
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

InpoCache: Indexed Prompt Caching for Efficient

LLM Query Serving

Muhammad Ghifary Komara Putra - 13523066

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: m.ghifary.k.p@gmail.com , 13523066@std.stei.itb.ac.id

Abstract—Large Language Models (LLMs) are the center of

many modern AI applications, such as chatbots and virtual

assistants. However, their use often incurs high latency and

computational costs due to redundant API calls for semantically

similar queries. To address this inefficiency, we propose

InpoCache, an indexed prompt caching system designed to

reduce the lookup latency of LLM responses using lightweight

indexing schemes, including binary search trees (BSTs) by query

length, top-n k-means clustering based on embeddings, and K-D

trees. Experimental results across multiple datasets demonstrate

that the best-performing method of InpoCache, that is the K-D-

tree based indexing, consistently records the lowest average

latency while maintaining high accuracy with no false positive

results, that is, 93.83 ms with 97.33% accuracy on a dataset with

1503 entries. Furthermore, compared to unindexed sequential

search, all proposed indexing schemes significantly reduce

lookup time while maintaining a high accuracy, no lower than

90%.

Keywords—binary search tree, indexing, k-d tree, k-means

clustering, prompt caching, sequential search

I. INTRODUCTION

Large Language Models (LLMs) have become an important
part of modern AI applications due to their ability to
comprehend and generate human-like text. They are used in
several systems such as chatbots, virtual assistants, and
customer support systems to provide relevant responses given
some user queries. Despite the advancements of LLMs, a
significant challenge arises from the need to make individual
API calls to the LLM for each user query. This process can be
costly and time-consuming [1]. Beyond that, it can be
redundant for cases where the LLM deals with large volumes
of similar and repetitive semantically similar questions. Picture
a programming assistant chatbot. A user might ask similar
questions to the chatbot over time, e.g. “How to push to a
different branch to git?” or “How to center a div inside another
div?”.

To address the inefficiency, various methods have been
proposed to cache LLM responses, such as developing more
reliable semantic embedding methods and improving the
efficiency of decoding via speculative sampling [1, 2, 3]. The
aforementioned work focuses more on embedding and token
generation methods. On the other hand, InpoCache will
complement those works by focusing more on reducing latency

in the cache lookup process. This is done by designing an
indexed prompt caching system based on the query and its
embedding vector.

We propose InpoCache, an indexed prompt caching system
that stores historical LLM queries, its embedding vectors, and
corresponding responses in several simple and lightweight
indexing schemes rather than naively inserting it into the cache.
This means that we can perform cache lookup in a more time-
efficient manner while still maintaining the accuracy of the
resulting cached responses. This paper will explore three main
indexing schemes, that are indexing by a binary search tree
(BST) based on query length, indexed by top-n k-means
clusters, and indexed by a K-D Tree based on the embedding
vector of the query. This approach hopes to achieve better
average lookup latency compared to sequential search on an
unindexed cache or, in the worst case, achieve results no worse
than that baseline.

II. THEORETICAL FRAMEWORK

A. Indexing

Indexing in the context of Database Management System
(DBMS) refers to the process of creating a copy of specific
columns or fields from a database and organizing them into a
separate structure, making the process of searching and
retrieving data in databases quicker and more efficient. Several
types of such structures include tree-like data structures and
hash-like data structures. Indexing is used on tables with a high
volume of data and frequent access patterns, making it a worth
trade-off between lookup latency and overhead computation of
inserting new entries into the database [4].

