integrated optimization strategies are
necessary to achieve better overall performance.

This paper proposes a multi-paradigm algorithmic
framework that addresses these challenges holistically. Our
approach strategically integrates classical algorithms—using
graph algorithms for control flow and dependency analysis,
dynamic programming for resource allocation, greedy heuristics
for instruction scheduling, branch-and-bound for exploring
optimization spaces, and string matching for pattern-based
transformations.

By treating compiler optimization as a multi-faceted,
interconnected problem, our framework outperforms traditional
sequential approaches. It achieves improvements in both code
quality and compilation efficiency, offering practical benefits
for diverse architectures and workloads. This work provides
valuable insights into how combining algorithmic paradigms
can advance both compiler theory and real-world
implementation.

II. THEORITICAL BASIS

A. Graph Theory and Control Flow Analysis

Graph theory provides the mathematical foundation for
representing and analyzing program structure in compiler
optimization. A directed graph 𝐺 = (𝑉, 𝐸) consists of a set of
vertices V and a set of directed edges 𝐸 ⊆ V × V. In compiler

mailto:farrelxag@gmail.com
mailto:13523118@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

analysis, vertices represent basic blocks of code, while edges
represent control flow transitions.

Fig 2.1 Control Flow Graph Visualziation
(Source:

https://www.researchgate.net/publication/327886094_A_Novel
_Approach_to_Program_Comprehension_Process_Using_Slici

ng_Techniques)

A Control Flow Graph (CFG) is a directed graph where each

vertex represents a basic block (a maximal sequence of
instructions with no branches except at the end) and each edge
(u, v) indicates that control may flow directly from block u to
block v. Formally, for a program P with basic blocks 𝐵 =
{𝑏1, 𝑏2, … , 𝑏𝑛}, the CFG is defined as:

𝐶𝐹𝐺(𝑃) = (𝐵, 𝐸)
𝑤ℎ𝑒𝑟𝑒 𝐸 = {(𝑏1, 𝑏1) | 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑎𝑛 𝑓𝑙𝑜𝑤 𝑓𝑟𝑜𝑚 𝑏𝑖 𝑡𝑜 𝑏𝑗}

 Dominance relationships are crucial for optimization
analysis. A basic block d dominates block b (written as d dom
b) if every path from the entry block to b passes through d. The
dominance frontier 𝐷𝐹(𝑛) of a node n is defined as:

𝐷𝐹(𝑛) = {𝑤 ∈ V | 𝑛 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑎
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑤 𝑏𝑢𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑤}

 Strongly Connected Components (SCCs) identify natural
loops in the control flow graph. An SCC is a maximal set of
vertices 𝐶 ⊆ V such that for every pair of vertices 𝑢, 𝑣 ∈ C, there
exists a path from u to v and a path from v to u within the
subgraph induced by C.

B. Dynamic Programming

Dynamic programming provides optimal solutions to
problems exhibiting optimal substructure and overlapping
subproblems. For compiler optimization, we define the
optimization function as:

𝑂𝑃𝑇(𝑖, 𝑆) = 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑛𝑔
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 {𝑣1, 𝑣2, … , 𝑣𝑖} 𝑢𝑠𝑖𝑛𝑔 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑠𝑒𝑡 𝑆

The recurrence relation for register allocation is:

𝑂𝑃𝑇(𝑖, 𝑆) = min {𝑂𝑃𝑇(𝑖 − 1, 𝑆{𝑟}) + 𝑐𝑜𝑠𝑡(𝑣𝑖 , 𝑟) |
𝑟 ∈ S and compatible(𝑣𝑖 , 𝑟)}

where cost(vᵢ, r) represents the cost of assigning variable vᵢ to
register r, and compatible(vᵢ, r) ensures no interference conflicts.

 For instruction scheduling, let 𝑇(𝑖, 𝑡) represent the minimum
completion time for scheduling instructions {𝐼1, 𝐼2, … , 𝐼𝑖} with

the last instruction completing at time t. The dynamic
programming formulation is:

𝑇(𝑖, 𝑡) = min{𝑇(𝑗, 𝑡 − 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐼𝑖)) | 𝑗 < 𝑖 𝑎𝑛𝑑

𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐼𝑗+1, … , 𝐼𝑖)}

 The optimal substructure property ensures that if 𝑂𝑃𝑇(𝑖, 𝑆)
is optimal for the first i variables, then 𝑂𝑃𝑇(𝑖 − 1, 𝑆′) must be
optimal for the first i-1 variables for some appropriate resource
set S'.

