
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

LinkedIn Puzzle (Queens) Solver Using A star

Bob Kunanda - 13523086

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: bobkunanda@gmail.com , 13523086@std.stei.itb.ac.id

Abstract— This paper presents an implementation of the Queens

puzzle using the A* search algorithm. The puzzle is a variation of the

classic n-queens problem with additional constraints: queens must

not be placed within one cell of each other, no two queens can share

the same row or column, and each irregularly shaped area on the

board must contain exactly one queen. The board is represented

using a 2D array for placements and an area map. A* is used to

explore possible queen placements by expanding valid

configurations, helped by a heuristic function based on placement

progress. Although the A algorithm successfully finds a solution,

this paper concludes that it may not be the most suitable method

due to the puzzle’s nature as a constraint satisfaction problem

rather than a pathfinding one. A backtracking approach may be

more efficient and better aligned with the problem structure. This

project serves as an exercise in applying algorithmic techniques

and problem modeling to non-traditional search problems.

Keywords—queens puzzle; A search; constraint satisfaction;

backtracking; algorithm design

I. INTRODUCTION

The Queens puzzle is a modern logic game featured on
LinkedIn, inspired by the classic 8 Queens puzzle but with a
unique twist. While the traditional puzzle requires players to
place eight queens on a chessboard such that no two attack each
other, including diagonally the Queens puzzle removes the
diagonal restriction and introduces additional constraints like
jigsaw sudoku. Players must fill the board entirely with queens,
ensuring that no two queens are in the same row or column, that
no queen is placed within one-block radius of another, and that
each irregularly shaped area on the board contains only one
queen.

Image 1. Example of Queens Puzzle, taken from [1]

The purpose of this paper is to explore the logic and
constraints of the Queens puzzle and to apply algorithmic
knowledge to implement one or more possible solutions. By
approaching the puzzle from a computational perspective, this
study aims to deepen understanding of constraint-based
problem-solving and demonstrate how algorithm design can be
used to efficiently solve complex board-based logic challenges.

II. THEORETICAL FOUNDATION

A. A* Algorithm

The A* algorithm is a widely used pathfinding and graph
traversal technique that finds the shortest path between two
nodes in a weighted graph. It combines the strengths of UCS
algorithm and greedy best-first search by considering both the
actual cost to reach a node and the estimated cost to reach the
goal from that node. This is achieved using a heuristic function,
making A* both complete and optimally efficient under certain
conditions.

Formally, A* uses the following evaluation function for each
node n:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

Where:

𝑔(𝑛) = is the actual cost from the starting node to the current
node n,

ℎ(𝑛) = is the heuristic estimate of the cost from n to the goal
node,

𝑓(𝑛) = is the total estimated cost of the cheapest solution
through n.

In the context of this implementation, each board state is
treated as a node. The cost g(n) is represented by the variable
step, which indicates how many queen placements have been
made so far. The heuristic h(n) is represented by filled_count,
which tracks how many cells have been marked) to estimate
progress toward completing the board.

The custom priority logic is implemented in the __lt__()
method of the Board_state class as follows:

mailto:bobkunanda@gmail.com
mailto:13523086@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Image 2. Heuristic for Prioqueue Function, taken from [2]

This function defines the comparison rule used by Python’s
heapq module, which manages the open set as a priority queue.
Since heapq is a min-heap, the comparison is inverted using > to
simulate a maximizing function giving higher priority to states
with a higher combined score of progress and path cost. This
inversion ensures that board states that are closer to a complete
and valid configuration are expanded earlier.

By defining f(n) in this way, the algorithm effectively
prioritizes board states that are not only closer to the goal but
also progressing steadily through legal placements. While the
heuristic is simple, it is admissible and consistent, which
maintains the correctness of the A* algorithm in this context.

III. RELATED WORK

Image 3. N-Queens Problem , taken from [3]

The Queens puzzle presented in this paper is inspired by the

classical N-Queens problem, a well-known combinatorial

challenge in computer science and artificial intelligence. The

original N-Queens problem requires placing 𝑛 queens on an

𝑛 × 𝑛 chessboard such that no two queens threaten each other.