B. Prompt Caching

Prompt caching is an optimization technique used in Large
Language Model (LLM) applications to temporarily store
frequently used information between API calls and the model
provider. Prompt caching reduces the cost and latency of
LLMs, making it more efficient in handling repetitive content.
This is achieved by evaluating similarity between user input
queries and the information stored in the cache and reusing
similar information to reduce the need of process identical
queries multiple times [5]. A more detailed process on prompt
caching mechanism can be presented as a flowchart in Fig. 1
below.

mailto:m.ghifary.k.p@gmail.com
mailto:13523066@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig 1. LLM Prompt Caching Flowchart

Other than reducing cost and latency, prompt caching also
provides several other benefits, including scalability, resource
and energy efficiency, security and privacy, and enhanced user
experience. Several real-world LLM applications that often
utilize prompt caching include conversational agents, coding
assistants, and large document processing [5].

C. Sequential Search

Sequential search is a basic brute force searching algorithm
that works by comparing every element in a dataset (array,
database entries, etc.) with the value to be searched. This
searching algorithm provides a simple and direct way of
searching for an element inside a given dataset, making it often
used as a performance benchmark for more efficient searching
algorithms. With its O(n) time complexity, it is also still an
efficient searching algorithm for smaller datasets [6].

D. Binary Search Tree

Fig 2. Balanced Binary Search Tree

Binary search tree (BST), also known as ordered binary
tree, is a tree-based data structure in which each node has no
more than two child nodes, where each child is either a leaf or
the root of another binary search tree. The left subtree contains
nodes with values less than the parent node while the right
subtree contains nodes with values greater than the parent
node. A more improved version of BST is the balanced binary
search tree, where all the nodes are evenly distributed
throughout the tree [7].

A balanced binary search tree has a unique property, that
searching for an element inside the tree can be done in a
binary-search-like fashion, making it an efficient searching
method with O(log n) time complexity, far better than
sequential search on a large dataset. This is done by only
searching the promising child node while skipping the other,
thus halving the number of elements to be searched on each
iteration. Notice that this is essentially a decrease-and-conquer
algorithm, where the problem is reduced to several smaller
subproblems (decrease) and only some of them are processed
to obtain the solution (conquer) [8].

E. K-Means Clustering

Fig 3. K-Means Clustering Visualization with circles as data

points, different colored circles representing different clusters,

and blue diamonds representing the clusters’ centroid

Source: https://medium.com/@jwbtmf

 K-means clustering is an unsupervised learning algorithm
used for data clustering, which groups unlabeled data into
clusters. It is a centroid-based clustering algorithm that
partitions a dataset into similar groups based on the distance
between the centroids, that is, the center of the cluster that can
be obtained using the mean or median of all the points inside a
cluster or other metrics relevant to the characteristics of the
data. For further explanation, k-means clustering works by
selecting the number of clusters the dataset will be divided into
(k), creating the initial centroids based on some sampling
methods, and assigns each data point to its closest centroid
based on a distance metric (e.g. euclidean distance or cosine
similarity) and updating the centroids on each iteration [9].

F. K-D Tree

K-dimensional tree, also known as K-D tree, is a space-
partitioning data structure for organizing data points in a k-
dimensional space. It functions similarly to a binary search tree
with each node representing data in a multidimensional space.
The data structure was developed by Jon Bentley in 1975 as a
method to store spatial data with accomplishing three main
criteria: nearest neighbor search, range queries, and fast lookup
[10]. Insertion in K-D tree, using two-dimensional space (x, y)
for simplification, works as follows:

1. Traverse the K-D tree from the root node at depth 0.

2. If we are on an even-depth node, compare the x-value
of the current root node and the inserted value. If the x-
value of the inserted value is higher, continue the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

lookup to the right subtree. Otherwise, continue the
lookup to the left subtree.

3. If we are on an odd-depth node, compare the y-value
of the current root node and the inserted value. If the y-
value of the inserted value is higher, continue the
lookup to the right subtree. Otherwise, continue the
lookup to the left subtree.