 These formulations align with the core ideas of multistage
decision processes, where each stage (e.g., variable assignment
or instruction placement) corresponds to a decision point. The
key characteristics include:

a. Stages representing decision points (e.g., variables or
instructions),
b. States capturing the resource availability or scheduling
windows,
c. Transition costs reflecting assignment or latency penalties,
d. Recursive relations defining optimal decisions from prior
stages, e.g.:

𝑓𝑘(𝑥𝑘) = max {𝑅𝑘(𝑝𝑘) + 𝑓𝑘−1(𝑥𝑘 − 𝑐𝑘(𝑝𝑘))}

This general structure mirrors well-known applications

such as knapsack, shortest path, and capital budgeting, adapted

here to represent code transformation tasks. By applying

dynamic programming in these contexts, compilers can

systematically explore optimal decisions across large and

complex state spaces, achieving better performance than

greedy or one-pass heuristics.

C. Branch and Bound Algorithm

 Branch and bound systematically explores the solution space
by partitioning it into smaller subproblems and using bounds to
eliminate suboptimal regions. For a minimization problem, the
algorithm maintains:

a. Lower bound: 𝐿𝐵(𝑛𝑜𝑑𝑒) ≤ 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 solution in subtree
rooted at node

b. Upper bound: 𝑈𝐵 = 𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

c. Pruning condition: if 𝐿𝐵(𝑛𝑜𝑑𝑒) ≥ 𝑈𝐵, prune subtree at
node

For code generation optimization, let 𝐶(𝑆, 𝐼) represent the
cost of generating code for instruction sequence I using resource
configuration S. The branching strategy explores different
instruction orderings and register assignments:

𝐵𝑟𝑎𝑛𝑐ℎ(𝑛𝑜𝑑𝑒) = {𝑐ℎ𝑖𝑙𝑑1 , 𝑐ℎ𝑖𝑙𝑑2, … , 𝑐ℎ𝑖𝑙𝑑𝑖}
𝑤ℎ𝑒𝑟𝑒 𝑒𝑎𝑐ℎ 𝑐ℎ𝑖𝑙𝑑 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛

The bounding function for instruction sequence optimization is:

𝐿𝐵(𝑝𝑎𝑟𝑡𝑖𝑎𝑙_ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑠𝑡 +
𝑒𝑠𝑡𝑖𝑡𝑚𝑎𝑡𝑒𝑑_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑜𝑠𝑡

where estimated_remaining_cost ≤ actual optimal cost for
remaining instructions. According to classical B&B theory, the
total estimated cost of a node ĉ(𝑖) can be expressed as:

ĉ(𝑖) = 𝑓(𝑖) + �̃�(𝑖)

https://www.researchgate.net/publication/327886094_A_Novel_Approach_to_Program_Comprehension_Process_Using_Slicing_Techniques
https://www.researchgate.net/publication/327886094_A_Novel_Approach_to_Program_Comprehension_Process_Using_Slicing_Techniques
https://www.researchgate.net/publication/327886094_A_Novel_Approach_to_Program_Comprehension_Process_Using_Slicing_Techniques

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

where 𝑓(𝑖) is the actual costs from the root to node 𝑖 and �̃�(𝑖) is
is a heuristic estimate of the remaining cost to the goal.

 This structure enables a best-first expansion strategy,
selecting the node with the minimum estimated total cost for
exploration. In the compiler domain, this allows global
optimization across multiple dimensions (e.g., performance,
resource use) and avoids premature convergence to local
optima—a common limitation in purely greedy methods.

D. Greedy Algorithm

 Greedy algorithms make locally optimal choices at each
step. For compiler optimization, greedy strategies are effective
when the greedy choice property and optimal substructure hold.
For instruction scheduling, the greedy priority function is:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐼) = 𝛼 × 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙_𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ(𝐼) +
𝛽 × 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝐼) +

𝛾 × 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡(𝐼)

where α, β, γ are weighting coefficients, and the algorithm
selects the instruction with maximum priority at each step.

 The greedy choice property states that a globally optimal
solution can be arrived at by making a locally optimal choice.
For register allocation, the greedy coloring heuristic assigns
colors based on:

𝑐𝑜𝑙𝑜𝑟(𝑣) = 𝑚𝑖𝑛{𝑐 ∈ 𝐶𝑜𝑙𝑜𝑟𝑠 | 𝑐 ∉ {𝑐𝑜𝑙𝑜𝑟(𝑢) |
𝑢 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣) 𝑎𝑛𝑑 𝑐𝑜𝑙𝑜𝑟𝑒𝑑(𝑢)}}

E. String Matching and Pattern Recognition

String matching algorithms enable pattern-based
optimizations by detecting recurring code sequences, which are
crucial for recognizing redundant instruction patterns or
opportunities for algebraic simplification during compilation.