This includes avoiding conflicts in rows, columns, and both

diagonals. Numerous solutions have been proposed for the N-

Queens problem, most notably backtracking algorithms, which

systematically explore the solution space and prune invalid

configurations early.

Beyond backtracking, several studies have applied constraint

satisfaction problem frameworks to the N-Queens problem.

These approaches use constraint propagation techniques such as

forward checking and arc consistency to reduce the number of

viable assignments at each step. Such techniques are particularly

effective for problems where domain reduction plays a

significant role in pruning the search tree.

The Queens puzzle implemented in this work introduces an

added layer of complexity by incorporating irregular jigsaw-like

regions, each of which must contain exactly one queen, as well

as a proximity restriction that forbids any queen from being

placed within a one-cell radius of another. These modifications

transform the problem into a hybrid between the N-Queens

puzzle and jigsaw Sudoku, where positional constraints are

different by area.

IV. METHOD

To solve the Queens puzzle, this study utilizes the A*
algorithm as a method for finding a valid and complete queen
placement configuration under a set of constraints. A* is chosen
due to its ability to efficiently explore the state space using a
combination of actual cost and heuristic estimates to guide the
search toward optimal or feasible solutions.

Each state in the search space represents a partially filled
board, where some queens have already been placed. The goal
is to reach a final state where the board is fully filled with
queens, while satisfying all three of the puzzle’s constraints: no
two queens share the same row or column, no queen is within a
one-block radius of another, and each irregular area contains
exactly one queen.

A. State Representation

Queens puzzle board is represented using a two-dimensional
array of characters, where each cell corresponds to a square on
the puzzle grid. The array structure allows for efficient access,
modification, and checking of queen placements during the
search process.

To represent the irregular area grouping required by the
puzzle, a separate two-dimensional integer array is used. Each
cell in this array contains a number indicating the area to which
that cell belongs. For example, the area configuration:

Image 4. Example of Board Representation , taken from [2]

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Image 5. Original Board , taken from [1]

The main board used during A* execution is a character-
based 2D array with the following symbol conventions:

• 'Q' denotes a cell currently occupied by a queen,

• 'X' represents a forbidden cell (due to proximity or
conflict),

• '.' or ' ' (space) denotes an empty, available cell.

By combining these two data structures, one for the queen
placements and one for the area labeling the algorithm can
efficiently check constraint violations, calculate heuristic values,
and generate successor states.

B. Constraints Handling

 In the implementation of the Queens puzzle solver using the
A* algorithm, constraints are enforced through a combination of
board updates and validation checks defined within the
Board_state class. Each candidate queen placement undergoes
multiple checks to ensure it complies with the puzzle's rules
before the resulting state is expanded and added to the priority
queue. The main constraints are as follows:

 The three core constraints are handled as follows:

1) Row and Column Exclusivity

Image 6. is_valid_placement function , taken from [2]

 To ensure that no two queens occupy the same
row or column, the is_valid_placement() method
checks the entire row and column of the candidate cell
for any existing queens. If a queen is found, the method
returns False, disallowing the move.

2) One-Block Radius Rule

Image 7. place_queen function, taken from [2]

 After placing a queen using the place_queen()
method, the surrounding 8 adjacent cells (both
diagonally and orthogonally) are marked as "X" to
indicate that they are no longer valid for future queen
placement. This prevents violations of the one-cell-
radius rule.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

3) One Queen per Area

Image 8. is_valid_area function , taken from [2]

 Each cell belongs to a specific irregularly shaped area,
represented by the Area class. The get_area_id() function
maps a coordinate to its area. After a queen is placed, all
other cells in the same area are marked "X" to ensure that
only one queen is ever placed in that area. The
is_valid_area() method checks that an area has not been fully
blocked before attempting to place a queen in it, thus
enforcing this constraint during search expansion.