4. Repeat step 2 and 3 until there’s no more subtree to
evaluate. The inserted value becomes a new leaf node
inside the K-D tree

Fig 4. K-D Tree Visualization

Source: opendsa-server.cs.vt.edu/ODSA/Books/Everything/
html/KDtree.html

Searching in K-D tree also works in a similar way to a
binary search tree, that is by traversing the tree and comparing
x-value on even-depth nodes or the y-value on odd-depth
nodes. This provides a decrease-and-conquer approach of
searching, much more efficient than sequential search, with
time complexity ranging from O(log n) to O(n) depending on
the resulting K-D tree [10].

G. Confusion Matrix

A confusion matrix, also known as an error matrix, is a
method for comparing the classification predicted by a system
with the actual classification results. It is a metric to evaluate
the performance of a classification model. In a confusion
matrix, results are divided into four categories: true positive (a
positive case that is correctly predicted), true negative (a
negative case that is correctly predicted), false positive (a
negative case that is incorrectly predicted as positive), and false
negative (a positive case that is incorrectly predicted as
negative) [11]. This provides a metric that shows how a
classification model behaves when making predictions. It
doesn’t just indicate the number of errors, but also the types of
errors the model makes.

III. INPOCACHE

This section describes how InpoCache works, focusing
mainly the indexing schemes and lookup algorithms that are
being developed and are being explored. These schemes and
algorithms include no indexing with sequential best-first
search, query-length-based indexing with adjusted binary best-
first search on balanced BST, query-embedding k-means
clusters indexing with top-n clusters sequential search, and K-
D-tree-based-indexing with K-D tree search.

A. No Indexing with Sequential Best-First Search

Caching with no indexing and sequential best-first search
acts as a benchmark for other caching schemes. A better
caching scheme should, in theory, perform faster cache lookup
on average than this method. This method returns the first entry
from the cache that is semantically similar to the given query
that exceeds a cosine similarity threshold. Notice that this
method will not always return the best query from the cache
since there’s no guarantee that the first found entry is the best
one in the entire cache. It can also be represented in the
pseudocode shown in Algorithm 1.

Algorithm 1. Sequential Best First Search

Input : embedding_model, cache_data, query, threshold

Output: best-first query from cache (if exists)

1: query_embedding <- embedding_model.encode(query)

2: For each entry in cache_data do

3: sim <- cosine_similarity(query_embedding,

 entry.embedding)

4: if sim >= threshold then

5: return entry.question

6: return Null

B. Query-Length-Based Indexing with Adjusted Binary Best-

First Search on Balanced BST

 Caching with query-length-based indexing and adjusted
binary best-first search on balanced BST works by storing the
cache based on the length of the query and constructing a
balanced BST of query lengths based on the cache dataset.
Cache lookup is performed by traversing the BST in a binary
search manner. If there is no cache hit by the end of the binary
search, the algorithm backtracks to the parent node and
continues the searching on the other subtree. This ensures that
the search method achieves accuracy close to sequential search
while maintaining a lower average latency. The search
algorithm is also be represented in the pseudocode shown in
Algorithm 2.

Algorithm 2. Adjusted Binary Best-First Search on Balanced
BST

Input : embedding_model, sorted_cache_data, query, tree,

threshold

Output: best-first query from cache (if exists)

 1: query_embedding <- embedding_model.encode(query)

 2: query_length <- length(query)

 3: stack <- [tree]

 5:

 6: while stack is not empty do

 7: node <- stack.pop()

 8: if node is Null then

 9: continue

10:

11: left <- node.start_index

12: right <- node.start_index + node.count

13: if query_length = node.value then

14: visited_equal_node <- true

15: for each entry in sorted_cache_data[left:right]do

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

16: sim <- cosine_similarity(query_embedding,

 entry.embedding)

17:

18: if sim >= threshold then

19: return entry

20:

21: if query_length > node.value then

22: stack.push(node.left)

23: stack.push(node.right)

24: else

25: stack.push(node.right)

26: stack.push(node.left)

27:

28: visited_equal_node <- (node.value = query_length)

29: if not visited_equal_node and query_length !=

 node.value then

30: for each entry in sorted_cache_data[left:right]do

31: sim <- cosine_similarity(query_embedding,

 entry.embedding)

32: if sim >= threshold then

33: return entry.question

34:

35: return Null

C. Query-Embedding K-Means Clusters Indexing with Top-n

Clusters Sequential Search

 Caching with query-embedding k-means clusters indexing
with top-n clusters sequential search works by storing the k-
means clusters and centroids for the cache dataset and doing
the cache lookup using sequential search only within clusters
whose centroids are semantically similar to the given query.
Though it retains the O(n) time complexity, on a small to
medium sized dataset, this method aims to perform better than
non-indexed sequential search. The search algorithm is also
represented in the pseudocode shown in Algorithm 3.

Algorithm 3. Top-n Clusters Sequential Search

Input : embedding_model, cache_data, query, centroids,

cluster_map, threshold, top_n_clusters

Output : best-first query from top-N clusters (if

exists)

 1: query_embedding <- embedding_model.encode(query)

 2:

 3: centroid_sims <- empty list

 4: for each centroid in centroids do

 5: sim <- cosine_similarity(query_embedding,

 centroid)

 6: append sim to centroid_sims

 7:

 8: ranked_clusters <- indices of centroids sorted by

 similarity descending

 9: top_clusters <- first top_n_clusters elements of

 ranked_clusters

10:

11: for each cluster_id in top_clusters do

12: for each row_index in cluster_map[cluster_id] do

13: row <- cache_data[row_index]

14: sim <- cosine_similarity(query_embedding,

 row.embedding)

15: if sim >= threshold then

16: return row.question

17:

18: return Null

D. K-D-Tree-Based-Indexing with K-D Tree Search

 Caching with K-D-tree-based-indexing with K-D tree
search works by generating a K-D tree of the cache dataset and
performing the cache lookup based on said tree. This provides
a time complexity ranging from O(log n) to O(n), depending on
the resulting K-D tree. The searching algorithm is also
represented as the pseudocode shown in Algorithm 4.

Algorithm 4. K-D Tree Search

Input : embedding_model, cache_data, query, kdtree,

threshold

Output : nearest query from cache (if within distance

threshold)

 1: query_embedding <- embedding_model.encode([query])

 2: distances, indices <- kdtree.query(query_embedding)

 3:

 4: best_distance <- distances[0][0]

 5: best_index <- indices[0][0]

 6:

 7: if best_distance > threshold then

 8: return Null

 9:

10: best_row <- cache_data[best_index]

11: return best_row.question

IV. EXPERIMENTS

This section describes the experiments conducted to test the
performance of different indexing schemes and search
algorithms in InpoCache. We first introduce the datasets used
to simulate the cache and the preprocessing appliedto those
datasets in Section A. Tthen, in Section B, we present the
testing scheme, including the performance metrics that are
being used and how the testing dataset was developed.
Furthermore, the results of the experiments are shown and
discussed in Chapter V.

A. Cache Dataset Collection and Preparation

 This experiment uses two main datasets, that are a chatbot
question-answer dataset [12] and a scientific question-
answering dataset [13], commonly used for developing chatbot
and information retrieval systems, respectively. The question-
and-answer pairs from these datasets are stored in a new CSV
file, simulating the cache. To optimize the caching system,
additional information is added to each entry of the cache, that
is the length of the question, the embedding vector of the
question, and the k-means cluster id of the question’s
embedding vector. This paper utilizes embedding system from
SBERT due to its reliability and open-source nature.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Futthermore, to evaluate InpoCache’s performance on datasets
of different sizes, the final simulated cache includes the chatbot
dataset (503 entries), scientific question-answering dataset
(1000 entries) and combined dataset (1503 entries). The
resulting dataset can be accessed via the Github repository
listed in Appendix A.

B. Testing Scheme

There are two main evaluation metrics used to assess the

performance of InpoCache. The first metric is latency or

average lookup time. An acceptable indexing scheme should

perform no worse on average than an unindexed sequential

search. The second metric is accuracy, which refers to whether

the caching system returns the correct cache hit or miss given

a query. Specifically, accuracy is represented using a

confusion matrix which informs the percentage of true

positives, true negatives, false positives, and false negatives.

In this context, a false positive means an incorrect result due

to returning an unrelated cache entry, while a false negative

means a relevant entry was not returned. This distinction is

important because, in prompt caching systems, we may

tolerate a missed hit (false negative) more than an incorrect hit

(false positive). Therefore, a higher accuracy rate and lower

false positive and false negative rates define the quality of

InpoCache’s caching system.
 To ensure the caching system performs well on a broad
range of query types, the testing dataset is divided into three
main categories: exact matc, semantically matc, and random
datasets. The exact match dataset is taken from samples of the
cache dataset, using entries from evenly spaced indices to
generate a fair benchmark for the unindexed sequential search

method. The semantic match dataset contains queries with
semantically similar meaning to those in the exact dataset.
Finally, the random dataset consists of random unrelated
queries to evaluate whether the cache incorrectly returns a
result. Both the semantic and random match datasets are
generated synthetically. The resulting datasets can be accessed
via the Github repository listed in Appendix A.

 The testing is conducted by measuring the time taken and
the accuracy of each cache dataset with its corresponding exact
match, semantic match, and random test datasets. For each
query from the test dataset, the searching is performed five
times to account for performance variability across iterations,
resulting in an average latency that accurately reflects it actual
performance. The testing uses a 0.9 cosine similarity threshold
and 0.5 euclidean distance threshold for the K-D Tree.

 The implementation is done in Python and Jupyter
Notebook due to their extensive support for data processing
libraries. The source code for the indexing and algorithm
implementation, as well as the testing scheme and results, can
be accessed via the Github repository listed in Appendix A.

V. RESULTS AND ANALYSIS

A. Results

Based on the datasets and testing scheme in Chapter IV,

the results of the experiments are shown on Table 1. TP, TN,

FP, and FN are notations for true positive, true negative, false

positive, and false negative respectively. Furthermore, method

A, B, C, and D represents indexing schemes and search

algorithms in the same order as presented in Chapter III.

Table 1. Experiment Results

Dataset Method
Latency (ms) Accuracy (%)

Average Min Max Std. TP+TN TP TN FP FN

Chatbot

A 163.28 63.78 274.05 56.48 98.18 36.36 61.82 1.82 0

B 157.85 52.22 273.70 76.52 100.00 28.18 61.82 0 0

C 118.19 59.13 172.49 22.69 96.36 34.55 61.82 1.82 1.82

D 107.78 52.25 173.42 34.61 100.00 38.18 61.82 0 0

Scientific
Question

Answering

A 233.76 87.58 320.35 55.10 93.33 50.67 42.67 0 6.67

B 196.38 60.10 342.83 108.25 93.33 50.67 42.67 0 6.67

C 124.00 66.43 108.25 26.47 92.00 49.33 42.67 0 8.00

D 103.88 49.96 26.47 26.45 96.00 53.33 42.67 0 4.00

Combined

A 299.21 99.19 398.92 69.57 91.33 38.67 52.67 1.33 7.33

B 271.98 89.39 422.50 114.05 92.67 40.00 52.67 0 7.33

C 132.92 78.82 196.36 26.27 90.00 37.33 52.67 1.33 8.67

D 93.83 41.51 166.46 33.79 97.33 44.67 52.67 0 2.67

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Latency Analysis

Based on the results shown in Table 1, across all datasets,

method D, which is K-D-tree-based-indexing with K-D tree

search, consistently achieves the lowest average latency. For

instance, in the Chatbot dataset, it records an average latency

of 107.78 ms, outperforming all other methods. This trend

holds in both the Scientific Question Answering dataset and

the Combined dataset, showcasing the scalability of this

method. Furthermore, method D produces more consistent

results across datasets of different sizes, unlike other methods

which show an increased average latency on larger datasets.

As a side note, method C, which is query-embedding k-

means clusters indexing with top-n clusters sequential search,

demonstrates the lowest standard deviation of latency across

datasets, indicating more stable and consistent performance,

albeit with a slightly higer average latency than method D.

It is also important to note that every proposed indexing

scheme and search algorithm for InpoCache, namely method B

through D, performs better than the benchmark (method A) in

terms of latency across all datasets, making them all acceptable

and effective caching systems.

C. Accuracy Analysis

Based on confusion matrix accuracy shown in Table 1,

across all datasets, method D, which is K-D-tree-based-

indexing with K-D tree search, achieves the highest or near-

highest accuracy scores. it reaches 100% accuracy alongside

method B on the Chatbot dataset, 96% accuracy on the

Scientific Question Answering Dataset with no false positives,

and 97.33% accuracy on the Combined dataset, also with no

false positives.

It is also important to notice that all proposed indexing

scheme and search maintain highly acceptable accuracy across

all datasets, with the lowest accuracy recorded at 90%.

Furthermore, each method tends to return false negatives rather

than false positives, which aligns with the intended behavior of

the caching system. Additionally, the few false positives

returned during the cache lookup are still considered

acceptable, as the retrieved query remain semantically similar

to the intended one, as illustrated in Appendix B.

VI. CONCLUSION

In this paper, we introduce InpoCache, an efficient prompt

caching system for Large Language Models that leverages

lightweight indexing techniques to improve cache lookup

performance. Unlike prior work that focuses on embedding

generation and token decoding efficiency, InpoCache

addresses the bottleneck of cache retrieval latency.

Through experiments on several datasets. We found that all

three proposed indexing methods, which are query-length-

based binary search, embedding-based top-n k-means

clustering, and K-D-tree-based indexing, outperforms the

sequential search baseline in terms of latency. Among said

methods, the K-D-tree-based indexing consistently

demonstrated the lowest average latency across datasets while

achieving high accuracy and zero false positives in most cases.

Moreover, the observed false negatives were more common

than false positives, which is a favorable property for caching

systems that prioritize precision. Even in cases of false

positives, the retrieved responses remained semantically

relevant.

In summary, InpoCache provides a practical and effective

solution for accelerating LLM-based applications. Future work

may focus ondeveloping a ready-to-deploy pipeline for

InpoCache, exploring more sophisticated indexing methods

such as vector databases, or designing an entirely new indexing

schemes or embedding techniques.

VII. APPENDIX

A. Appendix A

The cache datasets, testing datasets, and the full source

code of the experiment can be found on this Github repository:

https://github.com/Nuetaari/InpoCache

B. Appendix B

The following figure shows the false positive results

retrieved by InpoCache (represented by actual result).

Query: How does the local beam search operate?

Intended Result: How does the local beam search operate?

Actual Result: What is a local beam search?

Query: What is the distinction of the search tree

from the state space?

Intended Result: What is the distinction of the search tree

from the state space?

Actual Result: What is the distinction of the state space

from the search tree?

Query: How is a search tree different from the

state space?

Intended Result: What is the distinction of the search tree

from the state space?

Actual Result: What is the distinction of the state space

from the search tree?

ACKNOWLEDGMENT

The author of this paper would like to express his gratitude

to Allah Swt. for His blessing and guidance throughout the

experiment and writing process of this paper. Furthermore, the

author would also like to thank the course’s (IF2211) lecturers,

mainly Dr. Ir. Rinaldi Munir, M.T., who provided abundant

learning resources and opportunities for his students, including

the author. Lastly, the author would like to thank his family for

their unconditional support and encouragement for the author

throughout his academic journey.