A key algorithm in this domain is the Knuth-Morris-Pratt
(KMP) algorithm, which efficiently finds all occurrences of a
pattern P of length m in a text T of length n in 𝑂(𝑛 + 𝑚) time.
It works by preprocessing the pattern to construct a failure
function, also known as the border function, defined as:

𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑗) = 𝑚𝑎𝑥{𝑘 |
 𝑘 < 𝑗 𝑎𝑛𝑑 𝑃[1. . . 𝑘] 𝑖𝑠 𝑎 𝑠𝑢𝑓𝑓𝑖𝑥 𝑜𝑓 𝑃[1. . . 𝑗]}

Fig 2.2 KMP Algorithm for Pattern Searching
(Source: https://www.geeksforgeeks.org/kmp-algorithm-

for-pattern-searching/)

This avoids unnecessary re-comparisons by enabling the
pattern to shift intelligently upon mismatches. In compiler
optimization, such algorithms are used to identify algebraic
transformation patterns:

𝑅𝑢𝑙𝑒: (𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

Where pattern is the code fragment to match, replacement is the
optimized version, and condition specifies when the
transformation is safe to apply.

 Beyond KMP, more advanced string matching
techniques like Boyer-Moore are beneficial when working with
longer alphabets or large codebases due to their backward
scanning and last occurrence heuristics, enabling large shifts
upon mismatches. These properties allow faster scans over
abstract syntax trees or intermediate representations in
compilers. Integrating string matching in the compiler pipeline
facilitates dead code detection, loop invariant code motion,
peephole optimization, and macro pattern expansion. Thus,
string matching is not only an algorithmic technique but a
powerful tool for recognizing semantic equivalences and
optimization opportunities at the pattern level during code
transformation phases.

F. Computational Complexity Theory

 Computational complexity theory provides a foundation for
analyzing the efficiency of algorithms in terms of time and
space as a function of input size. This analysis is essential in
compiler optimization, where the choice of algorithm directly
affects compilation speed and scalability. Many compiler-
related tasks involve recursive or iterative decomposition of
problems (e.g., control flow traversal, register allocation),
making divide-and-conquer strategies and complexity analysis
crucial. One powerful tool for evaluating recursive algorithm
performance is the Master Theorem, which solves recurrence
relations of the form:

𝑇(𝑛) = 𝑎𝑇 (
𝑛

𝑏
) + 𝑓(𝑛)

where 𝑎 is the number of subproblems, 𝑛/𝑏 is the size of each
subproblem, and 𝑓(𝑛) is the cost of dividing and combining
subproblems.

Depending on the growth rate of 𝑓(𝑛), the Master Theorem
classifies the overall time complexity into three major cases
sublinear, linearithmic, or polynomial, offering a systematic way
to estimate algorithm efficiency. In our integrated multi-
paradigm compiler optimization framework, the complexity of
each algorithmic component is evaluated individually:

a. Control Flow Analysis: 𝑂(|𝑉| + |𝐸|) for graph construction
and traversal

b. Register Allocation (DP): 𝑂(𝑛 × 2^𝑘) where n is the
number of variables and k is the number of registers

c. Instruction Scheduling (Greedy): 𝑂(𝑚 𝑙𝑜𝑔 𝑚) where m is the
number of instructions

d. Code Generation (Branch and Bound): 𝑂(𝑏^𝑑) worst case,
where b is branching factor and d is depth, but typically much
better with effective pruning

https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/)
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

e. Pattern Matching: 𝑂(|𝑐𝑜𝑑𝑒| × |𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠|) for all pattern
applications

The overall framework complexity is bounded by:

𝑇_𝑡𝑜𝑡𝑎𝑙 = 𝑂(max {𝑇_𝑔𝑟𝑎𝑝ℎ, 𝑇_𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟,
 𝑇_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑇_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒, 𝑇_𝑝𝑎𝑡𝑡𝑒𝑟𝑛})

Since most phases can be executed in polynomial time with
effective pruning and heuristics, the integrated approach
maintains practical compilation times while achieving superior
optimization results.

III. APPROACH AND METHODOLOGY

The primary objective is to transform source code into highly
optimized machine code while preserving program semantics
and maintaining practical compilation times. The methodology
addresses the inherent interconnectedness of compiler
optimization problems through coordinated algorithmic
solutions, moving beyond traditional isolated optimization
phases to achieve superior overall performance.

A. System Architecture and Pipeline Design

Fig 3.1 System Architecture Diagram

The optimization framework follows a multi-phase pipeline

architecture where each phase leverages specific algorithmic
paradigms while maintaining data flow coordination with
subsequent phases. The system begins with lexical analysis and
parsing to construct an Abstract Syntax Tree (AST), which
serves as the primary intermediate representation throughout the
optimization process. This AST undergoes systematic
transformation through five integrated optimization phases:
control flow analysis, register allocation, instruction scheduling,
code generation, and pattern-based optimization.

The pipeline architecture ensures that optimization decisions
made in earlier phases inform and constrain later phases,
enabling global optimization strategies rather than local
improvements. Inter-phase communication occurs through
shared data structures including the control flow graph,
interference graph, dependency graph, and symbol tables,
allowing each algorithmic component to access relevant
information from previous analyses.

B. Graph-Based Control Flow Analysis

The initial optimization phase employs graph algorithms to
analyze program structure and identify optimization
opportunities. The system constructs a Control Flow Graph
(CFG) using breadth-first traversal of the AST, where each
basic block represents a maximal sequence of instructions with

single entry and exit points. Graph construction begins by
identifying basic block boundaries at branching statements,
function calls, and loop constructs.

Following CFG construction, the system applies depth-first
search to compute dominance relationships and identify natural
loops through strongly connected component detection.
Dominance analysis enables safe code motion optimizations,
while loop identification facilitates specialized loop
optimizations including invariant code motion and loop
unrolling analysis. The graph analysis phase also constructs
def-use chains through forward data flow analysis, tracking
variable definitions and uses across basic blocks to support dead
code elimination and constant propagation.

C. Dynamic Programming for Register Allocation

Register allocation employs dynamic programming to
optimally assign program variables to physical registers while
minimizing memory access overhead. The approach begins by
constructing an interference graph where vertices represent
program variables and edges connect variables with
overlapping live ranges that cannot share the same register.

The dynamic programming formulation models register
allocation as an optimal graph coloring problem with spill cost
minimization. The algorithm maintains a two-dimensional table
DP[i][mask] representing the minimum spill cost for allocating
the first i variables using the register set encoded by mask. State
transitions consider all possible register assignments for each
variable, incorporating spill costs when insufficient registers
are available.

For variables with high spill costs or extensive live ranges,
the algorithm applies live range splitting to create additional
allocation opportunities. The dynamic programming approach
guarantees optimal register allocation within each basic block
while using heuristics for global allocation across the entire
function to maintain polynomial-time complexity.

D. Greedy Instruction Scheduling

Instruction scheduling optimizes the order of operations to
minimize pipeline stalls and resource conflicts while respecting
data dependencies. The scheduling algorithm employs a greedy
approach with sophisticated priority heuristics to make locally
optimal decisions that contribute to global performance
improvements.

The system constructs a data dependency graph where
vertices represent instructions and directed edges indicate
ordering constraints including true dependencies, anti-
dependencies, and output dependencies. The greedy scheduler
maintains a ready queue of instructions whose dependencies
have been satisfied and applies a multi-criteria priority function
incorporating critical path length, resource pressure, and
instruction latency characteristics.

At each scheduling step, the algorithm greedily selects the
highest-priority ready instruction, updates the dependency
graph to mark newly satisfied dependencies, and adjusts
resource availability models. The priority function dynamically
adapts based on current resource utilization and remaining
instruction characteristics, enabling effective load balancing

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

across functional units while minimizing overall schedule
length.

E. Branch-and-Bound Code Generation

Code generation optimization employs branch-and-bound
search to explore alternative instruction sequences and register
assignments, finding optimal solutions within bounded search
spaces. The approach models code generation as a tree search
problem where each node represents a partial instruction
sequence and branches correspond to different instruction
choices or register assignments.

The bounding function estimates the minimum cost for
completing any partial solution, incorporating instruction costs,
register pressure, and memory access patterns. Upper bounds are
maintained through greedy heuristic solutions, while lower
bounds are computed using relaxed problem formulations that
ignore certain constraints. Effective pruning occurs when lower
bounds exceed current best solutions, significantly reducing the
search space.