4) Validity Checks for State Expansion

Before a state is accepted into the A* queue:

a) is_valid_placement() ensures the move
doesn’t violate any rules at the point of
placement.

b) is_valid_area() ensures that placing a queen in
the target area won’t make it impossible to
solve (i.e., fully block the area).

c) is_valid_board() can be used as an extra check
to ensure global consistency when needed.

 Additionally, the number of queens placed is tracked
with get_queen_count(), and filled_count is used as part of
the priority queue comparison logic via the __lt__() method
to guide the A* search.

 Together, these constraint mechanisms ensure that only
legal and promising states are expanded, significantly
reducing the search space and allowing A* to converge more
efficiently toward a valid solution.

C. Heuristic Function

In the A* search algorithm, the heuristic function ℎ(𝑛) plays
a crucial role in guiding the search toward promising board
configurations. It provides an estimate of the cost from the
current state n to a goal state, allowing the algorithm to prioritize
more favourable paths.

For the Queens puzzle, the goal is to place a queen in every
area while satisfying all placement constraints. To reflect this,
the heuristic function is designed to estimate the number of
placements remaining and potential constraint violations that
may occur as the board fills.

In this implementation, the heuristic is implicitly encoded
using the filled_count and step variables in the Board_state
class. The filled_count represents the number of valid
placements on the current board, while step represents the
number of moves made so far.

The priority queue (min-heap) used by the A* algorithm
orders board states based on the following evaluation function:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

Where:

𝑔(𝑛) = step is the actual cost from the start state to the
current state,

ℎ(𝑛) = filled_count is used as a heuristic estimate of how
close the board is to being complete.

This means that the algorithm prioritizes states that have
more queens successfully placed, while also considering how
many moves have been made to reach that state.

D. Successor State Generation

 In the A* search algorithm, generating successor states is a
key step in exploring the search space. For the Queens puzzle,
each successor state represents a new board configuration that
results from placing an additional queen in a valid position. The
quality and efficiency of this process directly influence the
overall performance of the algorithm.

 In this implementation, successor states are generated by
iterating through all available cells on the board and attempting
to place a queen in each one. The place_queen() method is
responsible for updating the board when a valid placement is
found, while preserving the problem's constraints.

Image 9. Main Algorithm , taken from [2]

Steps to Generate Successors:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

1) Iterate Through the Board
The algorithm examines each cell in the 2D array to
determine whether it is empty (i.e., not marked with 'X'
or 'Q').

2) Constraint Checking
For each candidate cell, the is_valid_placement()
function is called to verify that placing a queen would
not violate the following rules:

a) No other queen exists in the same row or
column.

b) The cell is not already marked as 'X’.

3) Area Validation
If the basic constraints pass, the get_area_id() function
retrieves the area ID of the candidate cell. The
is_valid_area() function is then used to check whether
a queen has already been placed in that area. If the area
already contains a queen, the cell is skipped.

4) State Creation
If all checks pass, a deep copy of the current
Board_state object is made. The queen is placed on the
copied board using place_queen(), which also marks
forbidden cells. The new state is then added to the A*
open set for further evaluation.

5) Priority Evaluation
The new board state's priority is calculated based on the
combined value of filled_count and step. The priority
queue automatically orders these states using the
custom __lt__() method.

E. End State

 The end state in the Queens puzzle represents a fully
completed board configuration where all constraints are satisfied
and no further queen placements are required. Determining
whether a board has reached a valid end state is a critical step in
the A* algorithm, as it serves as the stopping condition for the
search process.

 A board is in an end state if the following conditions
are met:

1) All areas contain exactly one queen
The total number of queens placed on the board must
equal the number of unique area regions. Each area is
checked to ensure that it contains exactly one queen
and that no conflicting placements exist within that
region.

2) No two queens threaten each other
This includes validation that:

a) No queens share the same row or column,

b) No queen is placed within a one-cell radius of
another queen,

3) No empty or unprocessed spaces remain
All non-queen cells on the board must either be marked
as forbidden ('X') or belong to a region that already

contains a queen. If any empty cell (' ') remains in a
region without a queen, the state is considered
incomplete.