REFERENCES

[1] Sajal Regmi et al., “GPT Semantic Cache: Reducing LLM Costs and
Latency via Semantic Embedding Caching,” in https://arxiv.org,

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

December 9, 2024. [Online]. Available: https://arxiv.org/abs/2411.05276
[Acessed: June 24, 2025]

[2] Hanlin Zhu et al., “Efficient Prompt Caching via Embedding Similarity,”
in https://arxiv.org, February 2, 2024. [Online]. Available:
https://arxiv.org/abs/2402.01173 [Accessed: June 24, 2025]

[3] Luis Gaspar Schroedder et al., “Adaptive Semantic Prompt Caching with
VectorQ,” in https://arxiv.org, May 27, 2025. [Online]. Available:
https://arxiv.org/abs/2502.03771v3 [Accessed: June 24, 2025]

[4] Jeremy Savage, “An Introduction to Database Indexing,” in
medium.com, May 17, 2025. [Online]. Available:
https://medium.com/@jwcsavage/an-introduction-to-database-indexing-
138ac99d4b83 [Accessed: June 24, 2025]

[5] Conor Kelly, “Prompt Caching: Reducing latency and cost over long
prompts,” in humanloop.com, October 2, 2024. [Online]. Available:
https://humanloop.com/blog/prompt-caching [Accessed: June 24, 2025]

[6] Rinaldi Munir, “Algoritma Brute Force (Bagian 1),” IF2211 Strategi
Algoritma – Semester II Tahun 2024/2025, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/02-
Algoritma-Brute-Force-(2025)-Bag1.pdf [Accessed: June 24, 2025]

[7] Gabriel Batista, “A Look Into Binary Search Trees,” in medium.com,
December 2, 2018. [Online]. Available: https://medium.com/data-
science/a-look-into-binary-search-trees-ee2d69e9d0ef [Accessed: June
24, 2025]

[8] Rinaldi Munir, “Algoritma Decrease and Conquer (Bagian 1),” IF2211
Strategi Algoritma – Semester II Tahun 2024/2025, 2025. [Online].
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/11-Algoritma-Decrease-and-Conquer-2025-Bagian1.pdf
[Accessed: June 24, 2025]

[9] Ada Kavlakoglu and Vanna Winland, “What is k-means clustering?,” in
ibm.com, June 26, 2024. [Online]. Available:
https://www.ibm.com/think/topics/k-means-clustering [Accessed: June
24, 2025]

[10] Katyayani Vemula, “What is a K-Dimensional Tree?,” in medium.com,
January 24, 2024. [Online]. Available:
https://medium.com/@katyayanivemula90/what-is-a-k-dimensional-tree-
8265cc737d77 [Accessed: June 24, 2025]

[11] Kuncahyo Setyo Nugroho, “Confusion Matrix untuk Evaluasi Model
pada Supervised Learning,” in ksnugroho.medium.com, November 13,
2019. [Online]. Available: https://ksnugroho.medium.com/confusion-
matrix-untuk-evaluasi-model-pada-unsupervised-machine-learning-
bc4b1ae9ae3f [Accessed: June 24, 2025]

[12] YapWH, “Chatbot Dataset (AI Q&A),” in kaggle.com, 2023. [Online].
Available: https://www.kaggle.com/datasets/yapwh1208/chatbot-ai-q-
and-a [Accessed: June 24, 2025]

[13] Crowdsource, “SciQ (Scientific Question Answering),” in kaggle.com,
2022. [Online]. Available: https://www.kaggle.com/satasets/t
hedevastator/sciq-a-dataset-for-science-question-answering?select=train
.csv [Accessed: June 24, 2025]

STATEMENT

Hereby I declare that this paper that I have written is my own
work, not a reproduction or translation of someone else’s
work, and not plagiarized.

Bandung, 24 June 2025

Muhammad Ghifary Komara Putra (13523066)