The branch-and-bound approach particularly excels in
optimizing small, critical code sections such as inner loops or
frequently executed basic blocks where exhaustive optimization
justifies increased compilation time. For larger code sections,
the algorithm applies time-bounded search with quality
guarantees, ensuring practical compilation performance while
achieving substantial optimization improvements.

F. Pattern Matching and Algebraic Optimization

The final optimization phase applies string matching
algorithms to detect and transform common code patterns,
performing algebraic simplifications and idiom recognition.
The system maintains a comprehensive pattern database
encoding transformation rules for arithmetic identities,
redundant operations, and target-specific instruction patterns.

Pattern detection employs the Knuth-Morris-Pratt algorithm
to efficiently locate optimization opportunities within the
instruction sequence representation. Each detected pattern
undergoes safety analysis to verify that the proposed
transformation preserves program semantics under all possible
execution contexts. Valid transformations are applied
immediately, with the system iterating until no additional
patterns are detected.

Algebraic optimization includes constant folding, strength
reduction, and common subexpression elimination. The pattern
matching framework also supports target-specific
optimizations such as instruction fusion, addressing mode
optimization, and specialized instruction sequence generation
for particular processor architectures.

IV. COMPILER OPTIMIZATION

To begin the compilation process, source code is first
converted into a structured representation that can be analyzed
and optimized. This begins with lexical analysis, where the input
program is tokenized into a stream of syntactic units called
tokens. Each token includes metadata such as its type (e.g.,
identifier, number, operator), value, and location in the source.
This process is implemented in the Lexer class.

Fig 4.1 Implementation of Lexer

After tokenization, the program proceeds to parsing, where
these tokens are converted into an Abstract Syntax Tree (AST).
The AST represents the syntactic structure of the source code in
a hierarchical tree format. This phase is handled by the Parser
class, particularly through methods such as parse_program,
parse_function, parse_block, and parse_expression.

Fig 4.2 Implementation of Parser

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Once the abstract syntax tree (AST) has been constructed,
the next step in the compilation pipeline is to analyze the control
flow of the program. This is done by constructing a Control Flow
Graph (CFG), which models the logical flow of execution
between basic blocks. Each basic block is a sequence of
instructions with a single entry and exit point, and edges between
blocks represent possible jumps in control due to conditionals,
loops, or function returns.

Fig 4.3 Implementation of Control Flow Analyzer

 To support advanced optimizations such as register
allocation and dead code elimination, the compiler performs live
variable analysis, which determines which variables are "alive"
(i.e., will be used in the future) at each point in the program. This
is essential to avoid unnecessary memory writes and to
determine where registers can be safely reused.

Fig 4.4 Implementation of Analyze Data Flow

Register allocation is one of the most crucial phases in
compiler optimization. It involves assigning a limited number of
CPU registers to a potentially large number of program variables
in such a way that register reuse is maximized and memory spills
are minimized. Poor register allocation can significantly degrade
performance, as memory access is much slower than register
access. We approach register allocation using a dynamic
programming (DP) strategy. The method is designed to compute
the minimal-cost assignment of variables to registers while
avoiding conflicts due to overlapping lifetimes. This is achieved
through interference graph coloring, where each variable is a
node and an edge between two nodes indicates that the variables
cannot share a register.

Fig 4.5 Implementation of Register Allocator

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

After registers have been allocated, the next step is
instruction scheduling, which determines the order in which
instructions should be executed to maximize performance. An
ideal schedule minimizes total execution time while respecting
data dependencies and hardware constraints such as limited
functional units or pipeline hazards. Instruction scheduling is
approached using a greedy algorithm. Greedy strategies are
well-suited for scheduling problems where decisions can be
made incrementally and locally, as long as the chosen priority
function reflects global goals.

Fig 4.6 Implementation of Instruction Scheduler

 The final and most performance-critical stage of compilation
is code generation, where high-level constructs are translated
into low-level instructions. This process is complicated by the
need to balance correctness, performance, and resource usage,
especially when multiple valid instruction sequences can
represent the same computation. To address this, we implement
a branch and bound algorithm to systematically explore
instruction combinations and select the optimal one.

Fig 4.7 Implementation of Code Generator

 In addition to structural and resource-aware optimizations,
modern compilers benefit greatly from pattern-based
transformations, which identify and replace inefficient code
sequences with their more optimized equivalents. This is
particularly effective for constant folding, algebraic
simplifications, and eliminating redundant operations. In our
compiler, this is achieved using string matching algorithms,
specifically the Knuth-Morris-Pratt (KMP) algorithm for fast
pattern detection.

Fig 4.8 Implementation of Pattern Optimizer

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 To evaluate the effectiveness of the proposed multi-
paradigm optimization framework, a test program containing
redundant operations, dead code, and constant expressions was
compiled and analyzed. The original input comprised 103
instructions, which were reduced to 82 after optimization—
representing a 20.4% reduction in instruction count. This
reduction was achieved through the coordinated use of five
strategic algorithmic paradigms. Pattern-based optimization
contributed by folding 8 constant expressions and eliminating 2
dead code segments, while greedy heuristics successfully
scheduled all instructions using a priority-aware dependency
graph. The register allocation phase, handled by dynamic
programming, allocated 10 variables using 8 physical registers
without any register spills, indicating optimal resource usage.
Graph analysis detected 10 basic blocks and correctly identified
a loop in the factorial function, while branch-and-bound
explored 100 code generation sequences and efficiently pruned
suboptimal paths. As a result, the final optimized code
maintained semantic equivalence with the original but exhibited
significantly improved structural quality. These results
demonstrate that the integrated use of graph algorithms,
dynamic programming, greedy scheduling, branch and bound,
and pattern recognition enables substantial code simplification
while ensuring high performance and correctness. Optimization
was completed in 8.03 milliseconds, confirming the practical
runtime efficiency of the framework.

Fig 4.9 Unoptimized Program Test Case

Fig 4.10 Optimized Program Result

Fig 4.11 Optimized Program Evaluation

.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

V. CONCLUSION

The proposed multi-paradigm compiler optimization
framework shows that integrating various algorithmic
strategies, including graph analysis, dynamic programming,
greedy heuristics, branch and bound, and string matching, can
significantly improve the effectiveness of compiler backends.
Unlike conventional techniques that treat optimization tasks
independently, this integrated approach accounts for the
relationships between different phases, leading to better overall
performance in areas such as instruction scheduling, register
allocation, and code generation.

Each algorithmic paradigm contributes its unique strengths.
Dynamic programming ensures precision in resource
allocation, greedy methods offer efficient local decisions,
branch and bound explores global optimal solutions, and string
matching detects repetitive patterns for transformation.
Together, these strategies create a balance between
optimization quality and computational efficiency. Complexity
analysis further confirms that, with the application of heuristics
and pruning, the framework maintains practical performance
suitable for real-world compilation.

VI. APPENDIX

The source code used to implement the multi paradigm
approach to compiler optimization :

https://github.com/farrelathalla/Compiler-Optimization.git

VII. ACKNOWLEDGEMENT

The author wishes to express gratitude, first and foremost, to
Allah SWT for the guidance provided throughout the learning
process and the writing of this paper. Appreciation is also
extended to the lecturers of ITB Algoritmic Strategy IF2211,
Mr. Rinaldi Munir, Mr. Monterico Adrian, S.T., M.T., and Dr.
Nur Ulfa Maulidevi, S.T., M.Sc., for imparting their knowledge

and guiding the students during the course. Additionally, the
author is deeply thankful to family and friends for their
unwavering support throughout the semester.

REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, "Compilers: principles,
techniques, and tools," 2nd ed. Boston: Addison-Wesley, 2007, pp. 543-
612.

[2] J. Hennessy and T. Gross, "Postpass code optimization of pipeline
constraints," ACM Trans. Programming Languages and Systems, vol. 5,
no. 3, pp. 422-448, July 1983.

[3] G. J. Chaitin, "Register allocation and spilling via graph coloring," in
Proc. ACM SIGPLAN Symp. Compiler Construction, Boston, MA, USA,
June 1982, pp. 98-105.

[4] K. D. Cooper, P. J. Schielke, and D. Subramanian, "Optimizing for
reduced code space using genetic algorithms," in Proc. ACM SIGPLAN
Workshop Languages, Compilers, and Tools for Embedded Systems,
Atlanta, GA, USA, May 1999, pp. 1-9.

[5] F. C. Chow and J. L. Hennessy, "The priority-based coloring approach to
register allocation," ACM Trans. Programming Languages and Systems,
vol. 12, no. 4, pp. 501-536, Oct. 1990.

[6] D. E. Knuth, J. H. Morris, and V. R. Pratt, "Fast pattern matching in
strings," SIAM J. Computing, vol. 6, no. 2, pp. 323-350, June 1977.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Farrel Athalla Putra - 13523118

https://github.com/farrelathalla/Compiler-Optimization.git