Image 10. is_finish function, taken from [2]

 This validation is handled programmatically by the
is_finish() method in the Board_state class, which performs
a final consistency check over rows, columns, regions, and
cell contents. Only when all these checks pass is the current
board configuration accepted as a valid solution

V. CONCLUSION

This paper presented an approach to solving the Queens
puzzle using the A* search algorithm, adapted to accommodate
unique constraints such as one-queen-per-area, no queens in the
same row or column, and a one-cell radius restriction. By
modelling the puzzle as a state-space search problem, A* was
used to efficiently explore valid configurations through a
combination of actual cost (number of moves made) and
heuristic estimation (progress toward completion).

The algorithm successfully finds valid queen placements by
expanding only those states that satisfy all given constraints.
Object-oriented design, such as the use of Area and Board_state
classes, ensured modular, readable, and extensible code that can
easily support further enhancements.

However, although the implementation using A* works as
intended, it is not necessarily the most optimal algorithm for this
specific problem. Unlike traditional pathfinding tasks where the
sequence of steps matters, the Queens puzzle is fundamentally a
placement and constraint satisfaction problem. Since the path
taken is irrelevant as long as the final configuration is valid a
backtracking approach may be more natural, efficient, and easier
to reason about. Backtracking directly explores valid
configurations recursively, pruning invalid paths early without
the need for heuristic estimation or priority queues.

In conclusion, while this implementation demonstrates how
classical search algorithms like A* can be applied to constraint-
heavy logic puzzles, future work could explore and compare
other strategies such as backtracking or constraint propagation
to improve performance and simplicity.

VIDEO LINK AT YOUTUBE

https://youtu.be/15a62zyToXQ

https://youtu.be/15a62zyToXQ

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

ACKNOWLEDGMENT

I would like to express my sincere gratitude to God for His
guidance and strength throughout the completion of this paper. I
am deeply thankful to my family for their constant support,
encouragement, and belief in my academic journey. I also
extend my heartfelt appreciation to my lecturers Dr. Ir. Rinaldi
Munir, M.T and Dr. Nur Ulfa Maulidevi, S.T, M.Sc., whose
expertise and dedication in the fields of algorithms and artificial
intelligence have been a constant source of inspiration. Special
thanks to my friends and peers, whose discussions, feedback,
and shared moments of problem-solving greatly enriched the
development of this work. Lastly, I hope this paper serves as a
useful contribution to the study of algorithms and puzzle-solving
and encourages further exploration into the creative applications
of classical techniques like A* in modern problem spaces.

REFERENCES

[1] LinkedIn, “Queens,” LinkedIn Games, 2024. [Online]. Available:
https://www.linkedin.com/games/queens/. [Accessed: Jun. 20, 2025].

[2] B. Kunanda, “Queens Solver Using A*,” GitHub, 2025. [Online].
Available:
https://github.com/BobSwagg13/Queens_Solver_Using_ASTAR.
[Accessed: Jun. 20, 2025].

[3] GeeksforGeeks, “N-Queen Problem | Backtracking-3,” [Online].
Available: https://www.geeksforgeeks.org/dsa/n-queen-problem-
backtracking-3/. [Accessed: Jun. 20, 2025].

[4] R. Munir, “Route Planning and A* Algorithm,” Strategi Algoritma,
Institut Teknologi Bandung, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-
Route-Planning-(2025)-Bagian2.pdf. [Accessed: Jun. 20, 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 21 Juni 2025

Bob Kunanda 13523086

https://www.linkedin.com/games/queens/
https://github.com/BobSwagg13/Queens_Solver_Using_ASTAR
https://www.geeksforgeeks.org/dsa/n-queen-problem-backtracking-3/
https://www.geeksforgeeks.org/dsa/n-queen-problem-backtracking-3/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf

